Выпуклый многоугольник. Определение выпуклого многоугольника

Ломаная

Определение

Ломаной линией , или короче, ломаной , называется конечная последовательность отрезков, такая, что один из концов первого отрезка служит концом второго, другой конец второго отрезка служит концом третьего и т.д. При этом соседние отрезки не лежат на одной прямой. Эти отрезки называют звеньями ломаной.

Виды ломаной

    Ломаная называется замкнутой , если начало первого отрезка совпадает с концом последнего.

    Ломаная может пересекать сама себя, коснуться сама себя, налегать на себя. Если таких особенностей нет, то такая ломаная называется простой .

Многоугольники

Определение

Простая замкнутая ломаная вместе с частью плоскости, ограниченной ею, называется многоугольником .

Замечание

В каждой вершине многоугольника его стороны задают некоторый угол многоугольника. Он может быть как меньше развернутого, так и больше развернутого.

Свойство

У каждого многоугольника есть угол, меньший $180^\circ$.

Доказательство

Пусть дан многоугольник $P$.

Проведем какую-нибудь прямую, не пересекающую его. Будем перемещать ее параллельно в сторону многоугольника. В некоторый момент мы впервые получим прямую $a$, имеющую с многоугольником $P$ хотя бы одну общую точку. От этой прямой многоугольник лежит по одну сторону (при этом некоторые его точки лежат на прямой $a$).

На прямой $a$ лежит хотя бы одна вершина многоугольника. В ней сходится две его стороны, расположенные по одну сторону от прямой $a$ (считая и тот случай, когда одна из них лежит на этой прямой). А значит, при этой вершине угол меньше развернутого.

Определение

Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, содержащей его сторону. Если многоугольник не является выпуклым, его называют невыпуклым .

Замечание

Выпуклый многоугольник является пересечением полуплоскостей, ограниченных прямыми, которые содержат стороны многоугольника.

Свойства выпуклого многоугольника

    У выпуклого многоугольника все углы меньше $180^\circ$.

    Отрезок, соединяющий любые две точки выпуклого многоугольника (в частности, любая его диагональ), содержится в этом многоугольнике.

Доказательство

Докажем первое свойство

Возьмем любой угол $A$ выпуклого многоугольника $P$ и его сторону $a$, идущую из вершины $A$. Пусть $l$ – прямая, содержащая сторону $a$. Так как многоугольник $P$ выпуклый, то он лежит по одну сторону от прямой $l$. Следовательно, и его угол $A$ лежит по одну сторону от этой прямой. Значит угол $A$ меньше развернутого угла, то есть меньше $180^\circ$.

Докажем второе свойство

Возьмем любые две точки $A$ и $B$ выпуклого многоугольника $P$. Многоугольник $P$ является пересечением нескольких полуплоскостей. Отрезок $AB$ содержится в каждой из этих полуплоскостей. Поэтому он содержится и в многоугольнике $P$.

Определение

Диагональю многоугольника называется отрезок, соединяющий его несоседние вершины.

Теорема (о количестве диагоналей n-угольника)

Количество диагоналей выпуклого $n$-угольника вычисляется по формуле $\dfrac{n(n-3)}{2}$.

Доказательство

Из каждой вершины n-угольника можно провести $n-3$ диагонали (нельзя провести диагональ в соседние вершины и в саму эту вершину). Если посчитать все такие возможные отрезки, то их будет $n\cdot(n-3)$, так как вершин $n$. Но каждая диагональ будет посчитана дважды. Таким образом, количество диагоналей n-угольника равно $\dfrac{n(n-3)}{2}$.

Теорема (о сумме углов n-угольника)

Сумма углов выпуклого $n$-угольника равна $180^\circ(n-2)$.

Доказательство

Рассмотрим $n$-угольник $A_1A_2A_3\ldots A_n$.

Возьмём внутри этого многоугольника произвольную точку $O$.

Сумма углов всех треугольников $A_1OA_2$, $A_2OA_3$, $A_3OA_4$, \ldots, $A_{n-1}OA_n$ равна $180^\circ\cdot n$.

C другой стороны эта сумма складывается из суммы всех внутренних углов многоугольника и полного угла $\angle O=\angle 1+\angle 2+\angle 3+\ldots=30^\circ$.

