На какое выражение надо умножить многочлен 7t. Быстрое умножение многочленов при помощи преобразования Фурье — это просто

Правило вычисления произведения многочленов.

Для того чтобы рассмотреть произведение многочленов, для начала вспомним, как умножить одночлен на многочлен.

Произведение одночлена и многочлена находится следующим образом:

  • составляется произведение одночлена и многочлена.
  • раскрываются скобки.
  • группируются числа с числами, одинаковые переменные друг с другом.
  • перемножаются числа и складываются степени соответствующих одинаковых переменных.

Рассмотрим теперь умножение двух многочленов на примере:

Пример 1

Умножим многочлен $x-y+z$ на многочлен $\ {xy}^5+y^6-{xz}^5$.

Вначале запишем произведение многочленов:

\[\left(x-y+z\right)({xy}^5+y^6-{xz}^5)\]

Сделаем следующую замену. Пусть $x-y+z=t$, получим:

Получили произведение одночлена на многочлен. Найдем его по выше изложенному правилу.

Раскроем скобки:

Сделаем обратную замену:

\[{\left(x-y+z\right)xy}^5+{\left(x-y+z\right)y}^6-{\left(x-y+z\right)xz}^5\]

В данном выражении мы видим присутствие трех произведений одночленов на многочлен. Найдем их по отдельности по выше изложенному правилу:

\[{\left(x-y+z\right)xy}^5=x{xy}^5-y{xy}^5+z{xy}^5={x^2y}^5-{xy}^6+z{xy}^5\] \[{\left(x-y+z\right)y}^6=xy^6-yy^6+zy^6=xy^6-y^7+zy^6\] \[{\left(x-y+z\right)xz}^5=x{xz}^5-y{xz}^5+z{xz}^5=x^2z^5-xyz^5+{xz}^6\]

Перепишем наше выражение:

\[\left({x^2y}^5-{xy}^6+z{xy}^5\right)+\left(xy^6-y^7+zy^6\right)-(x^2z^5-xyz^5+{xz}^6)\]

Раскроем скобки. Напомним, что если перед скобками стоит знак плюс, то знаки в скобках остаются неизменными, а если перед скобками стоит знак минус, то знаки в скобках изменятся на противоположные. Получим

\[{x^2y}^5-{xy}^6+z{xy}^5+xy^6-y^7+zy^6-x^2z^5+xyz^5-{xz}^6\]

Получили многочлен. Осталось только привести его к стандартному виду. Итого, в ответе, получим:

\[{x^2y}^5+xy^5z-y^7+zy^6-x^2z^5+xyz^5-{xz}^6\]

Присмотревшись к полученному результату, мы получим следующее правило умножения многочлена на многочлен:

Правило: Для того, чтобы умножить многочлен на многочлен, необходимо каждый член первого многочлена умножить на каждый член второго многочлен, сложить полученные произведения и полученный многочлен привести к стандартному виду.

Пример 2

Выполнить умножение $2x+y$ и $x^2+2y+3$.

Запишем произведение:

\[\left(2x+y\right)(x^2+2y+3)\]

\[\left(2x+y\right)\left(x^2+2y+3\right)=2x^3+4xy+6x+x^2y+2y^2+3y\]

Видим, что полученный многочлен имеет стандартный вид, значит умножение закончено.

Примеры задач на произведение многочленов

Пример 3

Выполнить умножение многочлена на многочлен:

а) $(2z+1)\ и\ (z^2-7z-3)$

б) $(1-4x^2)\ и\ (5y^2-3x-2)$

Решение:

а) $(2z+1)\ и\ (z^2-7z-3)$

Составим произведение:

\[(2z+1)\cdot (z^2-7z-3)\]

Раскроем скобки по правилу произведения многочленов:

б) $(1-4x^2)\ и\ (5y^2-3x-2)$

Составим произведение:

\[(1-4x^2)\cdot (5y^2-3x-2)\]

Раскроем скобки по правилу произведения многочленов:

Видим, что полученный многочлен имеет стандартный вид, следовательно:

Ответ: $5y^2-3x-2-20x^2y^2+12x^3+8x^2$.

