Уравнения с t. Квадратные и биквадратные уравнения

В прошлых уроках мы научились решать квадратные уравнения. Для этого потребовалось ввести новый математический объект — дискриминант. Если вы не помните, что это такое, рекомендую вернуться к уроку «Как решать квадратные уравнения ».

Для начала определение, что вообще такое биквадратное уравнение — это любое выражение, где переменная присутствует только в 4-ой и во 2-ой степени.

1)вводим новую переменную ${{x}^{2}}=t$. В этом случае, возведя обе части этого уравнения в квадрат, мы получим

\[\begin{align}& {{({{x}^{2}})}^{2}}={{t}^{2}} \\& {{x}^{4}}={{t}^{2}} \\\end{align}\]

2)переписываем наше выражение — $a{{x}^{4}}+b{{x}^{2}}+4=0\to a{{t}^{2}}+bt+c=0$

3)находим решение для полученного уравнении и находим переменные ${{t}_{1}}$ и ${{t}_{2}}$, если корней будет два.

4)выполняем обратную замену, т. е. вспоминаем, что такое $t$, получаем две конструкции: ${{x}^{2}}={{t}_{1}}$ и ${{x}^{2}}={{t}_{2}}$.

5)решаем полученные уравнения и находим иксы.

Реальные задачи

Пример № 1

Давайте посмотрим, как эта схема работает на настоящих биквадратных уравнениях.

Решаем первую задачу:

\[{{x}^{4}}-5{{x}^{2}}+4=0\]

Вводим новую переменную и переписываем:

\[{{x}^{2}}=t\to {{t}^{2}}-5t+4=0\]

Это обычное квадратное уравнение, посчитаем его с помощью дискриминанта:

Это хорошее число. Корень равен 3.

Теперь находим значение $t$:

\[\begin{array}{·{35}{l}}

{{t}_{1}}\text{ }=\text{ }\frac{5+3}{2}=\text{ }\frac{8}{2}\text{ }=\text{ }4 \\{{t}_{2}}\text{ }=\frac{5-3}{2}=\text{ }\frac{2}{2}\text{= }1 \\\end{array}\]

Но будьте внимательны, мы нашли только $t$ — это не решение, это только третий шаг. Переходим к четвертому шагу — вспоминаем, что такое $t$ и решаем:

\[\begin{align}& {{x}^{2}}=4\to {{x}^{2}}-4=0\to (x-2)(x+2)=0 \\& \left[ \begin{align}& x=2 \\& x=-2 \\\end{align} \right. \\\end{align}\]

Вот мы и решили первую часть. Переходим ко второму значению $t$:

\[\begin{align}& {{x}^{2}}=1\to {{x}^{2}}-1=0\to (x-1)(x+1)=0 \\& \left[ \begin{align}& x=1 \\& x=-1 \\\end{align} \right. \\\end{align}\]

Итого у нас вышло четыре ответа: 2; -2; 1; -1, т.е. биквадратное уравнение может иметь до четырех корней.

Пример № 2

Переходим ко второму примеру:

\[{{x}^{4}}-25{{x}^{2}}+144=0\]

Тут я не буду подробно все расписывать. Давайте решать так, как бы мы делали это в классе.

Заменяем:

Тогда у нас выйдет:

\[{{t}^{2}}-25t+144=0\]

Считаем$D$:

Корень из дискриминанта равен 7. Найдем $t$:

\[\begin{array}{·{35}{l}}

{{t}_{1}}\text{ }=\frac{25+7}{2}\text{ }=\text{ }\frac{32}{2}=\text{ }16 \\{{t}_{2}}\text{ }=\frac{25-7}{2}=\text{ }\frac{18}{2}\text{ }=\text{ }9 \\\end{array}\]

Вспоминаем, что такое $t$:

\[\begin{align}& {{x}^{2}}=16 \\& \left[ \begin{align}& x=4 \\& x=-4 \\\end{align} \right. \\\end{align}\]

Второй вариант:

\[\begin{align}& {{x}^{2}}=9 \\& \left[ \begin{align}& x=3 \\& x=-3 \\\end{align} \right. \\\end{align}\]

Вот и все. У нас снова четыре ответа: 4; -4; 3; -3.

