Методы в естествознании таблица. Предмет и метод естествознания

Предметом естествознания являются различные формы движения материи в природе: их материальные носители (субстраты), образующие лестницу последовательных уровней структурной организации материи, их взаимосвязи, внутренняя структура и генезис; основные формы всякого бытия - пространство и время; закономерная связь явлений природы как общего характера, так и специфического характера.

Цели естествознания - двоякие:

1) находить сущность явлений природы, их законы и на этой основе предвидеть или создавать новые явления;

2) раскрывать возможность использования на практике познанных законов, сил и веществ природы.

Целью естествознания, в конечном счете, является попытка решения так называемых «мировых загадок», сформулированных еще в конце 19-го века Э. Геккелем и Э.Г. Дюбуа-Реймоном. Две из этих загадок относятся к физике, две -- к биологии и три -- к психологии. Вот эти загадки:

Ш сущность материи и силы

Ш происхождение движения

Ш возникновение жизни

Ш целесообразность природы

Ш возникновение ощущения и сознания

Ш возникновение мышления и речи

Ш свобода воли.

Задачей естествознания является познание объективных законов природы и содействие их практическому использованию в интересах человека. Естественнонаучное знание создается в результате обобщения наблюдений, получаемых и накапливаемых в процессе практической деятельности людей, и само является теоретической основой их деятельности.

Все исследования природы сегодня можно наглядно представить в виде большой сети, состоящей из ветвей и узлов. Эта сеть связывает многочисленные ответвления физических, химических и биологических наук, включая науки синтетические, возникшие на стыке основных направлений (биохимия, биофизика и др.).

Даже исследуя простейший организм, мы должны учитывать, что это и механический агрегат, и термодинамическая система, и химический реактор с разнонаправленными потоками масс, тепла, электрических импульсов; это, в то же время, и некая «электрическая машина», генерирующая и поглощающая электромагнитное излучение. И, в то же время, это - ни то и ни другое, это - единое целое.

Методы естествознания

Процесс научного познания в самом общем виде представляет собой решение различного рода задач, возникающих в ходе практической деятельности. Решение возникающих при этом проблем достигается путем использования особых приемов (методов), позволяющих перейти от того, что уже известно, к новому знанию. Такая система приемов обычно и называется методом. Метод есть совокупность приемов и операций практического и теоретического познания действительности.

В основе методов естествознания лежит единство его эмпирической и теоретической сторон. Они взаимосвязаны и обусловливают друг друга. Их разрыв, или преимущественное развитие одной за счет другой, закрывает путь к правильному познанию природы - теория становится беспредметной, опыт - слепым.

Эмпирическая сторона предполагает необходимость сбора фактов и информации (установление фактов, их регистрацию, накопление), а также их описание (изложение фактов и их первичная систематизация).

Теоретическая сторона связана с объяснением, обобщением, созданием новых теорий, выдвижением гипотез, открытием новых законов, предсказанием новых фактов в рамках этих теорий. С их помощью вырабатывается научная картина мира и тем самым осуществляется мировоззренческая функция науки.

Методы естествознания могут быть подразделены на группы:

а) общие методы , касающиеся всего естествознания, любого предмета природы, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

б) особенные методы - специальные методы, касающиеся не предмета естествознания в целом, а лишь одной из его сторон или же определенного приема исследований: анализ, синтез, индукция, дедукция;

К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент.

В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланированному образцу.

Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс.

Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это, прежде всего, относится к исследованиям в области физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете.

Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части. Расчленение имеет целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи частей друг с другом.

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям.

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез.

Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или ложность которого еще не установлены.

Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фактами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, систематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам. Гипотеза должна быть либо подтверждена, либо опровергнута.

в) частные методы - это методы, действующие либо только в пределах отдельной отрасли естествознания, либо за пределами той отрасли естествознания, где они возникли. Таков метод кольцевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.

Моделирование - метод научного познания, основанный на изучении реальных объектов посредством изучения моделей этих объектов, т.е. посредством изучения более доступных для исследования и (или) вмешательства объектов-заместителей естественного или искусственного происхождения, обладающих свойствами реальных объектов.

Свойства любой модели не должны, да и не могут, точно и полностью соответствовать абсолютно всем свойствам соответствующего реального объекта в любых ситуациях. В математических моделях любой дополнительный параметр может привести к существенному усложнению решения соответствующей системы уравнений, к необходимости применения дополнительных допущений, отбрасывания малых членов и т.п., при численном моделировании непропорционально вырастает время обработки задачи компьютером, нарастает ошибка счета.

РАЗВИТИЕ НАУЧНОГО ЗНАНИЯ

Процесс научного познания в самом общем виде представ­ляет собой решение различного рода задач, возникающих в ходе практической деятельности. Решение возникающих при этом проблем достигается путем использования особых прие­мов (методов), позволяющих перейти от того, что уже извест­но, к новому знанию. Такая система приемов обычно и назы­вается методом. Метод есть совокупность приемов и операций практического и теоретического познания действительности.

МЕТОДЫ НАУЧНОГО ПОЗНАНИЯ

Каждая наука использует различные методы, которые за­висят от характера решаемых в ней задач. Однако своеобразие научных методов состоит в том, что они относительно незави­симы от типа проблем, но зато зависимы от уровня и глубины научного исследования, что проявляется прежде всего в их ро­ли в научно-исследовательских процессах. Иными словами, в каждом научно-исследовательском процессе меняется сочета­ние методов и их структура. Благодаря этому возникают осо­бые формы (стороны) научного познания, важнейшими из ко­торых являются эмпирическая, теоретическая и производст­венно-техническая.

Эмпирическая сторона предполагает необходимость сбора фактов и информации (установление фактов, их регистрацию, накопление), а также их описание (изложение фактов и их пер­вичная систематизация).

Теоретическая сторона связана с объяснением, обобщени­ем, созданием новых теорий, выдвижением гипотез, открыти­ем новых законов, предсказанием новых фактов в рамках этих теорий. С их помощью вырабатывается научная картина мира и тем самым осуществляется мировоззренческая функ­ция науки.

Производственно-техническая сторона проявляет себя как непосредственная производственная сила общества, проклады­вая путь развитию техники, но это уже выходит за рамки собст­венно научных методов, так как носит прикладной характер.

Средства и методы познания соответствуют рассмотренной выше структуре науки, элементы которой одновременно явля­ются и ступенями развития научного знания. Так, эмпириче­ское, экспериментальное исследование предполагает целую систему экспериментальной и наблюдательной техники (устро­йств, в том числе вычислительных приборов, измерительных установок и инструментов), с помощью которой устанавлива­ются новые факты. Теоретическое исследование предполагает работу ученых, направленную на объяснение фактов (пред­положительное - с помощью гипотез, проверенное и доказан­ное - с помощью теорий и законов науки), на образование по­нятий, обобщающих опытные данные. То и другое вместе осуществляет проверку познанного на практике.

В основе методов естествознания лежит единство его эмпи­рической и теоретической сторон. Они взаимосвязаны и обу­словливают друг друга. Их разрыв, или преимущественное развитие одной за счет другой, закрывает путь к правильному познанию природы - теория становится беспредметной, опыт -

Методы естествознания могут быть подразделены на сле­дующие группы: ,

1. Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например, метод восхождения от абстрактного к кон­кретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

2. Особенные методы касаются лишь одной стороны изу­чаемого предмета или же определенного приема исследования:

анализ, синтез, индукция, дедукция. К числу особенных мето­дов также относятся наблюдение, измерение, сравнение и экс­перимент.

В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс вос­приятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланирован­ному образцу.

Наблюдение как метод познания действительности приме­няется либо там, где невозможен или очень затруднен экспе­римент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функциониро­вание или поведение объекта (в этологии, социальной психо­логии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Ча­стными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого яв­ления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмеша­тельством в исследуемый объект, то есть активностью по от­ношению к нему. Проводя эксперимент, исследователь не ог­раничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непо­средственного воздействия на изучаемый процесс или измене­ния условий, в которых проходит этот процесс.

Специфика эксперимента состоит также в том, что в обыч­ных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому воз­никает задача организации такого исследования, при кото­ром можно было бы проследить ход процесса в «чистом» ви­де. В этих целях в эксперименте отделяют существенные фак­торы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глу­бокому пониманию явлений и создает возможность контро­лировать немногие существенные для данного процесса фак­торы и величины.

Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в области физики микромира (квантовой меха­нике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит пере­нос знания, полученного в ходе рассмотрения какого-либо од­ного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предме­тов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете.

Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффек­тивно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобре­тают доказательную силу.