в) $(2n-5n^3)\ и\ (3n^2-n^3+n)$

Составим произведение:

\[(2n-5n^3)\cdot (3n^2-n^3+n)\]

Раскроем скобки по правилу произведения многочленов:

Приведем данный многочлен к стандартному виду:

г) $(a^2+a+1)\ и\ (a^2-24a+6)$

Составим произведение:

\[(a^2+a+1)\cdot (a^2-24a+6)\]

Раскроем скобки по правилу произведения многочленов:

Приведем данный многочлен к стандартному виду.

Одним из действий с многочленами является умножение многочлена на многочлен. В данной статье рассмотрим правило такого умножения и применим его при решении задач.

Правило умножения многочлена на многочлен

Зададим два многочлена a + b и c + d и выполним их умножение.

В первую очередь запишем произведение исходных многочленов: поставим между ними знак умножения, предварительно заключив многочлены в скобки. Получим: (a + b) · (c + d) . Теперь обозначим множитель (c + d) как x , тогда выражение получит вид: (a + b) · x , что по сути является произведением многочлена и одночлена. Осуществим умножение: (a + b) · x = a · x + b · x , а затем обратно заменим х на (c + d) : a · (c + d) + b · (c + d) . И вновь применив правило умножения многочлена на одночлен, преобразуем выражение в: a · c + a · d + b · c + b · d . Резюмируя: произведению заданных многочленов a + b и c + d соответствует равенство (a + b) · (c + d) = a · c + a · d + b · c + b · d .

Рассуждения, которые мы привели выше, дают возможность сделать важные выводы:

  1. Результат умножения многочлена на многочлен - многочлен. Данное утверждение справедливо для любых перемножаемых многочленов.
  2. Произведение многочленов есть сумма произведений каждого члена одного многочлена на каждый член другого. Откуда можно сделать заключение, что при умножении многочленов, содержащих m и n членов соответственно, указанная сумма произведений членов состоит из m · n слагаемых.

Теперь можем сформулировать правило умножения многочленов:

Определение 1

Для осуществления умножения многочлена на многочлен, необходимо каждый член одного многочлена умножить на каждый член другого многочлена и найти сумму полученных произведений.

Примеры умножения многочлена на многочлен

В практическом решении задач нахождение произведения многочленов раскладывается на несколько последовательных действий:

  • запись произведения умножаемых многочленов (многочлены заключаются в скобки и между ними записывается знак умножения);
  • выстраивание суммы произведений каждого члена первого многочлена на каждый член второго. С этой целью первый член первого многочлена умножается на каждый член второго многочлена, затем второй член первого многочлена перемножается с каждым членом второго многочлена и так далее;
  • если это возможно, полученная сумма записывается в виде многочлена стандартного вида.
Пример 1

Заданы многочлены: 2 − 3 · x и x 2 − 7 · x + 1

Решение

Запишем произведение исходных многочленов. Получим: (2 − 3 · x) · (x 2 − 7 · x + 1) .

Следующим шагом составим сумму произведений каждого члена многочлена 2 − 3 · x на каждый член многочлена x 2 − 7 · x + 1 . Рассмотрим подробно: умножаем первый член первого многочлена (число 2) на каждый член второго многочлена, получим: 2 · x 2 , 2 · (− 7 · x) и 2 · 1 . Затем умножаем второй член первого многочлена на каждый член второго многочлена и получаем: − 3 · x · x 2 , − 3 · x · (− 7 · x) и − 3 · x · 1 . Все полученные выражения собираем в сумму: 2 · x 2 + 2 · (− 7 · x) + 2 · 1 − 3 · x · x 2 − 3 · x · (− 7 · x) − 3 · x · 1 .

Проверим, не пропустили ли мы произведение каких-либо членов: для этого пересчитаем количество членов в записанной сумме, получим 6 . Это верно, поскольку исходные многочлены состоят из 2 и 3 членов, что в общем дает 6 .