Пример № 3

Переходим к последнему биквадратному уравнению:

\[{{x}^{4}}-\frac{5}{4{{x}^{2}}}+\frac{1}{4}=0\]

Опять же вводим замену:

\[{{t}^{2}}-\frac{5}{4t}+\frac{1}{4}=0\]

Давайте умножим обе стороны на 4, чтобы избавиться от дробных коэффициентов:

Найдем $D$:

Корень из дискриминанта равен трем:

\[\begin{array}{·{35}{l}}

{{t}_{1}}\text{ }=\text{ }\frac{5+3}{2\cdot 4}=\text{ }\frac{8}{8}\text{ }=\text{ }1 \\{{t}_{2}}\text{ }=\frac{5-3}{2\cdot 4}=\text{ }\frac{2}{8}=\text{ }\frac{1}{4} \\\end{array}\]

Считаем иксы. Вспоминаем, что такое $t$:

\[\begin{align}& {{x}^{2}}=1 \\& \left[ \begin{align}& x=1 \\& x=-1 \\\end{align} \right. \\\end{align}\]

Второй вариант чуть посложнее:

\[\begin{align}& {{x}^{2}}=\frac{1}{4} \\& \left[ \begin{align}& x=\frac{1}{2} \\& x=-\frac{1}{2} \\\end{align} \right. \\\end{align}\]

Мы получили снова четыре корня:

Вот так решаются все биквадратные уравнения. Конечно, это не самый быстрый способ, зато он самый надежный. Попробуйте самостоятельно прорешать такие же примеры, как и в этом видео. В ответе значения иксов нужно записывать через точку с запятой — вот так, как я записывал. На этом урок закончен. Удачи!

Впервые квадратные уравнения сумели решить математики древнего Египта. Вавилоняне умели решать неполные квадратные уравнения, так же частные виды полных квадратных уравнений около 2 тысяч лет до нашей эры. Древнегреческие математики умели решать некоторые виды квадратных уравнений, сводя их к геометрическим построениям. Примеры решения уравнений без использования геометрических знаний дает Диофант Александрийский (3 век). Диофант в своих книгах «Арифметика» изложил способ решения полных квадратных уравнений, однако эти книги не сохранились. В Европе формулы для решения квадратных уравнений были впервые изложены итальянским математиком Леонардо Фибоначчи в 1202 году.

Общее правило решения квадратных уравнений, преобразованных в вид х 2 + bх = с , было описано немецким математиком М. Штифелем. Он и сформулировал в 1544 году общее правило решения квадратных уравнений, приведенных к единому каноническому виду
х 2 + bх + с = 0 при всевозможных вариациях знаков и коэффициентов b и с.

Франсуа Виет вывел формулы квадратного уравнения в общем виде, однако он работал только с положительными числами.

Тарталья, Кардано, Бомбелли – итальянские ученые, которые среди первых в XVI веке учитывают кроме положительных еще и отрицательные корни.

Выводом формулы решения квадратных уравнений общего вида занимался Виет. Одно свое утверждение он высказывал лишь для положительных корней (отрицательных чисел он не признавал).

После трудов нидерландского математика Альберта Жирара, а также Декарта и Ньютона, методы решения квадратных уравнений приняли современный вид.

Квадратные уравнения

1. Вспомним уже знакомые способы решения и исследования квадратных уравнений:

  • выделение полного квадрата;
  • по формуле корней для квадратного уравнения;
  • по теореме Виета;
  • на основании свойств квадратичной функции.

В процессе решения уравнений необходимо следить за множеством допустимых значений неизвестного, т.к. оно может изменяться. В случае его расширения следует проверять найденное решение, не является ли оно посторонним для данного уравнения. В случае, если произошло сужение, необходимо убедиться, не являются ли потерянные значения неизвестных решениями данного уравнения. Процесс нахождения выпавших решений не всегда легко выполним, поэтому желательно избегать сужение множества допустимых значений неизвестных уравнения.

2. Типичные ошибки при решении уравнений.

По правилам можно преобразовывать исходное уравнение в равносильное ему, при этом, вы знаете, что: обе части уравнения можно делить или умножать на одно и то же, отличное от нуля, число.

1) Если уравнение имеет вид f(х) · g(х) = p(х) · g(х), то деление обеих частей на одинаковый множитель g(x), как правило, недопустимо. Данное действие может привести к потере корней: могут быть потеряны корни уравнения g(х) = 0, если ни существуют.