Тогда сумма углов рассматриваемого $n$-угольника равна $180^\circ\cdot n-360^\circ=180^\circ\cdot(n-2)$.

Следствие

Сумма углов невыпуклого $n$-угольника равна $180^\circ(n-2)$.

Доказательство

Рассмотрим многоугольник $A_1A_2\ldots A_n$, у которого только угол $\angle A_2$ невыпуклый, то есть $\angle A_2>180^\circ$.

Обозначим сумму его улов $S$.

Соединим точки $A_1A_3$ и рассмотрим многоугольник $A_1A_3\ldots A_n$.

Сумма углов этого многоугольника равна:

$180^\circ\cdot(n-1-2)=S-\angle A_2+\angle 1+\angle 2=S-\angle A_2+180^\circ-\angle A_1A_2A_3=S+180^\circ-(\angle A_1A_2A_3+\angle A_2)=S+180^\circ-360^\circ$.

Следовательно, $S=180^\circ\cdot(n-1-2)+180^\circ=180^\circ\cdot(n-2)$.

Если у исходного многоугольника более одного невыпуклого угла, то описанную выше операцию можно проделать с каждым таким углом, что и приведет к доказываемому утверждению.

Теорема (о сумме внешних углов выпуклого n-угольника)

Сумма внешних углов выпуклого $n$-угольника равна $360^\circ$.

Доказательство

Внешний угол при вершине $A_1$ равен $180^\circ-\angle A_1$.

Сумма всех внешних углов равна:

$\sum\limits_{n}(180^\circ-\angle A_n)=n\cdot180^\circ - \sum\limits_{n}A_n=n\cdot180^\circ - 180^\circ\cdot(n-2)=360^\circ$.

Определение 1. Ломаной линией называется конечная последовательность отрезков, такая, что один из концов первого отрезка служит концом второго, другой конец второго отрезка служит концом третьего и т. п.

Отрезки, составляющие ломаную линию, называются звеньями. Соседние отрезки не лежат на одной прямой. Если концы ломаной совпадают, то она называется замкнутой . Ломаная может пересекать сама себя, касаться сама себя и налегать сама на себя. Если таких особенностей у ломаной нет, то она называется простой .

Определение 2. Простая замкнутая ломаная вместе с частью плоскости, ограниченной ею, называется многоугольником.

Сама ломаная при этом называется границей многоугольника, звенья ломаной – сторонами многоугольника, концы звеньев – вершинами многоугольника. Две соседних стороны многоугольника образуют угол. Число углов в многоугольнике равно числу сторон. У каждого многоугольника есть углы меньше 180°. Стороны и углы многоугольника называют элементами многоугольника.

Отрезок, соединяющий две несоседние вершины многоугольника, называется диагональю. В любом n-угольнике можно провести n-2 диагонали.

Определение 3. Многоугольник называется выпуклым , если он лежит по одну сторону от каждой прямой, содержащей его сторону. Многоугольники, не отвечающие этому условию, называются невыпуклыми.

Свойства выпуклых многоугольников.

Свойство 1. У выпуклого многоугольника все углы меньше 180°.

Доказательство: Возьмем любой угол А выпуклого многоугольника Р и его сторону а, идущую из вершины А. Пусть l - прямая, содержащая сторону а. Так как многоугольник Р выпуклый, то он лежит по одну сторону от прямой l. Поэтому угол А лежит по одну сторону от прямой l. Следовательно, угол А меньше развернутого, т. е. ÐA < 180°.

Свойство 2. Отрезок, соединяющий любые две точки выпуклого многоугольника, содержится в этом многоугольнике.

Доказательство: Возьмем любые две точки М и N выпуклого многоугольника Р. Многоугольник Р является пересечением нескольких полуплоскостей. Отрезок MN лежит в каждой из этих полуплоскостей. Поэтому он содержится и в многоугольнике Р.

Свойство 3. Сумма углов выпуклого многоугольника равна (n – 2)∙180°.

Доказательство: Возьмем внутри выпуклого многоугольника Р произвольную точку О и соединим ее со всеми вершинами многоугольника. Образуется n треугольников, сумма углов каждого из которых равна 180°. Углы при вершине О в сумме дают 360° = 2∙180°. Поэтому сумма углов многоугольника равна n∙180° - 2∙180° = (n – 2)∙180°.