Последним действием преобразуем записанную сумму в многочлен стандартного вида: 2 · x 2 + 2 · (− 7 · x) + 2 · 1 − 3 · x · x 2 − 3 · x · (− 7 · x) − 3 · x · 1 = = 2 · x 2 − 14 · x + 2 − 3 · x 3 + 21 · x 2 − 3 · x = = (2 · x 2 + 21 · x 2) + (− 14 · x − 3 · x) + 2 − 3 · x 3 = 23 · x 2 − 17 · x + 2 − 3 · x 3

Кратко без пояснений решение будет выглядеть так:

(2 − 3 · x) · (x 2 − 7 · x + 1) = 2 · x 2 + 2 · (− 7 · x) + 2 · 1 − 3 · x · x 2 − 3 · x · (− 7 · x) − 3 · x · 1 = = 2 · x 2 − 14 · x + 2 − 3 · x 3 + 21 · x 2 − 3 · x = = (2 · x 2 + 21 · x 2) + (− 14 · x − 3 · x) + 2 − 3 · x 3 = 23 · x 2 − 17 · x + 2 − 3 · x 3

Ответ: (2 − 3 · x) · (x 2 − 7 · x + 1) = 23 · x 2 − 17 · x + 2 − 3 · x 3 .

Уточним, что, когда исходные многочлены заданы в нестандартном виде, перед тем, как найти их произведение, желательно привести их к стандартному виду. Результат, конечно, будет тот же, но решение станет удобнее и короче.

Пример 2

Заданы многочлены 1 7 · x 2 · (- 3) · y + 3 · x - 2 7 · x · y · x и x · y − 1 . Необходимо найти их произведение.

Решение

Один из заданных многочленов записан в нестандартном виде. Исправим это, приведя его к стандартному виду:

1 7 · x 2 · (- 3) · y + 3 · x - 2 7 · x · y · x = - 3 7 · x 2 + 3 · x - 2 7 · x 2 · y = = - 3 7 · x 2 · y - 2 7 · x 2 · y + 3 · x = - 5 7 · x 2 · y + 3 · x

Теперь найдем искомое произведение:

5 7 · x 2 · y + 3 · x · x · y - 1 = = - 5 7 · x 2 · y · x · y - 5 7 · x 2 · y · (- 1) + 3 · x · x · y + 3 · x · (- 1) = = - 5 7 · x 3 · y 2 + 5 7 · x 2 · y + 3 · x 2 · y - 3 · x = - 5 7 · x 3 · y 2 + 3 5 7 · x 2 · y - 3 · x

Ответ: - 5 7 · x 2 · y + 3 · x · x · y - 1 = - 5 7 · x 3 · y 2 + 3 5 7 · x 2 · y - 3 · x

Напоследок проясним ситуацию, в которой есть необходимость перемножить три и более многочленов. В этом случае нахождение произведения сводится к последовательному перемножению многочленов по два: т.е. сначала перемножаются первые два многочлена; полученный результат умножается на третий многочлен; итог этого умножения – на четвертый многочлен и так далее.

Пример 3

Заданы многочлены: x 2 + x · y − 1 , x + y и 2 · y − 3 . Необходимо найти их произведение.

Решение

Сделаем запись произведения: (x 2 + x · y − 1) · (x + y) · (2 · y − 3) .

Перемножим первые два многочлена, получим: (x 2 + x · y − 1) · (x + y) = x 2 · x + x 2 · y + x · y · x + x · y · y − 1 · x − 1 · y = = x 3 + 2 · x 2 · y + x · y 2 − x − y .

Первоначальная запись произведения принимает вид: (x 2 + x · y − 1) · (x + y) · (2 · y − 3) = (x 3 + 2 · x 2 · y + x · y 2 − x − y) · (2 · y − 3) .

Найдем результат этого умножения:

(x 3 + 2 · x 2 · y + x · y 2 − x − y) · (2 · y − 3) = = x 3 · 2 · y + x 3 · (− 3) + 2 · x 2 · y · 2 · y + 2 · x 2 · y · (− 3) + x · y 2 · 2 · y + + x · y 2 · (− 3) − x · 2 · y − x · (− 3) − y · 2 · y − y · (− 3) = = 2 · x 3 · y − 3 · x 3 + 4 · x 2 · y 2 − 6 · x 2 · y + 2 · x · y 3 - − 3 · x · y 2 − 2 · x · y + 3 · x − 2 · y 2 + 3 · y

Ответ:

(x 2 + x · y − 1) · (x + y) · (2 · y − 3) = 2 · x 3 · y − 3 · x 3 + 4 · x 2 · y 2 − 6 · x 2 · y + + 2 · x · y 3 − 3 · x · y 2 − 2 · x · y + 3 · x − 2 · y 2 + 3 · y

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter











Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цели урока: (Презентация. Слайд 2)

Образовательные:

  • вывести правило умножения многочлена на многочлен;
  • формировать умение применять это правило.