Пример 1.

Решить уравнение 2(х – 3) = (х – 3)(х + 5).

Решение.

Здесь нельзя сокращать на множитель (х – 3).

2(х – 3) – (х – 3)(х + 5) = 0, вынесем общую скобку:

(х – 3)(-х – 3) = 0, теперь

х – 3 = 0 или -х – 3 = 0;

х = 3 или х = -3.

Ответ: -3; 3.

2) Уравнение вида f(х) / g(х) = 0 можно заменить системой:

{f(x) = 0,
{g(x) ≠ 0.

Она равносильна исходному уравнению.

Или можно решить уравнение f(x) = 0, а уже затем исключить найденных корней те, которые обращают в нуль знаменатель g(x).

Встречаются дробно-рациональные уравнения, которые сводятся к квадратным уравнениям.

Пример 2.

Решить уравнение: (х + 3) / (х – 3) + (х – 3) / (х + 3) = 10/3 + 36/(х – 3)(х + 3).

Решение.

Умножив обе части уравнения на общий знаменатель и заменив исходное уравнение целым, получим равносильную систему:

{3(х + 3) 2 + 3(х – 3) 2 = 10(х – 3)(х + 3) + 3 · 36;
{(х – 3)(х +3) ≠ 0.

В результате получим два корня: х = 3 или х = -3, но х ≠ 3 и х ≠ -3.

Ответ: уравнение корней не имеет.

Пример 3.

Решить уравнение: (х + 5)(х 2 + 4х - 5)/(х + 5)(х + 2) = 0.

Решение.

Часто ограничиваются таким решением:

(х 2 + 4х – 5) / (х + 2) = 0.
{х = -5, х = 1,
{х ≠ -2.

Ответ: -5; 1.

Правильный ответ: 1.

Пример 4.

При выполнении распространенных заданий на исследование квадратного уравнения следующего вида: «Не вычисляя действительных корней х 1 и х 2 уравнения 2х 2 + 3х + 2 = 0, найти значение х 1 2 + х 2 2 » банальная невнимательность приводит к грубой ошибке.

Действительно, по теореме Виета,

х 1 2 + х 2 2 = (х 1 + х 2) 2 – х 1 х 2 = (-3/2) 2 – 2 · 1 = 1/4.

Однако, теоремой можно было воспользоваться при существовании действительных корней. В данном примере D < 0 и корней нет.

Ответ: значение х 1 2 + х 2 2 не существует.

Пример 5.

Вычислить отрицательный коэффициент b и корни уравнения х 2 + bх – 1 = 0, если с увеличением каждого из этих корней на единицу они становятся корнями уравнения х 2 – b 2 х – b = 0.

Решение.

Пусть х 1 и х 2 – корни уравнения х 2 + bх – 1 = 0. Тогда по т. Виета

х 1 + х 2 = -b и х 1 х 2 = -1 (*). С другой стороны, по условию

(х 1 + 1) + (х 2 + 1) = b 2 и (х 1 + 1)(х 2 + 1) = -b.

Перепишем:

х 1 + х 2 = b 2 – 2 и (х 1 + 1)(х 2 + 1) = -b.

Теперь, учитывая условия (*), получим b 2 – 2 = -b, следовательно,

b 1 = -2, b 2 = 1. По условию подходит b 1 = -2.

Значит, исходное уравнение имеет вид х 2 – 2х – 1 = 0, корнями являются числа х 1,2 = 1 ± √2.

Ответ: b 1 = -2, х 1,2 = 1 ± √2.

Уравнения, приводимые к квадратным. Биквадратные уравнения

Уравнения вида ах 4 + bх 2 + c = 0, где а ≠ 0 , называются биквадратными уравнениями с одной переменной.

Для решения биквадратного уравнения нужно сделать подстановку х 2 = t, найти корни t 1 и t 2 квадратного уравнения аt 2 + bt + c = 0 и решить уравнения х 2 = t 1 и х 2 = t 2 . Они имеют решения лишь в случае, когда t 1,2 ≥ 0.

Пример 1.

Решить уравнение х 4 + 5х 2 – 36 = 0.

Решение.