Моделирование - метод научного познания, основанный на изучении каких-либо объектов посредством их моделей. Появ­ление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмеша­тельства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на дру­гой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моде­лью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание.

Таким образом, сущность моделирования как метода по­знания заключается в замещении объекта исследования моде­лью, причем в качестве модели могут быть использованы объ­екты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответ­ствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений.

Современной науке известно несколько типов моделиро­вания:

1) предметное моделирование, при котором исследование ведется на модели, воспроизводящей определенные геометри­ческие, физические, динамические или функциональные харак­теристики объекта-оригинала;

2) знаковое моделирование, при котором в качестве моде­лей выступают схемы, чертежи, формулы. Важнейшим видом такого моделирования является математическое моделирова­ние, производимое средствами математики и логики;

3) мысленное моделирование, при котором вместо знако­вых моделей используются мысленно-наглядные представле­ния этих знаков и операций с ними.

В последнее время широкое распространение получил мо­дельный эксперимент с использованием компьютеров, которые являются одновременно и средством, и объектом эксперимен­тального исследования, заменяющими оригинал. В таком слу­чае в качестве модели выступает алгоритм (программа) функ­ционирования объекта.

Анализ - метод научного познания, в основу которого положе­на процедура мысленного или реального расчленения предмета на составляющие его части. Расчленение имеет целью переход от изу­чения целого к изучению его частей и осуществляется путем абстра­гирования от связи частей друг с другом.

Анализ - органичная составная часть всякого научного ис­следования, являющаяся обычно его первой стадией, когда ис­следователь переходит от нерасчлененного описания изучае­мого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предме­та в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как ме­тод конструирования целого, а как метод представления цело­го в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Индукция - метод научного познания, представляющий со­бой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента.

Непосредственной основой индуктивного умозаключения является повторяемость признаков в ряду предметов опреде­ленного класса. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широ­кого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпи­рические законы.

Различают полную и неполную индукцию. Полная индук­ция строит общий вывод на основании изучения всех предме­тов или явлений данного класса. В результате полной индук­ции полученное умозаключение имеет характер достоверного вывода. Суть неполной индукции состоит в том, что она стро­ит общий вывод на основании наблюдения ограниченного числа фактов, если среди последних не встретились такие, ко­торые противоречат индуктивному умозаключению. Поэтому естественно, что добытая таким путем истина неполна, здесь мы получаем вероятностное знание, требующее дополнитель­ного подтверждения.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результа­там-следствиям.

Умозаключение по дедукции строится по следующей схеме;

все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет | получить содержательно нового знания. Дедукция представля- ^ ет собой лишь способ логического развертывания системы по- | ложений на базе исходного знания, способ выявления кон­кретного содержания общепринятых посылок.

Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследова­тель пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез.

Гипотеза представляет собой всякое предположение, до­гадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или лож­ность которого еще не установлены.

Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фак­тами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, сис­тематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам.

Гипотеза должна быть либо подтверждена, либо опро­вергнута. Для этого она должна обладать свойствами фаль-сифицируемости и верифицируемости. Фальсификация- про­цедура, устанавливающая ложность гипотезы в результате экспериментальной или теоретической проверки. Требование фальсифнцируемости гипотез означает, что предметом науки может быть только принципиально опровергаемое знание. Неопровержимое знание (например, истины религии) к науке отношения не имеет. При этом сами по себе результаты экс­перимента опровергнуть гипотезу не могут. Для этого нужна альтернативная гипотеза или теория, обеспечивающая даль­нейшее развитие знаний. В противном случае отказа от пер­вой гипотезы не происходит. Верификация - процесс установ­ления истинности гипотезы или теории в результате их эмпи­рической проверки. Возможна также косвенная верифици-руемость, основанная на логических выводах из прямо вери­фицированных фактов.

3. Частные методы - это специальные методы, действую­щие либо только в пределах отдельной отрасли науки, либо за пределами той отрасли, где они возникли. Таков метод коль­цевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Не­редко применяется комплекс взаимосвязанных частных мето­дов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, матема­тики, химии, кибернетики.

Наши представления о сущности науки не будут полными, если мы не рассмотрим вопрос о причинах, ее породивших. Здесь мы сразу сталкиваемся с дискуссией о времени возникно­вения науки.

Когда и почему возникла наука? Существуют две крайние точки зрения по этому вопросу. Сторонники одной объявляют научным всякое обобщенное абстрактное знание и относят возникновение науки к той седой древности, когда человек стал делать первые орудия труда. Другая крайность - отнесе­ние генезиса (происхождения) науки к тому сравнительно позднему этапу истории (XV - XVII вв.), когда появляется опытное естествознание.

Современное науковедение пока не дает однозначного от­вета на этот вопрос, так как рассматривает саму науку в не­скольких аспектах. Согласно основным точкам зрения наука -это совокупность знаний и деятельность по производству этих знаний; форма общественного сознания; социальный институт;

непосредственная производительная сила общества; система профессиональной (академической) подготовки и воспроизвод­ства кадров. Мы уже называли и довольно подробно говорили об этих сторонах науки. В зависимости от того, какой аспект мы будем принимать во внимание, мы получим разные точки отсчета развития науки:

Наука как система подготовки кадров существует с сере­дины XIX в.;

Как непосредственная производительная сила - со второй половины XX в.;

Как социальный институт - в Новое время; /У^>

Как форма общественного сознания - в Древней Греции;

Как знания и деятельность по производству этих знаний -с начала человеческой культуры.

Разное время рождения имеют и различные конкретные науки. Так, античность дала миру математику, Новое время -современное естествознание, в XIX в. появляется общество-знание.

Для того чтобы понять этот процесс, нам следует обра­титься к истории.

Наука - это сложное многогранное общественное явле­ние: вне общества наука не может ни возникнуть, ни разви­ваться. Но наука появляется тогда, когда для этого создаются особые объективные условия: более или менее четкий соци­альный запрос на объективные знания; социальная возмож­ность выделения особой группы людей, чьей главной задачей становится ответ на этот запрос; начавшееся разделение тру­да внутри этой группы; накопление знаний, навыков, позна­вательных приемов, способов символического выражения и передачи информации (наличие письменности), которые и подготавливают революционный процесс возникновения и распространения нового вида знания - объективных обще­значимых истин науки.

Совокупность таких условий, а также появление в культуре человеческого общества самостоятельной сферы, отвечающей критериям научности, складывается в Древней Греции в VII-VI вв. до н.э.

Чтобы доказать это, необходимо соотнести критерии науч­ности с ходом реального исторического процесса и выяснить, с какого момента начинается их соответствие. Напомним крите­рии научности: наука - это не просто совокупность знаний, но и деятельность по получению новых знаний, что предполагает существование особой группы людей, специализирующейся на этом, соответствующих организации, координирующих иссле­дования, а также наличие необходимых материалов, техноло­гий, средств фиксации информации (1); теоретичность - по­стижение истины ради самой истины (2); рациональность (3), системность (4).

Прежде чем говорить о великом перевороте в духовной жизни общества - появлении науки, происшедшем в Древней Греции, необходимо изучить ситуацию на Древнем Востоке, традиционно считающемся историческим центром рождения цивилизации и культуры


Некоторые из / положений в системе собственных оснований классической фи­зики считались истинными лишь благодаря тем гносеологиче­ским предпосылкам, которые допускались как естественные в физике XVII - XVIII вв В классической механике различные тела рассматривались в качестве материальных точек, на ко­торые оказывалось силовое воздействие, причем такая идеа­лизация применялась и в отношении планет при описании их вращения вокруг Солнца Широко использовалось понятие абсолютно твердого, недеформируемого тела, которое оказа­лось пригодным для решения некоторых задач В ньютониан-ской физике пространство и время рассматривались как абсо­лютные сущности, независимые от материи, как внешний фон, на котором развертывались все процессы В понимании строения вещества широко использовалась атомистическая гипотеза, но атомы рассматривались как неделимые, наде­ленные массой бесструктурные частицы, аналогичные мате­риальным точкам.

Хотя все эти допущения были результатом сильных идеа­лизации реальности, они позволяли абстрагироваться от мно­гих других свойств объектов, несущественных для решения оп­ределенного рода задач, а потому были вполне оправданы в физике на том этапе ее развития Но когда эти идеализации распространялись за сферу их возможного применения, это приводило к противоречию в существующей картине мира, в которую не укладывались многие факты и законы волновой оптики, теорий электромагнитных явлений, термодинамики, химии, биологии и т.д.