Развивающие:

  • развитие внимания;
  • формирование умения анализировать и обобщать знания по теме;
  • развитие навыков устного счёта.

Воспитательные:

  • воспитание аккуратности;
  • воспитание устойчивого интереса к предмету.

Тип урока: Урок изучения и первичного закрепления новых знаний.

Ход урока

I. Устная работа (Презентация. Слайд 3)

Выполните умножение.

а) а (х – у);

б) 2p (3 – q);

в) –2х (х – 4);

г) 4y(у 3 + 0,25);

д) – 0,5 c 2 (c 3 + 2);

е) –5х (3х 2 – 4);

ж) 2a 4 (а 3 – 0,5);

з) –q 7 (q 3 – q 5).

II. Объяснение нового материала (Презентация. Слайд 4)

Объяснение проводится в несколько этапов согласно материалу учебника.

1. Вывести правило умножения многочлена на многочлен и наглядно представить его на слайде (или доске):

2. Сформулировать полученное правило, попросить нескольких учащихся повторить его.

3. Разобрать примеры применения правила.

Поскольку данная тема является новой для учащихся, целесообразно привести несколько несложных примеров непосредственного применения правила умножения двух многочленов. Примеры использования этого правила при решении ряда задач лучше рассмотреть на следующих уроках.

Пример 1. (Презентация. Слайд 5) Умножить многочлен (3a – 2b) на многочлен (2a + 3b).

Решение: (3a – 2b)(2a + 3b) = 3a * 2a + 3a * 3b + (– 2b) * 2a + (– 2b) * 3b = 6a 2 + 9ab – 4 ab – 6b 2 = 6a 2 + 5ab – 6b 2 .

Пример 2. (Презентация. Слайд 6) Упростите выражение: (2х – 3)(5 – х) – 3х(4 – х).

Решение: (2х – 3)(5 – х) – 3х(4 – х) = 10х – 2х 2 – 15 + 3х – 12х + 3х 2 = х 2 + х – 15.

Пример 3. (Презентация. Слайд 7) Докажем, что при любом натуральном значении п значение выражения (п + 1)(п + 2) – (3п – 1)(п + 3) + 5п(п + 2) + п +7 кратно 3.

Решение: (п + 1)(п + 2) – (3п – 1)(п + 3) + 5п(п + 2) + п +7 = п 2 + 2п + п + 2 – 3п 2 – 9п + п + 3 + 5п 2 + 10п + п +7 = 3п 2 + 6п + 12 = 3 (п 2 + 2п + 4).

III. Формирование умений и навыков (Презентация. Слайд 8)

За урок следует опросить как можно больше учащихся, чтобы убедиться, что они усвоили правило умножения многочлена на многочлен. Поэтому для выполнения каждого задания к доске можно вызывать сразу трёх учащихся.

1. № 677, № 678.

В этих заданиях на умножение многочленов каждый из множителей является линейным. Важно, чтобы учащиеся следили за точностью применения соответствующего правила и не ошибались в знаках.

2. № 680.

Эти задания несколько сложнее, поскольку помимо применения правила умножения многочленов учащиеся должны помнить свойства степеней.

в) 12a 4 – a 2 b 2 – b 4 ;

е) 56p 3 – 51p 2 + 10p.

3. № 682 (а, в).

а) (х + 10) 2 = (х + 10) (х + 10) = х 2 + 10х + 10х + 100 = х 2 + 20х + 100;

в) (3а – 1) 2 = (3а – 1) (3а – 1) = 9а 2 – 3а – 3а – 1 = 9а 2 – 6а + 1.

IV. Итоги урока (Презентация. Слайд 9)

– Как умножить одночлен на многочлен?

– Сформулируйте правило умножения многочлена на многочлен.

– Какие знаки будут иметь слагаемые, полученные при умножении многочленов:

а) (х + у) (а – b);

б) (n – m) (p – q)?

V. Домашнее задание: (Презентация. Слайд 10)

№ 679; № 681; № 682 (б, г).