Понятие параллелограмма. Свойства параллелограмма.

Определение 1. Четырехугольник, противоположные стороны которого попарно параллельны, называется параллелограммом.

У каждого параллелограмма четыре вершины, четыре стороны, четыре угла. Две стороны, имеющие общие концы, называются смежными . У каждого параллелограмма две диагонали – отрезки, соединяющие противоположные вершины параллелограмма. Сумма углов параллелограмма равна 360°.

Свойства параллелограмма.

Свойство 1. У параллелограмма противоположные стороны равны и противоположные углы попарно равны.

Доказательство: Проведем диагональ АС. АС – общая;

ÐВАС = ÐАСD (внутренние накрест лежащие при АВ II BC и секущей АС);

ÐВСА = ÐСАD (внутренние накрест лежащие при АD II BC и секущей АС);

Þ DАВС = DАDС (по 2 признаку).

АВ = CD; BC = AD; ÐВ = ÐD.

ÐА = ÐВАС + ÐСAD; ÐС = ÐАСB + ÐАСD; Þ ÐА = ÐС.

Свойство 2. У параллелограмма углы, прилежащие к одной стороне, в сумме дают 180°.

Доказательство:

ÐВ + ÐА =180° (внутренние односторонние при ВС II AD и секущей АB).

ÐB + ÐС =180° (внутренние односторонние при AВ II CD и секущей BC).

ÐD + ÐC =180° (внутренние односторонние при ВС II AD и секущей CD).

ÐA + ÐD =180° (внутренние односторонние при AВ II CD и секущей AD).

Свойство 3. Диагонали параллелограмма точкой пересечения делятся пополам.

Доказательство: Проведем диагонали АС и BD, пересекающиеся в точке О.

АВ = СD (по первому св-ву параллелограмма);

ÐAВO = ÐODC (внутренние накрест лежащие при АВ II CD и секущей BD);

ÐВАO = ÐOСD (внутренние накрест лежащие при АB II CD и секущей АС);

Þ DАВO = DODС (по 2 признаку).

ВO = OD; AO = OC.


Признаки параллелограмма.

Признак 1. Если в четырехугольнике две стороны равны и параллельны, то этот четырехугольник - параллелограмм.

Дано: ABCD – четырехугольник; АD II BC,

Определение выпуклости многоугольника.

Алгоритм Кируса–Бэка предполагает наличие выпуклого многоугольника, используемого в качестве окна.

Однако на практике весьма часто возникает задача отсечения многоугольником, а информация о том, является он выпуклым или нет изначально не задается. В таком случае, прежде чем начать процедуру отсечения необходимо определить какой задан многоугольник – выпуклый или нет.

Дадим некотрые определения выпуклости многоугольника

Выпуклым считается многоугольник, для которого выполняется одно из ниже перечисленных условий:

1)в выпуклом многоугольнике все вершины располагаются по одну сторону от линии, несущей любое ребро (по внутреннюю сторону относительно данного ребра);

2)все внутренние углы многоугольника меньше 180 о;

3)все диагонали, связывающие вершины многоугольника, лежат внутри этого многоугольника;

4)все углы многоугольника обходятся в одном направлении (Рис. 3.3‑1).

Для выработки аналитического представление последнего критерия выпуклости, используем векторное произведение.

Векторное произведение W двух векторов a и b (Рис. 3.3‑2 а) определяется как:


A x ,a y ,a z и b x ,b y ,b z являются проекциями на оси координат X ,Y ,Z , соответственно, векторов – сомножителей a и b ,

- i , j , k – единичные векторы по координатным осям X , Y , Z .



Рис. 3.3 1



Рис. 3.3 2

Если рассматривать двумерное представление многоугольника как представление его в координатной плоскости XY трехмерной системе координат X ,Y ,Z (Рис. 3.3‑2 b ), то выражение для формирования векторного произведения векторов U и V , где векторы U и V являются соседними ребрами, образующими угол многоугольника, можно записать в виде определитель:

Вектор векторного произведения перпендикулярен плоскости, в которой находятся вектора-сомножители. Направление вектора произведения определяется по правилу буравчика или по правилу винта с правой нарезкой.