Подстановка: х 2 = t.

t 2 + 5t – 36 = 0. По т. Виета t 1 = -9 и t 2 = 4.

х 2 = -9 или х 2 = 4.

Ответ: В первом уравнении корней нет, из второго: х = ±2.

Пример 2.

Решить уравнение (2х – 1) 4 – 25(2х – 1) 2 + 144 = 0.

Решение.

Подстановка: (2х – 1) 2 = t.

t 2 – 25t + 144 = 0. По т. Виета t 1 = 9 и t 2 = 16.

(2х – 1) 2 = 9 или (2х – 1) 2 = 16.

2х – 1 = ±3 или 2х – 1 = ±4.

Из первого уравнения два корня: х = 2 и х = -1, из второго тоже: х = 2,5 и х = -1,5.

Ответ: -1,5; -1; 2; 2,5.

Таким образом, процесс решения любых уравнений состоит в последовательной замене данного уравнения другим, равносильным ему и более простым уравнением.

Остались вопросы? Не знаете, как решать уравнения?
Чтобы получить помощь репетитора – .
Первый урок – бесплатно!

blog.сайт, при полном или частичном копировании материала ссылка на первоисточник обязательна.

Всем еще со школы известно такое понятие, как уравнения. Уравнение - это равенство, содержащее одну или несколько переменных. Зная то, что одна из частей данного равенства равна другой, можно вычленять отдельные части уравнения, перенося те или иные его составляющие за знак равенства по четко оговоренным правилам. Можно упростить уравнение до необходимого логического завершения в виде х=n, где n - это любое число.

С начальной школы все дети проходят курс изучения различной сложности. Позже в программе появляются более сложные линейные уравнения - квадратные, затем идут кубические уравнения. Каждый последующий вид уравнений имеет новые методики решения, становится труднее в изучении и повторении.

Однако после этого возникает вопрос о решении такого вида уравнений, как биквадратные уравнения. Данный вид, несмотря на кажущуюся сложность, решается достаточно просто: главное - уметь привести такие уравнения в должный вид. Их решение изучается за один-два урока вместе с практическими заданиями, если у учащихся имеются базовые знания о решении квадратных уравнений.

Что необходимо знать человеку, столкнувшемуся с этим типом уравнений? Для начала то, что они включают в себя только четные степени переменной «икс»: четвертая и, соответственно, вторая. Чтобы биквадратное уравнение было решаемо, необходимо привести его к виду Как это сделать? Достаточно просто! Нужно всего лишь заменить «икс» в квадрате на «игрек». Тогда устрашающий для многих школьников «икс» в четвертой степени превратится в «игрек» в квадрате, а уравнение примет вид обычного квадратного.

Далее оно решается как обычное квадратное уравнение: раскладывается на множители, после чего находится значение таинственного «игрека». Чтобы решить биквадратное уравнение до конца, нужно найти из числа «игрек» - это и будет искомая величина «икс», после нахождения значений которого можно будет поздравить себя с успешным завершением расчетов.

Что же следует помнить, решая уравнения данного вида? Первое и самое главное: игрек не может быть отрицательным числом! Само условие, что игрек - это квадрат числа икс, исключает подобный вариант решения. Поэтому если при первичном решении биквадратного уравнения одно из значений «игрек» получается у вас положительным, а второе - отрицательным, необходимо взять только его положительный вариант, иначе биквадратное уравнение будет решено неверно. Лучше сразу ввести правило, что переменная «игрек» больше либо равна нулю.

Второй немаловажный нюанс: число «икс», являясь квадратным корнем числа «игрек», может быть как положительным, так и отрицательным. Допустим, если «игрек» равен четырем, то биквадратное уравнение будет иметь два решения: два и минус два. Это происходит по той причине, что отрицательное число, возведенное в четную степень, равно числу того же модуля, но отличного знака, возведенному в ту же степень. Поэтому всегда стоит помнить об этом немаловажном моменте, иначе можно попросту потерять один или несколько ответов уравнения. Лучше всего сразу писать, что «икс» равен плюс-минус квадратному корню от «игрек».