Поэтому очень важно понимать, что нельзя абсолютизиро­вать гносеологические предпосылки. В обычном, плавном разви­тии науки их абсолютизация бывает не очень заметна и не сли­шком мешает Но когда наступает этап революции в науке, появляются новые теории, которые требуют совершенно новых гносеологических предпосылок, часто несовместимых с гносеологическими предпосылками старых теории Так, вы­шеперечисленные принципы классической механики были ре­зультатом принятия крайне сильных гносеологических пред­посылок, которые на том уровне развития науки казались оче­видными Все эти принципы были и остаются истинными, ко­нечно, при вполне определенных гносеологических предпо­сылках, при определенных условиях проверки их истинности. Иначе говоря, при определенных гносеологических предпо­сылках и определенном уровне практики эти принципы были, есть и будут всегда истинными. Это же говорит о том, что нет абсолютной истины Истинность всегда зависит от гносеоло­гических предпосылок, которые не являются раз и навсегда данными и неизменными.

В качестве примера возьмем современную физику, для ко­торой верны новые принципы, в корне отличные от классиче­ских: принцип конечной скорости распространения физиче­ских взаимодействий, не превышающий скорость света в ва­кууме, принцип взаимосвязи наиболее общих физических свойств (пространства, времени, тяготения и т.д.), принципы относительности логических оснований теорий Эти принципы основаны на качественно иных гносеологических предпосыл­ках, чем старые принципы, они логически несовместны В этом случае нельзя утверждать, что если истинны новые принципы, то старые ложны, и наоборот При разных гносеологических предпосылках могут быть истинными и старые, и новые прин­ципы одновременно, но области применения этих принципов будут различны. Такая ситуация на самом деле имеет место в естествознании, благодаря чему истинны как старые теории (например, классическая механика), так и новые (например, релятивистская механика, квантовая механика и т.д.).


НОВЕЙШАЯ РЕВОЛЮЦИЯ В НАУКЕ

Толчком, началом новейшей революции в естествознании, приведшей к появлению современной науки, был целый ряд ошеломляющих открытий в физике, разрушивших всю карте-зианско-ньютоновскую космологию. Сюда относятся откры-тие электромагнитных волн Г. Герцем, коротковолнового электромагнитного излучения К. Рентгеном, радиоактивности А. Беккерелем, электрона Дж. Томсоном, светового давления П.Н.Лебедевым, введение идеи кванта М. Планком, создание теории относительности А. Эйнштейном, описание процесса радиоактивного распада Э.Резерфордом. В 1913 - 1921 гг. на основе представлений об атомном ядре, электронах и квантах Н. Бор создает модель атома, разработка которой ведется в соответствии с периодической системой элементов Д.И. Мен­делеева. Это - первый этап новейшей революции в физике и во всем естествознании. Он сопровождается крушением прежних представлений о материи и ее строении, свойствах, формах движения и типах закономерностей, о пространстве и времени. Это привело к кризису физики и всего естествознания, являв­шегося симптомом более глубокого кризиса метафизических философских оснований классической науки.

Второй этап революции начался в середине 20-х гг. XX века и связан с созданием квантовой механики и сочетанием ее с теорией относительности в новой квантово-релятивистскоЙ физической картине мира.

На исходе третьего десятилетия XX века практически все главнейшие постулаты, ранее выдвинутые наукой, оказались опровергнутыми. В их число входили представления об атомах как твердых, неделимых и раздельных «кирпичиках» материи, о времени и пространстве как независимых абсолютах, о стро­гой причинной обусловленности всех явлений, о возможности объективного наблюдения природы.

Предшествующие научные представления были оспорены буквально со всех сторон. Ньютоновские твердые атомы, как ныне выяснилось, почти целиком заполнены пустотой. Твер­дое вещество не является больше важнейшей природной суб­станцией. Трехмерное пространство и одномерное время пре­вратились в относительные проявления четырехмерного про­странственно-временного континуума. Время течет по-разному для тех, кто движется с разной скоростью. Вблизи тяжелых предметов время замедляется, а при определенных обстоятель­ствах оно может и совсем остановиться. Законы Евклидовой геометрии более не являются обязательными для природоустройства в масштабах Вселенной. Планеты движутся по своим орбитам не потому, что их притягивает к Солнцу некая сила, действующая на расстоянии, но потому, что само пространст­во, в котором они движутся, искривлено. Субатомные феноме­ны обнаруживают себя и как частицы, и как волны, демонст­рируя свою двойственную природу. Стало невозможным од­новременно вычислить местоположение частицы и измерить ее ускорение. Принцип неопределенности в корне подрывал и вытеснял собой старый лапласовский детерминизм. Научные наблюдения и объяснения не могли двигаться дальше, не за­тронув природы наблюдаемого объекта. Физический мир, увиденный глазами физика XX века, напоминал не столько ог­ромную машину, сколько необъятную мысль.

Началом третьего этапа революции были овладение атом­ной энергией в 40-е годы нашего столетия и последующие ис­следования, с которыми связано зарождение электронно-вычислительных машин и кибернетики. Также в этот период наряду с физикой стали лидировать химия, биология и цикл наук о Земле. Следует также отметить, что с середины XX века наука окончательно слилась с техникой, приведя к современ­ной научно-технической революции.

Квантово -релятивистская научная картина мира стала пер­вым результатом новейшей революции в естествознании.

Другим результатом научной революции стало утвержде­ние неклассического стиля мышления- Стиль научного мыш­ления - принятый в научной среде способ постановки научных проблем, аргументации, изложения научных результатов, про­ведения научных дискуссий и т.д. Он регулирует вхождение новых идей в арсенал всеобщего знания, формирует соответст­вующий тип исследователя. Новейшая революция в науке при­вела к замене созерцательного стиля мышления деятельност-ным. Этому стилю свойственны следующие черты:

1. Изменилось понимание предмета знания: им стала теперь не реальность в чистом виде, фиксируемая живым созерцани­ем, а некоторый ее срез, полученный в результате определен­ных теоретических и эмпирических способов освоения этой реальности.

2. Наука перешла от изучения вещей, которые рассматри­вались как неизменные и способные вступать в определенные связи, к изучению условий, попадая в которые вещь не просто ведет себя определенным образом, но только в них может быть или не быть чем-то. Поэтому современная научная теория на­чинается с выявления способов и условий исследования объекта.

3. Зависимость знаний об объекте от средств познания и соответствующей им организации знания определяет особую роль прибора, экспериментальной установки в современном научном познании. Без прибора нередко отсутствует сама воз­можность выделить предмет науки (теории), так как он выде­ляется в результате взаимодействия объекта с прибором.

4. Анализ лишь конкретных проявлений сторон и свойств объекта в различное время, в различных ситуациях приводит к объективному «разбросу» конечных результатов исследования. Свойства объекта также зависят от его взаимодействия с при­бором. Отсюда вытекает правомерность и равноправие раз­личных видов описания объекта, различных его образов. Если классическая наука имела дело с единым объектом, отобра­жаемым единственно возможным истинным способом, то со­временная наука имеет дело с множеством проекций этого объекта, но эти проекции не могут претендовать на закончен­ное всестороннее его описание.

5. Отказ от созерцательности и наивной реалистичности ус­тановок классической науки привел к усилению математиза­ции современной науки, сращиванию фундаментальных и при­кладных исследований, изучению крайне абстрактных, абсо­лютно неведомых ранее науке типов реальностей - реально­стей потенциальных (квантовая механика) и виртуальных (физика высоких энергий), что привело к взаимопроникнове­нию факта и теории, к невозможности отделения эмпирическо­го от теоретического.

Современную науку отличает повышение уровня ее абст­рактности, утрата наглядности, что является следствием мате­матизации науки, возможности оперирования высокоабст­рактными структурами, лишенными наглядных прообразов.

Изменились также логические основания науки. Наука ста­ла использовать такой логический аппарат, который наиболее приспособлен для фиксации нового деятельностного подхода к анализу явлений действительности. С этим связано использо­вание неклассических (неаристотелевских) многозначных логик, ограничения и отказы от использования таких классических логических приемов, как закон исключенного третьего.

Наконец, еще одним итогом революции в науке стало раз­витие биосферного класса наук и новое отношение к феномену жизни. Жизнь перестала казаться случайным явлением во Все­ленной, а стала рассматриваться как закономерный результат саморазвития материи, также закономерно приведший к воз­никновению разума. Науки биосферного класса, к которым относятся почвоведение, биогеохимия, биоценология, биогео­графия, изучают природные системы, где идет взаимопроник­новение живой и неживой природы, то есть происходит взаи­мосвязь разнокачественных природных явлений. В основе био­сферных наук лежит естественноисторическая концепция, идея всеобщей связи в природе. Жизнь и живое понимаются в них как существенный элемент мира, действенно формирующий этот мир, создавший его в нынешнем виде.