Для случая, представленного на Рис. 3.3‑2 b ), вектор W , соответствующий векторному произведению векторов V , U , будет иметь ту же направленность, что и направленность координатной оси Z .

Учитывая то, что проекции на ось Z векторов –сомножителей в этом случае равны нулю, векторное произведение можно представить в виде:


(3.3-1)

Единичный вектор k всегда положительный, следовательно, знак вектора w векторного произведения будет определяться только знаком определителя D в выше приведенном выражении. Отметим, что на основании свойства векторного произведения, при перестановке местами векторов-сомножителей U и V знак вектора w будет меняться на противоположный.

Отсюда следует, что, если в качестве векторов V и U рассматривать два соседних ребра многоугольника, то порядок перечисления векторов в векторном произведении можно поставить в соответствие c обходом рассматриваемого угла многоугольника или ребер, образующих этот угол. Это позволяет использовать в качестве критерия определения выпуклости многоугольника правило:

если для всех пар ребер многоугольника выполняется условие:



Если знаки векторных произведений для отдельных углов не совпадают, то многоугольник не выпуклый.

Так как ребра многоугольник задаются в виде координат их концевых точек, то для определения знака векторного произведения удобнее использовать определитель.

Данные геометрические фигуры окружают нас повсюду. Выпуклые многоугольники бывают природными, например, пчелиные соты или искусственными (созданными человеком). Эти фигуры используются в производстве различных видов покрытий, в живописи, архитектуре, украшениях и т.д. Выпуклые многоугольники обладают тем свойством, что все их точки располагаются по одну сторону от прямой, что проходит через пару соседних вершин этой геометрической фигуры. Существуют и другие определения. Выпуклым называется тот многоугольник, который расположен в единой полуплоскости относительно любой прямой, содержащей одну из его сторон.

В курсе элементарной геометрии всегда рассматриваются исключительно простые многоугольники. Чтобы понять все свойства таких необходимо разобраться с их природой. Для начала следует уяснить, что замкнутой называется любая линия, концы которой совпадают. Причем фигура, образованная ею, может иметь самые разные конфигурации. Многоугольником называют простую замкнутую ломаную линию, у которой соседние звенья не располагаются на одной прямой. Ее звенья и вершины являются, соответственно, сторонами и вершинами этой геометрической фигуры. Простая ломаная не должна иметь самопересечений.

Вершины многоугольника называют соседними, в том случае если они представляют собой концы одной из его сторон. Геометрическая фигура, у которой имеется n-е число вершин, а значит, и n-е количество сторон, называется n-угольником. Саму ломаную линию называют границей или контуром этой геометрической фигуры. Многоугольной плоскостью или плоским многоугольником называют конечную часть любой плоскости, им ограниченной. Соседними сторонами этой геометрической фигуры называют отрезки ломаной линии, исходящие из одной вершины. Они будут не соседними, если исходят их разных вершин многоугольника.

Другие определения выпуклых многоугольников

В элементарной геометрии существует еще несколько эквивалентных по своему значению определений, указывающих на то, какой многоугольник называется выпуклым. Причем все эти формулировки в одинаковой степени верны. Выпуклым считается тот многоугольник, у которого:

Каждый отрезок, что соединяет две любые точки внутри него, полностью лежит в нем;

Внутри него лежат все его диагонали;

Любой внутренний угол не превышает 180°.

Многоугольник всегда разбивает плоскость на 2 части. Одна из них - ограниченная (она может быть заключена в круг), а другая - неограниченная. Первую называют внутренней областью, а вторую - внешней областью этой геометрической фигуры. Данный многоугольник является пересечением (иными словами - общей составляющей) нескольких полуплоскостей. При этом каждый отрезок, имеющий концы в точках, которые принадлежат многоугольнику, полностью принадлежит ему.

Разновидности выпуклых многоугольников

Определение выпуклого многоугольника не указывает на то, что их существует множество видов. Причем у каждого из них имеются определенные критерии. Так, выпуклые многоугольники, у которых есть внутренний угол равный 180°, называются слабовыпуклыми. Выпуклая геометрическая фигура, что имеет три вершины, называется треугольником, четыре - четырехугольником, пять - пятиугольником и т. д. Каждый из выпуклых n-угольников отвечает следующему важнейшему требованию: n должно равняться или быть больше 3. Каждый из треугольников является выпуклым. Геометрическая фигура данного типа, у которой все вершины располагаются на одной окружности, называется вписанной в окружность. Выпуклый многоугольник называют описанным, если все его стороны около окружности прикасаются к ней. Два многоугольника называют равными только в том случае, когда при помощи наложения их можно совместить. Плоским многоугольником называют многоугольную плоскость (часть плоскости), что ограничена этой геометрической фигурой.