В общем и целом, решение биквадратных уравнений - это достаточно просто и не требует больших временных затрат. На изучение этой темы в школьной программе хватает двух академических часов - не считая, конечно, повторений и контрольных работ. Биквадратные уравнения стандартного вида решаются очень легко, если соблюдать перечисленные выше правила. Их решение не составит для вас никакого труда, потому что оно подробно расписано в учебниках математики. Удачной вам учебы и успехов в решении любых, не только математических, задач!

Перед тем, как решать биквадратные уравнения, необходимо разобраться, что собой являет данное выражение. Итак, это уравнение четвертой степени, которое можно записать в таком виде: «(ах 4) + (bx 2) + с = 0 ». Его общий вид можно записать в виде «ах ». Чтобы решить уравнение подобного рода, необходимо применить метод под названием «подстановка неизвестных». Согласно ему, выражение «х 2 » необходимо заменить другой переменной. После такой подстановки получается простое квадратное уравнение, решение которого в дальнейшем не составляет особого труда.

Необходимо:

чистый лист бумаги;
пишущая ручка;
— элементарные математические навыки.

Инструкция:

  • Итак, необходимо изначально записать выражение на листке бумаги. Первый этап его решения состоит в простой процедуре замены выражения «х 2 » на простую переменную (например «к »). После того, как Вы это сделали, у Вас должно получиться новое уравнение: «(ак 2) – (bк) + с = 0 ».
  • Далее, чтобы правильно решить биквадратное уравнение, нужно вначале найти корни для «(ак 2 ) – (bк) + с = 0 », которое у Вас получилось после замены. Чтобы это сделать, необходимо будет посчитать значение дискриминанта по известной формуле: «D = (b 2 ) − 4*ас ». При этом все эти переменные (а , b и с ) являются коэффициентами вышеприведенного уравнения.
  • В ходе расчета дискриминанта мы можем узнать, имеет ли решение наше биквадратное уравнение, ведь если в итоге данное значение получится со знаком минус, то оно просто-напросто может не иметь решения в дальнейшем. В случае же если дискриминант будет равняться нулю, тогда у нас будет одно единственное решение, определенное такой формулой: «к = — (b / 2 * а) ». Ну и в случае, если наш дискриминант окажется больше нуля, тогда у нас получится два решения. Для нахождения двух решений необходимо будет взять квадратный корень от «D » (то есть с дискриминанта). Полученное значение нужно будет записать в виде переменной «QD ».
  • Следующий шаг – непосредственное решение квадратного уравнения , которое у Вас получилось. Для этого Вам необходимо будет подставить в формулу уже известные значения. Для одного из решений: «к1 = (-b + QD) / 2 * а », а для другого: «к2 = (-b — QD) / 2 * а ».
  • И, наконец, завершающий этап – нахождение корней биквадратного уравнения . Для этого необходимо будет взять квадратный корень из полученных до этого решений обычного квадратного уравнения. Если же дискриминант был равен нулю, и у нас было только одно решение, тогда в этом случае корней получится два (с отрицательным и с положительным значением квадратного корня). Соответственно, если дискриминант был больше нуля, то наше биквадратное уравнение будет иметь целых четыре корня.

Инструкция

Способ подстановкиВыразите одну переменную и подставте ее в другое уравнение. Выражать можно любую переменную по вашему усмотрению. Например, выразите «у из второго уравнения:
х-у=2 => у=х-2Затем подставьте все в первое уравнение:
2х+(х-2)=10Перенесите все без «х в правую часть и подсчитайте:
2х+х=10+2
3х=12 Далее, чтобы «х, разделите обе части уравнения на 3:
х=4.Итак, вы нашли «х. Найдите «у. Для этого подставьте «х в то уравнение, из которого вы выразили «у:
у=х-2=4-2=2
у=2.

Сделайте проверку. Для этого подставьте получившиеся значения в уравнения:
2*4+2=10
4-2=2
Неизвестные найдены верно!

Способ сложения или вычитания уравненийИзбавьтесь сразу от -нибудь перемененной. В нашем случае это проще сделать с «у.
Так как в «у со знаком «+ , а во втором «- , то вы можете выполнить операцию сложения, т.е. левую часть складываем с левой, а правую с правой:
2х+у+(х-у)=10+2Преобразуйте:
2х+у+х-у=10+2
3х=12
х=4Подставьте «х в любое уравнение и найдите «у:
2*4+у=10
8+у=10
у=10-8
у=2По 1-ому способу можете , что найдены верно.