ОСНОВНЫЕ ЧЕРТЫ СОВРЕМЕННОЙ НАУКИ

Современная наука - это наука, связанная с квантово-релятивистской картиной мира. Почти по всем своим характе­ристикам она отличается от классической науки, поэтому со­временную науку иначе называют неклассической наукой. Как качественно новое состояние науки она имеет свои особенности.

1. Отказ от признания классической механики в качестве ведущей науки, замена ее квантово-релятивистскими теориями привели к разрушению классической модели мира-механизма. Ее сменила модель мира-мысли, основанная на идеях всеобщей связи, изменчивости и развития.

Механистичность и метафизичность классической науки: сменились новыми диалектическими установками:

: - классический механический детерминизм, абсолютно ис­ключающий элемент случайного из картины мира, сменился современным вероятностным детерминизмом, предполагаю­щим вариативность картины мира;

Пассивная роль наблюдателя и экспериментатора в клас­сической науке сменилась новым деятельностным подходом, признающим непременное влияние самого исследователя, при­боров и условий на проводимый эксперимент и полученные в ходе него результаты;

Стремление найти конечную материальную первооснову мира сменилось убеждением в принципиальной невозможно­сти сделать это, представлением о неисчерпаемости материи вглубь;

Новый подход к пониманию природы познавательной деятельности основывается на признании активности исследо­вателя, не просто являющегося зеркалом действительности, но действенно формирующего ее образ;

Научное знание более не понимается как абсолютно дос­товерное, но только как относительно истинное, существую­щее в множестве теорий, содержащих элементы объективно-истинного знания, что разрушает классический идеал точного и строгого (количественно неограниченно детализируемого) знания, обусловливая неточность и нестрогость современной науки.

2. Картина постоянно изменяющейся природы преломляет­ся в новых исследовательских установках:

Отказ от изоляции предмета от окружающих воздействий, что было свойственно классической науке;

Признание зависимости свойств предмета от конкретной ситуации, в которой он находится;

Системно-целостная оценка поведения предмета, которое признается обусловленным как логикой внутреннего измене­ния, так и формами взаимодействия с другими предметами;

Динамизм - переход от исследования равновесных струк­турных организаций к анализу неравновесных, нестационар­ных структур, открытых систем с обратной связью;

Антиэлементаризм - отказ от стремления выделить эле­ментарные составляющие сложных структур, системный ана­лиз динамически действующих открытых неравновесных систем.

3. Развитие биосферного класса наук, а также концепции самоорганизации материи доказывают неслучайность появле­ния Жизни и Разума во Вселенной; это на новом уровне воз­вращает нас к проблеме цели и смысла Вселенной, говорит о запланированном появлении разума, который полностью про­явит себя в будущем.

4. Противостояние науки и религии дошло до своего логиче­ского конца. Без преувеличения можно сказать, что наука стала религией XX века. Соединение науки с производством, научно-техническая революция, начавшаяся с середины столетия, казалось, предъявили ощутимые доказательства ведущей роли науки в обществе. Парадокс заключался в том, что именно.этому ощутимому свидетельству суждено было оказаться ре­шающим в достижении обратного эффекта.

Интерпретацию полученных данных. Наблюдение всегда осуществляется в рамках какой-либо научной теории с целью ее подтверждения или опровержения. Таким же всеобщим методом научного познания является эксперимент, когда в искусственных условиях воспроизводятся условия естественные. Неоспоримым достоинством эксперимента является то, что его можно неоднократно повторять, каждый раз вводя новые и новые...

Но, как показал Гедель, в теории всегда останется неформализуемый остаток, т. е. ни одна теория не может быть полностью формализована. Формальный метод–даже при последовательном его проведении–не охватывает всех проблем логики научного познания (на что уповали логические позитивисты). 2. Аксиоматический метод–способ построения научной теории, при котором в ее основу кладутся некоторые 1гсходые...

Естествознание опирается на рациональные методы познания. Эти методы реализуются на двух основных уровнях познания: эмпирическом и теоретическом.

На эмпирическом уровне используются следующие формы. Исходная форма знания – факты . Пути накопления фактов: наблюдение и эксперимент. Наблюдение – метод эмпирического познания, представляющий собой чувственное отражение предметов и явлений, не вносящее изменение в наблюдаемую реальность. Эксперимент – метод познания, при помощи которого явление исследуется в контролируемых и управляемых условиях для выявления факторов, на него влияющих. В ходе наблюдения и эксперимента осуществляется измерение – процесс определения количественных значений тех или иных свойств, сторон объекта с помощью специальных устройств, приборов. При измерении определяется та или иная физическая величина. Основное требование к результатам измерения – достоверность . Она непосредственно связана с воспроизводимостью эффекта или параметров, его описывающих. Последнее оценивается вычислением точности измерения. Закономерности и экспериментальные зависимости – взаимосвязи факторов, величин, выявленные в ходе наблюдения и экспериментов.

На теоретическом уровне осуществляется осмысление экспериментальных материалов на основе методов логического мышления:

анализа (разделение объекта на составляющие части с целью их отдельного изучения) и синтеза (соединение составных частей в целое);

индукции (умозаключение от частного к общему, от фактов к гипотезе) и дедукции (вывод по правилам логики частного из общего);

абстрагирования (мысленное отвлечение от тех или иных менее существенных свойств, сторон, признаков изучаемого объекта с одновременным выделением более существенных) и конкретизации (учет особенностей предмета);

идеализации (мысленное внесение определенных изменений в изучаемый объект в соответствии с целями исследований) и моделирования (изучение объекта, базирующееся на соответствии некоторой части его свойств построенной копии);

формализации (использование специальной символики, позволяющей отвлечься от изучения реальных объектов и оперировать вместо этого множеством символов).

Теоретический уровень включает в себя следующие формы знаний.

Закон – выражение объективной связи явлений и величин, их описывающих. Законы классифицируются:

По области применения – фундаментальные (закон сохранения энергии) и частные (закон Ома);

По конструкции – количественные (первый закон Ньютона) и качественные (законы эволюции биосферы, второй закон термодинамики);

По характеру объекта – динамические , в которых превалирует необходимость и с помощью которых по известным начальным параметрам состояния конкретного объекта можно точно определить его состояние в любой момент времени (например, второй закон Ньютона), и статистические , в которых случайность является формой проявления необходимости и которые позволяют по заданным с некоторой вероятностью начальным параметрам состояния конкретного объекта определить его состояние в любой момент времени с некоторой вероятностью (например, закон радиоактивного распада).


Постулаты и аксиомы – недоказываемые утверждения, которые, как правило, лежат в основе теории.

Принципы – положения, также лежащие в основе теории.

Гипотезы – предположительные, недостаточно обоснованные положения и утверждения.

Модель – упрощенный образ (копия) реального объекта; исходные положения для создания моделей нередко формируются в виде постулатов. На основе рассмотрения поведения моделей выводятся эмпирически проверяемые следствия; часто используются мысленные эксперименты, в которых проигрываются возможные варианты поведения моделей; развитие этого метода – математическое и компьютерное моделирование. Модели бывают вербальные – на основе понятий и символов, и невербальные – на основе ассоциаций и образов.

Теория – система знаний, описывающая определенную область взаимосвязанных явлений. Теория может строиться на основе эмпирических зависимостей, постулатов и принципов. Она не появляется как прямое обобщение опытных фактов, а возникает в сложном взаимоотношении теоретического мышления и эмпирического знания. Теория должна удовлетворять следующим требованиям: непротиворечивость, соответствие эмпирическим данным, возможность описать известные явления, возможность предсказать новые явления. Как и законы, которые она объединяет, теория имеет область применения, границы которой должны быть оговорены. В ходе развития науки может возникнуть новая теория, описывающая тот же круг явлений, что и прежняя, причем такая, что обе удовлетворяют приведенным выше требованиям. Тогда согласно принципу соответствия новая теория является обобщением предшествующей, имеет более широкую область применения и включает прежнюю как частный случай.

Концепция (conceptio – понимание) – система взаимосвязанных и вытекающих один из другого взглядов на те или иные явления, процессы; способ понимания, трактовки событий, явлений; основополагающая идея, лежащая в основе теории или из нее вытекающая.

Парадигма (paradeigma – пример, образец) – концептуальная схема, совокупность концепций, господствующая в научном сообществе в течение определенного времени, дающая модель постановки проблем и их решения. Схема парадигм представляет собой научную революцию.