Правильные выпуклые многоугольники

Правильными многоугольниками называют геометрические фигуры с равными углами и сторонами. Внутри них имеется точка 0, которая находится на одинаковом расстоянии от каждой из его вершин. Ее называют центром этой геометрической фигуры. Отрезки, соединяющие центр с вершинами этой геометрической фигуры называют апофемами, а те, что соединяют точку 0 со сторонами - радиусами.

Правильный четырехугольник - квадрат. Правильный треугольник называют равносторонним. Для таких фигур существует следующее правило: каждый угол выпуклого многоугольника равен 180° * (n-2)/ n,

где n - число вершин этой выпуклой геометрической фигуры.

Площадь любого правильного многоугольника определяют по формуле:

где p равно половине суммы всех сторон данного многоугольника, а h равно длине апофемы.

Свойства выпуклых многоугольников

Выпуклые многоугольники имеют определенные свойства. Так, отрезок, который соединяет любые 2 точки такой геометрической фигуры, обязательно располагается в ней. Доказательство:

Предположим, что Р - данный выпуклый многоугольник. Берем 2 произвольные точки, например, А, В, которые принадлежат Р. По существующему определению выпуклого многоугольника эти точки расположены в одной стороне от прямой, что содержит любую сторону Р. Следовательно, АВ также имеет это свойство и содержится в Р. Выпуклый многоугольник всегда возможно разбить на несколько треугольников абсолютно всеми диагоналями, которые проведены из одной его вершины.

Углы выпуклых геометрических фигур

Углы выпуклого многоугольника - это углы, что образованы его сторонами. Внутренние углы находятся во внутренней области данной геометрической фигуры. Угол, что образован его сторонами, которые сходятся в одной вершине, называют углом выпуклого многоугольника. с внутренними углами данной геометрической фигуры, называют внешними. Каждый угол выпуклого многоугольника, расположенный внутри него, равен:

где х - величина внешнего угла. Эта простая формула действует в отношении любых геометрических фигур такого типа.

В общем случае, для внешних углов существует следующие правило: каждый угол выпуклого многоугольника равен разности между 180° и величиной внутреннего угла. Он может иметь значения в пределах от -180° до 180°. Следовательно, когда внутренний угол составляет 120°, внешний будет иметь величину в 60°.

Сумма углов выпуклых многоугольников

Сумма внутренних углов выпуклого многоугольника устанавливается по формуле:

где n - число вершин n-угольника.

Сумма углов выпуклого многоугольника вычисляется довольно просто. Рассмотрим любую такую геометрическую фигуру. Для определения суммы углов внутри выпуклого многоугольника необходимо соединить одну из его вершин с другими вершинами. В результате такого действия получается (n-2) треугольника. Известно, что сумма углов любых треугольников всегда равна 180°. Поскольку их количество в любом многоугольнике равняется (n-2), сумма внутренних углов такой фигуры равняется 180° х (n-2).

Сумма углов выпуклого многоугольника, а именно любых двух внутренних и смежных с ними внешних углов, у данной выпуклой геометрической фигуры всегда будет равна 180°. Исходя из этого, можно определить сумму всех ее углов:

Сумма внутренних углов составляет 180° * (n-2). Исходя из этого, сумму всех внешних углов данной фигуры устанавливают по формуле:

180° * n-180°-(n-2)= 360°.

Сумма внешних углов любого выпуклого многоугольника всегда будет равна 360° (независимо от количества его сторон).

Внешний угол выпуклого многоугольника в общем случае представляется разностью между 180° и величиной внутреннего угла.