Если нет четко выраженных переменных, то необходимо немного преобразовать уравнения.
В первом уравнении имеем «2х, а во втором просто «х. Для того, чтобы при сложении или «х сократился, второе уравнение умножьте на 2:
х-у=2
2х-2у=4Затем вычтите из первого уравнения второе:
2х+у-(2х-2у)=10-4Заметим, если перед скобкой стоит минус, то после раскрытия поменяйте на противоположные:
2х+у-2х+2у=6
3у=6
у=2«х найдите, выразив из любого уравнения, т.е.
х=4

Видео по теме

Совет 2: Как решать линейное уравнение с двумя переменными

Уравнение , в общем виде записанное ах+bу+с=0, называется линейным уравнением с двумя переменными . Такое уравнение само по себе содержит бесконечное множество решений, поэтому в задачах оно всегда чем-либо дополняется – еще одним уравнением или ограничивающими условиями. В зависимости от условий, предоставленных задачей, решать линейное уравнение с двумя переменными следует разными способами.

Вам понадобится

Инструкция

Если дана система из двух линейных уравнений, решайте ее следующим образом. Выберите одно из уравнений, в котором коэффициенты перед переменными поменьше и выразите одну из переменных, например, х. Затем подставьте это значение, содержащее у, во второе уравнение. В полученном уравнении будет лишь одна переменная у, перенесите все части с у в левую часть, а свободные – в правую. Найдите у и подставьте в любое из первоначальных уравнений, найдите х.

Решить систему из двух уравнений можно и другим способом. Умножьте одно из уравнений на число, чтобы коэффициент перед одной из переменных, например, перед х, был одинаков в обоих уравнениях. Затем вычтите одно из уравнений из другого (если правая часть не равна 0, не забудьте вычесть аналогично и правые части). Вы увидите, что переменная х исчезла, и осталась только одна переменная у. Решите полученное уравнение, и подставьте найденное значение у в любое из первоначальных равенств. Найдите х.

Третий способ решения системы двух линейных уравнений – графический. Начертите систему координат и изобразите графики двух прямых, уравнения которых указаны в вашей системе. Для этого подставляйте любые два значения х в уравнение и находите соответствующие у – это будут координаты точек, принадлежащих прямой. Удобнее всего находить пересечение с осями координат – достаточно подставить значения х=0 и у=0. Координаты точки пересечения этих двух линий и будут задачи.

Если в условиях задачи лишь одно линейное уравнение, значит, вам даны дополнительные условия, благодаря которым можно найти решение. Внимательно прочитайте задачу, чтобы найти эти условия. Если переменными х и у обозначены расстояние, скорость, вес – смело ставьте ограничение х≥0 и у≥0. Вполне возможно, под х или у скрывается количество , яблок, и т.д. – тогда значениями могут быть только . Если х – возраст сына, понятно, что он не может быть старше отца, поэтому укажите это в условиях задачи.

Источники:

  • как решить уравнение с одной переменной

Само по себе уравнение с тремя неизвестными имеет множество решений, поэтому чаще всего оно дополняется еще двумя уравнениями или условиями. В зависимости от того, каковы исходные данные, во многом будет зависеть ход решения.

Вам понадобится

  • - система из трех уравнений с тремя неизвестными.

Инструкция

Если два из трех системы имеют лишь две неизвестные из трех, попытайтесь выразить одни переменные через другие и подставить их в уравнение с тремя неизвестными . Ваша цель при этом – превратить его в обычное уравнение с неизвестной. Если это , дальнейшее решение довольно просто – подставьте найденное значение в другие уравнения и найдите все остальные неизвестные.

Некоторые системы уравнений можно вычитанием из одного уравнения другого. Посмотрите, нет ли возможности умножить одно из на или переменную так, чтобы сократились сразу две неизвестные. Если такая возможность есть, воспользуйтесь ею, скорее всего, последующее решение не составит труда. Не забывайте, что при умножении на число необходимо умножать как левую часть, так и правую. Точно также, при вычитании уравнений необходимо помнить о том, что правая часть должна также вычитаться.