Научная картина мира – обобщенное представление обо всех явлениях природы, сформированное в рамках существующей парадигмы. В формировании научной картины мира существенную роль играет принцип историзма – подход к действительности как закономерно развивающейся во времени.

Методы естествознания

Методы естествознания могут быть подразделены на следующие группы:

Общие методы, касающиеся любого предмета, любой науки. Это различные формы метода, дающего возможность связывать воедино все стороны процесса познания, все его ступени, например, метод восхождения от абстрактного к конкретному, единства логического и исторического. Это, скорее, общефилософские методы познания.

Особенные методы касаются лишь одной стороны изучаемого предмета или же определенного приема исследования: анализ, синтез, индукция, дедукция. К числу особенных методов также относятся наблюдение, измерение, сравнение и эксперимент. В естествознании особенным методам науки придается чрезвычайно важное значение, поэтому в рамках нашего курса необходимо более подробно рассмотреть их сущность.

Наблюдение - это целенаправленный строгий процесс восприятия предметов действительности, которые не должны быть изменены. Исторически метод наблюдения развивается как составная часть трудовой операции, включающей в себя установление соответствия продукта труда его запланированному образцу. Наблюдение как метод познания действительности применяется либо там, где невозможен или очень затруднен эксперимент (в астрономии, вулканологии, гидрологии), либо там, где стоит задача изучить именно естественное функционирование или поведение объекта (в этологии, социальной психологии и т.п.). Наблюдение как метод предполагает наличие программы исследования, формирующейся на базе прошлых убеждений, установленных фактов, принятых концепций. Частными случаями метода наблюдения являются измерение и сравнение.

Эксперимент - метод познания, при помощи которого явления действительности исследуются в контролируемых и управляемых условиях. Он отличается от наблюдения вмешательством в исследуемый объект, то есть активностью по отношению к нему. Проводя эксперимент, исследователь не ограничивается пассивным наблюдением явлений, а сознательно вмешивается в естественный ход их протекания путем непосредственного воздействия на изучаемый процесс или изменения условий, в которых проходит этот процесс. Специфика эксперимента состоит также в том, что в обычных условиях процессы в природе крайне сложны и запутанны, не поддаются полному контролю и управлению. Поэтому возникает задача организации такого исследования, при котором можно было бы проследить ход процесса в «чистом» виде. В этих целях в эксперименте отделяют существенные факторы от несущественных и тем самым значительно упрощают ситуацию. В итоге такое упрощение способствует более глубокому пониманию явлений и создает возможность контролировать немногие существенные для данного процесса факторы и величины. Развитие естествознания выдвигает проблему строгости наблюдения и эксперимента. Дело в том, что они нуждаются в специальных инструментах и приборах, которые последнее время становятся настолько сложными, что сами начинают оказывать влияние на объект наблюдения и эксперимента, чего по условиям быть не должно. Это прежде всего относится к исследованиям в области физики микромира (квантовой механике, квантовой электродинамике и т.д.).

Аналогия - метод познания, при котором происходит перенос знания, полученного в ходе рассмотрения какого-либо одного объекта, на другой, менее изученный и в данный момент изучаемый. Метод аналогии основывается на сходстве предметов по ряду каких-либо признаков, что позволяет получить вполне достоверные знания об изучаемом предмете. Применение метода аналогии в научном познании требует определенной осторожности. Здесь чрезвычайно важно четко выявить условия, при которых он работает наиболее эффективно. Однако в тех случаях, когда можно разработать систему четко сформулированных правил переноса знаний с модели на прототип, результаты и выводы по методу аналогии приобретают доказательную силу.

Моделирование - метод научного познания, основанный на изучении каких- либо объектов посредством их моделей. Появление этого метода вызвано тем, что иногда изучаемый объект или явление оказываются недоступными для прямого вмешательства познающего субъекта или такое вмешательство по ряду причин является нецелесообразным. Моделирование предполагает перенос исследовательской деятельности на другой объект, выступающий в роли заместителя интересующего нас объекта или явления. Объект-заместитель называют моделью, а объект исследования - оригиналом, или прототипом. При этом модель выступает как такой заместитель прототипа, который позволяет получить о последнем определенное знание. Таким образом, сущность моделирования как метода познания заключается в замещении объекта исследования моделью, причем в качестве модели могут быть использованы объекты как естественного, так и искусственного происхождения. Возможность моделирования основана на том, что модель в определенном отношении отображает какие-либо стороны прототипа. При моделировании очень важно наличие соответствующей теории или гипотезы, которые строго указывают пределы и границы допустимых упрощений.

Современной науке известно несколько типов моделирования:

1) предметное моделирование, при котором исследование ведется на модели, воспроизводящей определенные геометрические, физические, динамические или функциональные характеристики объекта-оригинала;

2) знаковое моделирование, при котором в качестве моделей выступают схемы, чертежи, формулы. Важнейшим видом такого моделирования является математическое моделирование, производимое средствами математики и логики;

3) мысленное моделирование, при котором вместо знаковых моделей используются мысленно-наглядные представления этих знаков и операций с ними. В последнее время широкое распространение получил модельный эксперимент с использованием компьютеров, которые являются одновременно и средством, и объектом экспериментального исследования, заменяющими оригинал. В таком случае в качестве модели выступает алгоритм (программа) функционирования объекта.

Анализ - метод научного познания, в основу которого положена процедура мысленного или реального расчленения предмета на составляющие его части. Расчленение имеет целью переход от изучения целого к изучению его частей и осуществляется путем абстрагирования от связи частей друг с другом. Анализ - органичная составная часть всякого научного исследования, являющаяся обычно его первой стадией, когда исследователь переходит от нерасчлененного описания изучаемого объекта к выявлению его строения, состава, а также его свойств и признаков.

Синтез - это метод научного познания, в основу которого положена процедура соединения различных элементов предмета в единое целое, систему, без чего невозможно действительно научное познание этого предмета. Синтез выступает не как метод конструирования целого, а как метод представления целого в форме единства знаний, полученных с помощью анализа. В синтезе происходит не просто объединение, а обобщение аналитически выделенных и изученных особенностей объекта. Положения, получаемые в результате синтеза, включаются в теорию объекта, которая, обогащаясь и уточняясь, определяет пути нового научного поиска.

Индукция - метод научного познания, представляющий собой формулирование логического умозаключения путем обобщения данных наблюдения и эксперимента. Непосредственной основой индуктивного умозаключения является повторяемость признаков в ряду предметов определенного класса. Заключение по индукции представляет собой вывод об общих свойствах всех предметов, относящихся к данному классу, на основании наблюдения достаточно широкого множества единичных фактов. Обычно индуктивные обобщения рассматриваются как опытные истины, или эмпирические законы. Различают полную и неполную индукцию. Полная индукция строит общий вывод на основании изучения всех предметов или явлений данного класса. В результате полной индукции полученное умозаключение имеет характер достоверного вывода. Суть неполной индукции состоит в том, что она строит общий вывод на основании наблюдения ограниченного числа фактов, если среди последних не встретились такие, которые противоречат индуктивному умозаключению. Поэтому естественно, что добытая таким путем истина неполна, здесь мы получаем вероятностное знание, требующее дополнительного подтверждения.

Дедукция - метод научного познания, который заключается в переходе от некоторых общих посылок к частным результатам-следствиям. Умозаключение по дедукции строится по следующей схеме; все предметы класса «А» обладают свойством «В»; предмет «а» относится к классу «А»; значит «а» обладает свойством «В». В целом дедукция как метод познания исходит из уже познанных законов и принципов. Поэтому метод дедукции не позволяет получить содержательно нового знания. Дедукция представляет собой лишь способ логического развертывания системы положений на базе исходного знания, способ выявления конкретного содержания общепринятых посылок. Решение любой научной проблемы включает выдвижение различных догадок, предположений, а чаще всего более или менее обоснованных гипотез, с помощью которых исследователь пытается объяснить факты, не укладывающиеся в старые теории. Гипотезы возникают в неопределенных ситуациях, объяснение которых становится актуальным для науки. Кроме того, на уровне эмпирических знаний (а также на уровне их объяснения) нередко имеются противоречивые суждения. Для разрешения этих проблем требуется выдвижение гипотез. Гипотеза представляет собой всякое предположение, догадку или предсказание, выдвигаемое для устранения ситуации неопределенности в научном исследовании. Поэтому гипотеза есть не достоверное знание, а вероятное, истинность или ложность которого еще не установлены. Любая гипотеза должна быть обязательно обоснована либо достигнутым знанием данной науки, либо новыми фактами (неопределенное знание для обоснования гипотезы не используется). Она должна обладать свойством объяснения всех фактов, которые относятся к данной области знания, систематизации их, а также фактов за пределами данной области, предсказывать появление новых фактов (например, квантовая гипотеза М. Планка, выдвинутая в начале XX в., привела к созданию квантовой механики, квантовой электродинамики и др. теорий). При этом гипотеза не должна противоречить уже имеющимся фактам. Гипотеза должна быть либо подтверждена, либо опровергнута. Для этого она должна обладать свойствами фальсифицируемости и верифицируемости. Фальсификация- процедура, устанавливающая ложность гипотезы в результате экспериментальной или теоретической проверки. Требование фальсифицируемости гипотез означает, что предметом науки может быть только принципиально опровергаемое знание. Неопровержимое знание (например, истины религии) к науке отношения не имеет. При этом сами по себе результаты эксперимента опровергнуть гипотезу не могут. Для этого нужна альтернативная гипотеза или теория, обеспечивающая дальнейшее развитие знаний. В противном случае отказа от первой гипотезы не происходит. Верификация - процесс установления истинности гипотезы или теории в результате их эмпирической проверки. Возможна также косвенная верифицируемость, основанная на логических выводах из прямо верифицированных фактов.