Другие свойства выпуклого многоугольника

Помимо основных свойств данных геометрических фигур, у них есть и другие, которые возникают при манипуляциях с ними. Так, любой из многоугольников может быть разделен на несколько выпуклых n-угольников. Для этого необходимо продолжить каждую из его сторон и разрезать эту геометрическую фигуру вдоль этих прямых линий. Разбить любой многоугольник на несколько выпуклых частей можно и таким образом, чтобы вершины каждого из кусков совпадали со всеми его вершинами. Из такой геометрической фигуры можно очень просто сделать треугольники путем проведения всех диагоналей из одной вершины. Таким образом, любой многоугольник, в конечном счете, можно разбить на определенное количество треугольников, что оказывается весьма полезным при решении различных задач, связанных с такими геометрическими фигурами.

Периметр выпуклого многоугольника

Отрезки ломаной линии, называемые сторонами многоугольника, чаще всего обозначаются следующими буквами: ab, bc, cd, de, ea. Это стороны геометрической фигуры с вершинами a, b, c, d, e. Сумма длины всех сторон этого выпуклого многоугольника называют его периметром.

Окружность многоугольника

Выпуклые многоугольники могут быть вписанными и описанными. Окружность, касающаяся всех сторон этой геометрической фигуры, называется вписанной в нее. Такой многоугольник называют описанным. Центр окружности, которая вписана в многоугольник, представляет собой точку пересечения биссектрис всех углов внутри данной геометрической фигуры. Площадь такого многоугольника равняется:

где r - радиус вписанной окружности, а p - полупериметр данного многоугольника.

Окружность, содержащую вершины многоугольника, называют описанной около него. При этом данная выпуклая геометрическая фигура называется вписанной. Центр окружности, которая описана около такого многоугольника, представляет собой точку пересечения так называемых серединных перпендикуляров всех сторон.

Диагонали выпуклых геометрических фигур

Диагонали выпуклого многоугольника - это отрезки, которые соединяют не соседние вершины. Каждая из них лежит внутри этой геометрической фигуры. Число диагоналей такого n-угольника устанавливается по формуле:

N = n (n - 3)/ 2.

Число диагоналей выпуклого многоугольника играет важную роль в элементарной геометрии. Число треугольников (К), на которые возможно разбить каждый выпуклый многоугольник, вычисляется по следующей формуле:

Количество диагоналей выпуклого многоугольника всегда зависит от числа его вершин.

Разбиение выпуклого многоугольника

В некоторых случаях для решения геометрических задач необходимо разбить выпуклый многоугольник на несколько треугольников с непересекающимися диагоналями. Эту проблему можно решить путем выведения определенной формулы.

Определение задачи: назовем правильным некое разбиение выпуклого n-угольника на несколько треугольников диагоналями, пересекающимися только в вершинах этой геометрической фигуры.

Решение: Предположим, что Р1, Р2 , Р3 … , Pn - вершины этого n-угольника. Число Xn - количество его разбиений. Внимательно рассмотрим полученную диагональ геометрической фигуры Pi Pn. В любом из правильных разбиений Р1 Pn принадлежит определенному треугольнику Р1 Pi Pn, у которого 1

Пусть і = 2 будет одной группой правильных разбиений, всегда содержащей диагональ Р2 Pn. Количество разбиений, которые входят в нее, совпадает с числом разбиений (n-1)-угольника Р2 Р3 Р4… Pn. Иными словами, оно равняется Xn-1.

Если і = 3, то эта другая группа разбиений будет всегда содержать диагонали Р3 Р1 и Р3 Pn. При этом количество правильных разбиений, что содержатся в данной группе, будет совпадать с числом разбиений (n-2)-угольника Р3 Р4… Pn. Другими словами, оно будет равняться Xn-2.

Пусть і = 4, тогда среди треугольников правильное разбиение непременно будет содержать треугольник Р1 Р4 Pn, к которому будет примыкать четырехугольник Р1 Р2 Р3 Р4, (n-3)-угольник Р4 Р5… Pn. Количество правильных разбиений такого четырехугольника равняется Х4, а число разбиений (n-3)-угольника равняется Xn-3. Исходя из всего изложенного, можно сказать, что полное количество правильных разбиений, которые содержатся в данной группе, равняется Xn-3 Х4. Другие группы, у которых і = 4, 5, 6, 7… будут содержать Xn-4 Х5, Xn-5 Х6, Xn-6 Х7 … правильных разбиений.