Если предыдущие способы не помогли, воспользуйтесь общим способом решений любых уравнений с тремя неизвестными . Для этого перепишите уравнения в виде а11х1+a12х2+а13х3=b1, а21х1+а22х2+а23х3=b2, а31х1+а32х2+а33х3=b3. Теперь составьте матрицу коэффициентов при х (А), матрицу неизвестных (Х) и матрицу свободных (В). Обратите внимание, умножая матрицу коэффициентов на матрицу неизвестных, вы получите матрицу, матрице свободных членов, то есть А*Х=В.

Найдите матрицу А в степени (-1) предварительно отыскав , обратите внимание, он не должен быть равен нулю. После этого умножьте полученную матрицу на матрицу В, в результате вы получите искомую матрицу Х, с указанием всех значений.

Найти решение системы из трех уравнений можно также с помощью метода Крамера. Для этого найдите определитель третьего порядка ∆, соответствующий матрице системы. Затем последовательно найдите еще три определителя ∆1, ∆2 и ∆3, подставляя вместо значений соответствующих столбцов значения свободных членов. Теперь найдите х: х1=∆1/∆, х2=∆2/∆, х3=∆3/∆.

Источники:

  • решений уравнений с тремя неизвестными

Решение системы уравнений сложно и увлекательно. Чем сложнее система, тем интереснее ее решать. Чаще всего в математике средней школы встречаются системы уравнений с двумя неизвестными, но в высшей математике переменных может быть и больше. Решать системы можно несколькими методами.

Инструкция

Самый распространенный метод решения системы уравнений - это подстановка. Для этого необходимо выразить одну переменную через другую и подставить ее во второе уравнение системы, таким образом приведя уравнение к одной переменной. Например, дана уравнений:2х-3у-1=0;х+у-3=0.

Из второго выражения удобно выразить одну из переменных, перенеся все остальное в правую часть выражения, не забыв при этом сменить знак коэффициента:х=3-у.

Раскрываем скобки: 6-2у-3у-1=0;-5у+5=0;у=1.Полученное значение у подставляем в выражение:х=3-у;х=3-1;х=2.

В первом выражении все члены 2, можно вынести 2 за скобку распределительному свойству умножения:2*(2х-у-3)=0. Теперь обе части выражения можно сократить на это число, а затем выразить у, так как коэффициент по модулю при нем равен единице:-у=3-2х или у=2х-3.

Так же, как и в первом случае, подставляем данное выражение во второе уравнение и получаем:3х+2*(2х-3)-8=0;3х+4х-6-8=0;7х-14=0;7х=14;х=2.Подставляем полученное значение в выражение: у=2х-3;у=4-3=1.

Мы видим, что коэффициент при у одинаков по значению, но различен по знаку, следовательно, если мы сложим данные уравнения, то вовсе избавимся от у:4х+3х-2у+2у-6-8=0;7х-14=0;х=2.Подставляем значение х в любое из двух уравнений системы и получаем у=1.

Видео по теме

Биквадратное уравнение представляет собой уравнение четвертой степени, общий вид которого представляется выражением ax^4 + bx^2 + c = 0. Его решение основано на применении метода подстановки неизвестных. В данном случае х^2 заменяется другой переменной. Таким образом, в итоге получается обычное квадратное уравнение , которое и требуется решить.

Инструкция

Решите квадратное уравнение , получившееся в результате замены. Для этого сначала посчитаем значение в соответствии с формулой: D = b^2 ? 4ac. При этом переменные a, b, c являются коэффициентами нашего уравнения.

Найдите корни биквадратного уравнения. Для этого возьмите корень квадратный из полученных решений . Если решение было одно, то будет два – положительное и отрицательное значение корня квадратного. Если решений было два, у биквадратного уравнения будет четыре корня.

Видео по теме

Одним из классических способов решения систем линейных уравнений является метод Гаусса. Он заключается в последовательном исключении переменных, когда система уравнений с помощью простых преобразований переводится в ступенчатую систему, из которой последовательно находятся все переменные, начиная с последних.

Инструкция

Сначала приведите систему уравнений в такой вид, когда все неизвестные будут стоять в строго определенном порядке. Например, все неизвестные Х будут стоять первыми в каждой строке, все Y – после X, все Z - после Y и так далее. В правой части каждого уравнения неизвестных быть не должно. Мысленно определите коэффициенты, стоящие перед каждой неизвестной, а также коэффициенты в правой части каждого уравнения.