Частные методы - это специальные методы, действующие либо только в пределах отдельной отрасли науки, либо за пределами той отрасли, где они возникли. Таков метод кольцевания птиц, применяемый в зоологии. А методы физики, использованные в других отраслях естествознания, привели к созданию астрофизики, геофизики, кристаллофизики и др. Нередко применяется комплекс взаимосвязанных частных методов к изучению одного предмета. Например, молекулярная биология одновременно пользуется методами физики, математики, химии, кибернетики.


Тема 2. Современная организация научной работы .

Важную роль в успехе научного исследования играет правильная организация научной работы, а также своевременный поиск источников финансирования научно-исследовательской работы.

Классификация наук - многоступенчатое, разветвленное деление наук, использующее на разных этапах деления разные основания. Все науки обычно делятся на три группы: естественные науки, социальные и гуманитарные науки, формальные науки.

К естественным наукам относятся физика, химия, науки биологического ряда и др. Некоторые естественные науки, как, напр., космология, рассматривают исследуемые ими объекты в развитии и оказываются, т.о., близкими к гуманитарным наукам, а именно к наукам исторического ряда. Др. естественные науки, как, к примеру, география или физическая антропология, формулируют сравнительные оценки и тяготеют к таким социальным наукам, как социология и экономическая наука. Поле естественных наук является, т.о., весьма разнородным. Различия отдельных естественных наук настолько велики, что невозможно выделить какую-то одну из них в качестве парадигмы «естественно-научного познания». Идея неопозитивизма о том, что физика является тем образцом, на который должны ориентироваться все др. науки (исключая формальные), является контрпродуктивной. Физика не способна служить в качестве образца даже для самих естественных наук. Ни космология, ни биология, ни тем более физическая антропология не похожи в своих существенных чертах на физику. Попытка распространить на эти научные дисциплины методологию физики, взятую в сколь-нибудь полном объеме, не может привести к успеху, тем не менее определенное внутреннее единство естественных наук имеется: они стремятся описывать исследуемые ими фрагменты реальности, а не оценивать их; даваемые данными науками описания обычно формулируются в терминах не абсолютных, а сравнительных понятий (временной ряд «раньше-позже-одновременно», пространственные отношения «ближе-дальше», каузальное отношение, отношение «вероятнее, чем» и т.п.).

В число социальных наук входят экономическая наука, социология, политические науки, социальная психология и т.п. Для этих наук характерно, что они не только описывают, но и оценивают, причем очевидным образом тяготеют не к абсолютным, а к сравнительным оценкам, как и вообще к сравнительным понятиям. К гуманитарным наукам относятся науки исторического ряда, лингвистика (индивидуальная), психология и др. Одни из этих наук тяготеют к чистым описаниям (напр., история), другие - сочетают описание с оценкой, причем предпочитают абсолютные оценки (напр., психология). Гуманитарные науки используют, как правило, не сравнительные, а абсолютные категории (временной ряд «было-есть-будет», пространственные характеристики «здесь-там», понятие предопределенности, или судьбы и т.п.). Область социальных и гуманитарных наук еще более разнородна, чем область естественных наук. Идея отыскать научную дисциплину, которая могла бы служить образцом социогуманитарного познания, нереалистична. История, старающаяся избегать оценок и всегда обсуждающая прошлое только с т.зр. настоящего, не может служить образцом для социологии или экономической науки, включающих явные и неявные сравнительные оценки и использующих временной ряд «раньше-одновременно-позже», не предполагающий «настоящего»; политические науки не способны дать каких-то образцов для психологии или лингвистики и т.д. Поиски парадигмальной социальной или гуманитарной дисциплины еще более утопичны, чем поиски «образцовой» естественной науки.

Между собственно социальными и гуманитарными науками лежат науки, которые можно назвать нормативными: этика, эстетика, искусствоведение и т.п. Эти науки формируют, подобно социальным наукам, оценки (и их частный случай - нормы), однако даваемые ими оценки являются, как правило, не сравнительными, а абсолютными. В использовании абсолютных оценок нормативные науки напоминают собственно гуманитарные науки, всегда рассуждающие в координатах абсолютных категорий.

К формальным наукам относятся логика и математика. Их подход к исследуемым объектам настолько абстрактен, что получаемые результаты находят приложение при изучении всех областей реальности.

Приведенная классификация наук опирается на две оппозиции: «оценка - описание» и «абсолютные понятия - сравнительные понятия». Все науки сначала делятся на естественные науки, тяготеющие к описанию в системе сравнительных категорий, и социальные и гуманитарные науки, тяготеющие к оценке в системе абсолютных категорий; затем последние подразделяются на социальные, нормативные и гуманитарные науки. Такая классификация не является единственно возможной. Существуют многообразные иные основания деления наук.

Магистратура – это вторая ступень высшего профессионального образования, предусматривающая специальную, индивидуальную для каждого студента программу обучения, направленную на подготовку к самостоятельным занятиям научно-исследовательской деятельностью. Подготовка в магистратуре включает сдачу кандидатских и семестровых зачетов и экзаменов, выполнение научных исследований по избранной теме, подготовку и защиту магистерской диссертации. Диплом магистра, выдаваемый высшим учебным заведением лицу, завершившему обучение на второй ступени высшего образования и успешно прошедшему итоговую аттестацию, подтверждает право на обучение в аспирантуре (адъюнктуре) и (или) на трудоустройство с учетом ранее присвоенной квалификации специалиста с высшим образованием и обучения в магистратуре.

Аспирантура.

По оценкам ЮНЕСКО в ХХI в. в высокоразвитых странах число научных работников должно составить 2–5% населения. Таким образом, подготовка научных кадров фактически превратилась в индустрию и осуществляется в сфере послевузовского профессионального образования, которая распределена по всем научным секторам. Основные формы подготовки – аспирантура и докторантура.

Обучение в аспирантуре всегда было престижным, поскольку ее выпускники считаются специалистами высшей квалификации. Само слово «аспирант» происходит от латинского aspirans (aspirantis) – домогающийся чего-нибудь, стремящийся к чему-либо.

Суть обучения в аспирантуре состоит в подготовке ученых. Обучение аспиранта основано на проведении самостоятельного научного исследования. Результаты исследования представляются в диссертации, научном произведении, выполненном, как правило, в форме рукописи и имеющем квалификационный характер. Диссертация должна быть научной квалификационной работой, в которой содержится решение задачи, имеющей существенное значение для соответствующей отрасли знаний, либо изложение научно обоснованных технических, экономических или технологических разработок, обеспечивающих решение важных прикладных задач. Таким образом, исследование аспиранта должно быть направлено на новые решения актуальной задачи.

Исследование аспиранта и работа над диссертацией занимают большую часть времени его обучения. Но, помимо готовой рукописи диссертации, для получения ученой степени необходимы результаты сдачи экзаменов кандидатского минимума (кандидатских экзаменов). Эти экзамены выступают как «надстройка» над проводимым исследованием, так как аспирант должен сначала выявить недостаток знаний, что возможно только после начала исследования, а затем компенсировать его при подготовке к экзаменам, заодно изучая другие вопросы.

На первых этапах обучения у аспиранта есть повод для серьезных раздумий о своей специальности. Этот вопрос нужно обязательно обсудить с научным руководителем. После утверждения специальности следует также поинтересоваться у руководителя о диссертациях, за которые уже присуждены степени и, по его мнению, наиболее ярко демонстрируют требования к этой специальности.