Пусть і = n-2, то количество правильных разбиений в данной группе будет совпадать с числом разбиений в группе, у которой i=2 (другими словами, равняется Xn-1).

Так как Х1 = Х2 = 0, Х3=1, Х4=2…, то число всех разбиений выпуклого многоугольника равно:

Xn = Xn-1 + Xn-2 + Xn-3 Х4 + Xn-4 Х5 + … + Х 5 Xn-4 + Х4 Xn-3 + Xn-2 + Xn-1.

Х5 = Х4 + Х3 + Х4 = 5

Х6 = Х5 + Х4 + Х4 + Х5 = 14

Х7 = Х6 + Х5 + Х4 * Х4 + Х5 + Х6 = 42

Х8 = Х7 + Х6 + Х5 * Х4 + Х4 * Х5 + Х6 + Х7 = 132

Количество правильных разбиений, пересекающих внутри одну диагональ

При проверке частных случаев, можно прийти к предположению, что число диагоналей выпуклых n-угольников равняется произведению всех разбиений этой фигуры на (n-3).

Доказательство данного предположения: представим, что P1n = Xn * (n-3), тогда любой n-угольник возможно разбить на (n-2)-треугольников. При этом из них может быть сложен (n-3)-четырехугольник. Наряду с этим, у каждого четырехугольника будет диагональ. Поскольку в этой выпуклой геометрической фигуре могут быть проведены две диагонали, это значит, что и в любых (n-3)-четырехугольниках возможно провести дополнительные диагонали (n-3). Исходя из этого, можно сделать вывод, что в любом правильном разбиении имеется возможность провести (n-3)-диагонали, отвечающие условиям этой задачи.

Площадь выпуклых многоугольников

Нередко при решении различных задач элементарной геометрии появляется необходимость определить площадь выпуклого многоугольника. Предположим, что (Xi. Yi), i = 1,2,3… n представляет собой последовательность координат всех соседних вершин многоугольника, не имеющего самопересечений. В этом случае его площадь вычисляется по такой формуле:

S = ½ (∑ (X i + X i + 1) (Y i + Y i + 1)),

где (Х 1 , Y 1) = (X n +1 , Y n + 1).

На этом уроке мы приступим уже к новой теме и введем новое для нас понятие «многоугольник». Мы рассмотрим основные понятия, связанные с многоугольниками: стороны, вершины углы, выпуклость и невыпуклость. Затем докажем важнейшие факты, такие как теорема о сумме внутренних углов многоугольника, теорема о сумме внешних углов многоугольника. В итоге, мы вплотную подойдем к изучению частных случаев многоугольников, которые будут рассматриваться на дальнейших уроках.

Тема: Четырехугольники

Урок: Многоугольники

В курсе геометрии мы изучаем свойства геометрических фигур и уже рассмотрели простейшие из них: треугольники и окружности. При этом мы обсуждали и конкретные частные случаи этих фигур, такие как прямоугольные, равнобедренные и правильные треугольники. Теперь пришло время поговорить о более общих и сложных фигурах - многоугольниках .

С частным случаем многоугольников мы уже знакомы - это треугольник (см. Рис. 1).

Рис. 1. Треугольник

В самом названии уже подчеркивается, что это фигура, у которой три угла. Следовательно, в многоугольнике их может быть много, т.е. больше, чем три. Например, изобразим пятиугольник (см. Рис. 2), т.е. фигуру с пятью углами.

Рис. 2. Пятиугольник. Выпуклый многоугольник

Определение. Многоугольник - фигура, состоящая из нескольких точек (больше двух) и соответствующего количества отрезков, которые их последовательно соединяют. Эти точки называются вершинами многоугольника, а отрезки - сторонами . При этом никакие две смежные стороны не лежат на одной прямой и никакие две несмежные стороны не пересекаются.

Определение. Правильный многоугольник - это выпуклый многоугольник, у которого все стороны и углы равны.

Любой многоугольник разделяет плоскость на две области: внутреннюю и внешнюю. Внутреннюю область также относят к многоугольнику .

Иными словами, например, когда говорят о пятиугольнике , имеют в виду и всю его внутреннюю область, и границу. А ко внутренней области относятся и все точки, которые лежат внутри многоугольника, т.е. точка тоже относится к пятиугольнику (см. Рис. 2).