Название ученой степени дополняется названием отрасли науки, к которой относится специальность ученого. Все специальности, в рамках которых проводятся диссертационные исследования, классифицируются по номенклатуре специальностей научных работников. Классификатор называется шифром специальности, и в его состав входят: шифр отрасли науки (2 знака), шифры группы специальностей и самой специальности (также по два знака). Шифр никогда не приводится частично, только все 6 цифр, разделенные точками.

Например:

Номенклатура специальностей утверждается специальными постановлениями, имеющими, как правило, три приложения:

· приложение №1 доступно для всеобщего распространения,

· приложение №2 – для служебного пользования (ДСП),

· приложение №3 секретно (известно, что ученые степени могут также присуждаться в отрасли военных наук).

Отрасли взаимосвязаны, поэтому для многих специальностей предусмотрена возможность присуждения степени по двум или нескольким отраслям наук. Например, диссертация по специальности 08.00.13 – «Математические и инструментальные методы в экономике» может быть представлена на соискание степени кандидата экономических или физико-математических наук, что заранее накладывает на исследование специфические ограничения. В то же время, наличие в аспирантуре специальности само по себе не означает возможность защитить диссертацию по любой из отраслей наук, имеющих к ней отношение. В дополнение к специальности, уже вне рамок аспирантуры должен действовать диссертационный совет, имеющий право присуждения ученых степеней в той или иной отрасли науки. Право присуждения степеней диссертационный совет получает в случае соответствующей специализации ученых, входящих в его состав.

В течение всего срока обучения у аспиранта есть научный руководитель. В зависимости от обстоятельств, научный руководитель может быть для аспиранта наставником, консультантом, посредником, коллегой. Очень важно правильно оценить роль научного руководителя. Он оказывает научную и методическую помощь, контролирует выполнение работы, может оказывать психологическую поддержку, давать рекомендации по поводу участия аспирантов в учебном процессе. Опыт научного руководителя нередко оказывается незаменимым. Нормативами определяется, что объем работы научного руководителя, связанный с одним аспирантом, равен пяти академическим часам ежемесячно.

Общение аспиранта с научным руководителем – наиболее существенное взаимодействие в рамках аспирантуры. Поскольку самостоятельность – важнейшая особенность обучения аспирантов, инициатива в общении всегда должна оставаться за ними. Многие научные руководители, к тому же, расценивают эту инициативу как показатель потенциала аспирантов и крайне редко сетуют на их чрезмерную энергию. Совместная деятельность научного руководителя и аспиранта должна быть нацелена на принятие совместных решений по результатам выполненной аспирантом работы. Таким образом, перед каждой встречей с научным руководителем следует как можно конкретнее представлять, что именно от него требуется: мнение о рабочем плане, рекомендации по использованию методов, помощь в редактировании статьи и т.д.

Стремясь к цели своего исследования, аспирант может стать в выбранной области даже более компетентен, чем его научный руководитель, поэтому аспирант должен заранее понимать, что не всякий его вопрос найдет ответ у научного руководителя.

В процессе обучения аспирант может почувствовать, что научный руководитель удовлетворяет не всем его требованиям. Это, как правило, происходит, когда исследование аспиранта находится «на стыке» специализаций разных кафедр или областей знаний. В таком случае аспирант вправе просить о назначении второго научного руководителя, который сможет консультировать его по вопросам второй специализации. Второй научный руководитель (он может называться научным консультантом) необязательно должен иметь отношение к организации, в которой обучается аспирант, т. е. может и не быть сотрудником или даже внештатным преподавателем данного вуза. Несмотря на то, что работа второго научного руководителя, как правило, не оплачивается, многие ученые, особенно молодые, могут быть заинтересованы участвовать в интересном исследовании. Кроме того, успешная защита диссертации аспирантом – всегда серьезная заслуга его руководителя, даже если он являлся вторым.

Оконченная диссертация представляется на кафедру для предзащиты. Предзащита – обсуждение на заседании кафедры представленной диссертации и принятие решения относительно ее готовности к защите. Как правило, на предзащите аспиранту делаются замечания, требующие внесения изменений в рукопись. С момента предзащиты до защиты обычно проходит не менее трех месяцев. При этом на подготовку к защите после окончания аспирантуры выделяется только один месяц. Далее статус аспиранта уже безвозвратно теряется, а статус кандидата наук появляется только в течение четырех месяцев после поступления дела соискателя в ВАК. Это может иметь нежелательные последствия 2 , поэтому следует заранее запланировать дату предзащиты за 2-3 месяца до окончания обучения.

Формально успешным результатом подготовки аспиранта является присуждение ему научной квалификации – ученой степени кандидата наук. Ученая степень кандидата наук присуждается диссертационным советом по итогам публичной защиты диссертации, а затем утверждается Высшей аттестационной комиссией Республики Беларусь, который оформляет бланк диплома кандидата наук и отправляет его в диссертационный совет. Ученая степень доктора наук присуждается ВАКом по ходатайству диссертационного совета, поэтому все дипломы в РБ, подтверждающие присуждение ученой степени, являются дипломами государственного образца. Общественная аттестация при присуждении ученых степеней в РБ не допускается.

За рубежом ученая степень, близкая по уровню к степени кандидата наук, называется Ph. D. – Doctor of Philosophy, что означает владение обладателем степени методологией науки. Следует отметить, что из названия степени Ph. D. неясно, с какими именно науками имел или имеет дело ученый, т. к. за рубежом не принята жесткая привязка проводимых исследований к специальностям.

Ученым и преподавателям с большим профессиональным опытом присваиваются ученые звания: доцента, старшего научного сотрудника, профессора. Наличие ученого звания доцента и профессора подтверждаются аттестатами государственного образца. Ученые звания доцента и старшего научного сотрудника присуждаются учеными советами вузов, процедура присвоения ученого звания профессора несколько сложнее. На кафедрах существуют также должности профессоров и доцентов, и их не всегда занимают люди, имеющие соответствующие ученые звания, что вполне допустимо. Указывая статус научного руководителя в официальных документах, аспирантам следует быть внимательнее и лучше уточнить все реквизиты.

Помимо ученых званий, существуют также академические звания члена-корреспондента и академика.

Успешно защитившие диссертации аспиранты получают статус молодых ученых. Таких специалистов отличают способности к самообучению, самодисциплине, объективной оценке ситуации. Они часто проницательны в своих суждениях, умеют вносить рациональные идеи, обладают навыками обработки больших объемов информации, ее профессионального анализа, обобщения и изложения.

Какими бы призрачными не выглядели перспективы современных аспирантов, им необходимо иметь общее представление о своей потенциальной научной карьере. Молодыми ученые, по всеобщему признанию, являются до 35 лет и до этого возраста в большинстве объявляемых научных конкурсов они могут выступать на правах аспирантов. Подобные конкурсы имеют различную тематику и проводятся академией наук, общественными организациями, ассоциациями и т. д. В качестве призов победителям могут выступать гранты на обучение и стажировки, почетные дипломы и медали, реже – денежные выплаты. Аспирантам такие конкурсы также могут оказаться полезными как возможность новых знакомств и совершенствования навыков изложения и оформления научных работ.

Другая альтернатива для кандидата наук – продолжение исследований для оформления диссертации на соискание степени доктора наук. Соискатели ученой степени доктора наук по какой-либо специальности необязательно должны быть кандидатами наук именно по этой специальности или в этой отрасли наук. Поэтому кандидат экономических наук может стать доктором технических наук и т. д.

Вполне вероятный путь молодых ученых – преподавательская работа. Она может сочетаться с иной профессиональной деятельностью, это даже предпочтительнее. Любой вуз заинтересован в том, чтобы лекции студентам читали профессионалы, имеющие ученую степень. Такая деятельность всегда имеет достойно оплачиваемый спрос.

Кроме того, кандидатам наук предоставляется льготная возможность присвоения ученого звания доцента по кафедре. Необходимые условия для этого:

· иметь стаж педагогической работы не менее трех лет (возможно, по совместительству, но срок обучения в аспирантуре не учитывается);

· проработать в должности доцента не менее одного календарного года (возможно, по совместительству);

Руководство вузов обычно предполагает занятие выпускниками аспирантуры административных и управленческих должностей. Безусловно, существуют и иные формы партнерских отношений аспирантов и вуза (в фирмах аспирантов могут проходить практику студенты-дипломники, со временем ожидается выполнение силами аспирантов НИР на основе хоз. договоров и т. д.) Наиболее благоприятный сценарий научной карьеры означает для сегодняшних аспирантов получение в возрасте 40 лет ученой степени доктора наук и ученого звания профессора.

Поскольку очные аспиранты уже являются специалистами с высшим профессиональным образованием, с ними устанавливаются кадровые отношения, т.е. обучение в аспирантуре является, по сути, профессиональной деятельностью. Как и положено, в подобных условиях, происходит фиксирование даты зачисления в трудовой книжке.

Введение

«Учись так, словно точных знаний тебе вечно не хватает, и ты страшишься их растерять »

(Конфуций)

Стремление человека к познанию окружающего мира бесконечно. Одним из средств постижения тайн природы является естествознание. Эта наука активно участвует в формировании мировоззрения каждого человека отдельно и общества в целом. Разные исследователи определяют понятие «естествознание» по разному: одни считают, что естествознание – это сумма наук о природе, а другие что это единая наука . Разделяя вторую точку зрения, мы считаем, что структура естествознания иерархична. Будучи единой системой знаний, оно складывается из определенного количества входящих в эту систему наук, которые в свою очередь состоят из еще более дробных отраслей знания.

В целом, знания о природе человек получает из химии, физики, географии, биологии. Но они мозаичны, ибо каждая наука изучает определенные «свои» объекты. Между тем, природа едина. Целостную картину мироустройства позволяет создать особая наука, представляющая систему знаний об общих свойствах природы. Такой наукой может быть естествознание.

Во всех определения естествознания присутствуют два основных понятия - «природа» и «наука». В широком смысле слова «природа» - это все сути в бесконечном многообразии своих проявлений (Вселенная, материя, ткань, организмы и т.п.). Под наукой обычно понимают сферу человеческой деятельности, в рамках которой вырабатываются и систематизируются объективные знания о действительности.

Цель естествознания - раскрыть сущность явлений природы, познать их законы и объяснить на их основе новые явления, а также указать возможные пути использования на практике познанные законы развития материального мира.

«Естествознание так человечно, так правдиво, что я желаю удачи каждому, кто отдается ему»

Предмет и метод естествознания

Естествознание - это самостоятельная наука о картине окружающего мира и месте человека в системе природы, это интегрированная область знаний об объективных законах существования природы и общества. Она объединяет их в научную картину мира. В последней взаимодействуют два типа компонентов: естественнонаучный и гуманитарный. Их взаимоотношения достаточно сложны.

Европейская культура во многом была сформирована в эпоху Возрождения и имеет свои корни в античной натурфилософии. Естественные науки не только обеспечивают научно-технический прогресс, но и формируют определенный тип мышления весьма важный для мировоззрения современного человека. Оно определяется научными знаниями и умением разбираться в окружающем мире. В то же время гуманитарная составляющая включает искусство, литературу, науки об объективных законах развития общества и внутреннего мира человека. Все это составляет культурный, мировоззренческий багаж современного человека.

Из глубины веков в систему науки вошли две формы организации знаний: энциклопедическая и дисциплинарная.

Энциклопедизм - это свод знаний по всему кругу (энциклике) наук. К.А.Тимирязеву принадлежит определение меры образованности личности: «Образованный человек должен знать что-то обо всем, и все о чем-то».

Наиболее известная энциклопедия по естественной истории античного мира, принадлежащая перу Гая Плиния Старшего (23-73г) начинается с обзора античной картины мира: основные элементы мироздания, структура Вселенной, место Земли в ней. Затем идут сведения по географии, ботанике, зоологии, сельскому хозяйству, медицине и т.д. Исторический взгляд на окружающий мир развивал Жорж Луи Леклерк де Бюффон (1707 - 1788) в своем капитальном труде «Естественная история», где автор рассмотрел историю Вселенной и Земли, происхождение и развитие жизни вообще, растительного и животного мира, место человека в природе. В семидесятых годах двадцатого века вышла в свет книга немецкого натурфилософа Крауса Штарни «Werden and Vergehen», а в 1911 г. она была издана в России под названием «Эволюция мира». В десяти главах этого энциклопедического труда рассматривались последовательно проблемы макроструктуры Вселенной, химический состав звезд, туманности и т. п.; строение Солнечной системы и Земли («дневник Земли»), возникновение и развитие жизни на Земле, описывается растительный и животный мир.

Таким образом, энциклопедическая организация знаний дает гносеологическое отображение картины мира, основываясь на философских идеях о структуре мироздания, о месте Человека во Вселённой, о см ысле и целостности его лич ности.

Дисциплинарная форма знаний возникла в Древнем Риме (подобно Римскому праву в юриспруденции). Оно связано с расчленением окружающего мир на предметные области и предметы исследования. Все это привело к более точному и адекватному выделению мелких фрагментов мироздания.

На смену присущей энциклопедии модели «Круга знаний» пришла «лестница» дисциплин. При этом окружающий мир расчленяется по предметам исследования, а единая картина мира исчезает, знания о природе приобретают мозаичный характер.

В истории науки энциклопедизм или интегрированность знаний вошла в основе философского осмысления относительно большого количества фактов. В середине века, начиная с эпохи Возрождения, эмпирические знания стремительно накапливались, что активизировало дробление науки на отдельные предметные области. Началась эпоха «разбегания» наук. Однако, было бы неправильно считать, что дифференциация науки не сопровождается одновременно идущими в ней процессами интеграции. Это привело к укреплению межпредметных связей. Прошлый, ХХ век, характеризовался столь бурным развитием дисциплин, изучающих неживую и живую природу, что выявилась их тесная связь.

В результате обособились целые области знаний, где интегрировались некоторые из разделов естественнонаучного цикла: астрофизика, биохимия, биофизика, экология и др. Выявление междисциплинарных связей положило начало современной интеграции научных отраслей. Вследствие этого возникла энциклопедическая форма организации знаний на новом уровне, но с той же задачей – познать наиболее общие законы мироздания и определить место человека в природе.

Если в отдельных отраслях науки происходит накопление фактического материала, то в интегрированном, энциклопедическом знании важно получение наибольшей информации из наименьшего числа фактов, чтобы сделать возможным выделение общих закономерностей, позволяющих понять с единой точки зрения самые разные явления. В природе можно обнаружить достаточно много, казалось бы, разнокачественных явлений, которые, тем не менее, объясняются одним фундаментальным законом, одной теорией.

Рассмотрим некоторые из них. Так молекулярно-клеточная теория утверждает идею о дискретности веществ и объясняет протекание химических реакций, распространение запахов, процессы дыхания различных организмов, тургора, осмоса и т.д. Все перечисленные явления связаны с диффузией, обусловленной непрерывным хаотичным движением атомов и молекул.

Еще пример. Приведем такие факты: по небу движутся звезды и планеты, воздушный шар поднимается и парит в небе, а камень падает на Землю; в океанах остатки организмов медленно оседают на дно; у мыши тонкие ноги, а у слона огромные конечности; наземные животные не достигают размеров кита.

Возникает вопрос, что общего между всеми этими фактами? Оказывается, что вес они – результат проявления закона всемирного тяготения.

Таким образом, естествознание формирует у человека научную картину мира, являясь наукой энциклопедического типа. Оно опирается на достижения различных естественных и гуманитарных наук.

В любой науке есть свой предмет изучения. Например, в ботанике – растения, в зоологии – животные, предмет генетики – наследование признаков в ряду поколений, в астрономии – структура Вселенной и т.п.

Понятие, обозначающее предмет изучения естествознания, должно быть обобщающим. Оно должно включать и атом и человека, и Вселенную. Такое понятие введено В.И. Вернадским еще в тридцатые годы прошлого столетия. Это природное естественное тело: «Каждый объект естествознания есть естественное тело или естественное явление, создаваемое природными процессами».

В.И. Вернадский выделил три типа природных (естественных) тел: косные, живые и биокосные.

В целом основные различия живых и косных тел касаются не материально – энергетических процессов. Биокосные тела – это результат закономерного взаимодействия косных и живых природных тел. Они характерны для биосферы Земли. Им присуща биогенная миграция химических элементов. Биокосными является подавляющее большинство земных вод, почва и т.д.

Итак, предмет естествознания – природные тела и природные являения. Они достаточно сложны и многообразны; их существование и развитие происходит на основе множества более или менее частных закономерностей (молекулярно-кинетические явления, тепловые свойства тел, проявление гравитации и т.п.)

Наиболее общими законами существования и развития окружающего мира являются всего два закона: закон эволюции и закон с охранения веще ства и энергии.

Таблица 1.

©2015-2019 сайт
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-31