Многоугольники еще иногда называют n-угольниками, чтобы подчеркнуть, что рассматривается общий случай наличия какого-то неизвестного количества углов (n штук).

Определение. Периметр многоугольника - сумма длин сторон многоугольника.

Теперь надо познакомиться с видами многоугольников. Они делятся на выпуклые и невыпуклые . Например, многоугольник, изображенный на Рис. 2, является выпуклым, а на Рис. 3 невыпуклым.

Рис. 3. Невыпуклый многоугольник

Определение 1. Многоугольник называется выпуклым , если при проведении прямой через любую из его сторон весь многоугольник лежит только по одну сторону от этой прямой. Невыпуклыми являются все остальные многоугольники .

Легко представить, что при продлении любой стороны пятиугольника на Рис. 2 он весь окажется по одну сторону от этой прямой, т.е. он выпуклый. А вот при проведении прямой через в четырехугольнике на Рис. 3 мы уже видим, что она разделяет его на две части, т.е. он невыпуклый.

Но существует и другое определение выпуклости многоугольника.

Определение 2. Многоугольник называется выпуклым , если при выборе любых двух его внутренних точек и при соединении их отрезком все точки отрезка являются также внутренними точками многоугольника.

Демонстрацию использования этого определения можно увидеть на примере построения отрезков на Рис. 2 и 3.

Определение. Диагональю многоугольника называется любой отрезок, соединяющий две не соседние его вершины.

Для описания свойств многоугольников существуют две важнейшие теоремы об их углах: теорема о сумме внутренних углов выпуклого многоугольника и теорема о сумме внешних углов выпуклого многоугольника . Рассмотрим их.

Теорема. О сумме внутренних углов выпуклого многоугольника (n -угольника).

Где - количество его углов (сторон).

Доказательство 1. Изобразим на Рис. 4 выпуклый n-угольник.

Рис. 4. Выпуклый n-угольник

Из вершины проведем все возможные диагонали. Они делят n-угольник на треугольника, т.к. каждая из сторон многоугольника образует треугольник, кроме сторон, прилежащих к вершине . Легко видеть по рисунку, что сумма углов всех этих треугольников как раз будет равна сумме внутренних углов n-угольника. Поскольку сумма углов любого треугольника - , то сумма внутренних углов n-угольника:

Что и требовалось доказать.

Доказательство 2. Возможно и другое доказательство этой теоремы. Изобразим аналогичный n-угольник на Рис. 5 и соединим любую его внутреннюю точку со всеми вершинами.

Рис. 5.

Мы получили разбиение n-угольника на n треугольников (сколько сторон, столько и треугольников). Сумма всех их углов равна сумме внутренних углов многоугольника и сумме углов при внутренней точке, а это угол . Имеем:

Что и требовалось доказать.

Доказано.

По доказанной теореме видно, что сумма углов n-угольника зависит от количества его сторон (от n). Например, в треугольнике , а сумма углов . В четырехугольнике , а сумма углов - и т.д.

Теорема. О сумме внешних углов выпуклого многоугольника (n -угольника).

Где - количество его углов (сторон), а , …, - внешние углы.

Доказательство. Изобразим выпуклый n-угольник на Рис. 6 и обозначим его внутренние и внешние углы.

Рис. 6. Выпуклый n-угольник с обозначенными внешними углами

Т.к. внешний угол связан со внутренним как смежные, то и аналогично для остальных внешних углов. Тогда:

В ходе преобразований мы воспользовались уже доказанной теоремой о сумме внутренних углов n-угольника .

Доказано.

Из доказанной теоремы следует интересный факт, что сумма внешних углов выпуклого n-угольника равна от количества его углов (сторон). Кстати, в отличие от суммы внутренних углов.

Список литературы

  1. Александров А.Д. и др. Геометрия, 8 класс. - М.: Просвещение, 2006.
  2. Бутузов В.Ф., Кадомцев С.Б., Прасолов В.В. Геометрия, 8 класс. - М.: Просвещение, 2011.
  3. Мерзляк А.Г., Полонский В.Б., Якир С.М. Геометрия, 8 класс. - М.: ВЕНТАНА-ГРАФ, 2009.
  1. Profmeter.com.ua ().
  2. Narod.ru ().
  3. Xvatit.com ().

Домашнее задание