Используемые учебники и учебные пособия: (Презентация. Слайд 11)

  1. Учебник “Алгебра 7”. Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова под редакцией С.А.Теляковского. Москва “Просвещение”.2010г.
  2. Рурукин А.Н., Лупенко Г.В., Масленникова И.А. Поурочные разработки по алгебре: 7 класс.

Использованное оформление.


Продолжаем изучать действия с многочленами . В этой статье мы разберем умножение многочлена на многочлен . Здесь мы получим правило умножения, после чего рассмотрим его применение при решении примеров на умножение многочленов различного вида.

Навигация по странице.

Правило

Чтобы подойти к правилу умножения многочлена на многочлен, рассмотрим пример. Возьмем два многочлена a+b и c+d и выполним их умножение.

Сначала составим их произведение, для этого заключим каждый из многочленов в скобки, и поставим между ними знак умножения, имеем (a+b)·(c+d) . Теперь обозначим (c+d) как x , после этой замены записанное произведение примет вид (a+b)·x . Выполним умножение так, как проводится умножение многочлена на одночлен : (a+b)·x=a·x+b·x . На этом этапе проведем обратную замену x на c+d , что нас приведет к выражению a·(c+d)+b·(c+d) , которое с помощью правила умножения одночлена на многочлен преобразуется к виду a·c+a·d+b·c+b·d . Таким образом, умножению исходных многочленов a+b и c+d соответствует равенство (a+b)·(c+d)=a·c+a·d+b·c+b·d .

Из проведенных рассуждений можно сделать два важных вывода. Во-первых, результатом умножения многочлена на многочлен является многочлен. Это утверждение справедливо для любых умножаемых многочленов, а не только для тех, которые мы взяли в примере. Во-вторых, произведение многочленов равно сумме произведений каждого члена одного многочлена на каждый член другого. Отсюда следует, что при умножении многочленов, содержащих m и n членов соответственно, указанная сумма произведений членов будет состоять из m·n слагаемых.

Теперь сделанные выводы нам позволяют сформулировать правило умножения многочленов:
чтобы провести умножение многочлена на многочлен, нужно каждый член одного многочлена умножить на каждый член другого многочлена и сложить полученные произведения.

Примеры умножения многочлена на многочлен

На практике при решении примеров правило умножения многочлена на многочлен, полученное в предыдущем пункте, разбивается на последовательные шаги:

  • Так сначала записывается произведение умножаемых многочленов. При этом умножаемые многочлены заключаются в скобки и между ними ставится знак «· ».
  • Дальше строится сумма произведений каждого члена первого многочлена на каждый член второго. Для этого берется первый член первого многочлена и умножается на каждый член второго многочлена. После этого берется второй член первого многочлена и тоже умножается на каждый член второго многочлена. И так далее.
  • Наконец, при возможности остается полученную сумму преобразовать в многочлен стандартного вида .

Разберемся с этим на конкретном примере.

Пример.

Выполните умножение многочленов 2−3·x и x 2 −7·x+1 .

Решение.

Записываем произведение: (2−3·x)·(x 2 −7·x+1) .

Теперь составляем сумму произведений каждого члена многочлена 2−3·x на каждый член многочлена x 2 −7·x+1 . Для этого берем первый член первого многочлена, то есть, 2 , и умножаем его на каждый член второго многочлена, имеем 2·x 2 , 2·(−7·x) и 2·1 . Теперь берем второй член первого многочлена −3·x и умножаем его на каждый член второго многочлена, имеем −3·x·x 2 , −3·x·(−7·x) и −3·x·1 . Из всех полученных выражений составляем сумму: 2·x 2 +2·(−7·x)+2·1− 3·x·x 2 −3·x·(−7·x)−3·x·1 .

Чтобы убедиться, что мы все сделали правильно и не забыли про произведение каких-нибудь членов, посчитаем количество членов в полученной сумме. Там их 6 . Так и должно быть, так как исходные многочлены состоят из 2 и 3 членов, а 2·3=6 .

Осталось полученную сумму преобразовать в многочлен стандартного вида:
2·x 2 +2·(−7·x)+2·1− 3·x·x 2 −3·x·(−7·x)−3·x·1= 23·x 2 −17·x+2−3·x 3 .

Таким образом, умножение исходных многочленов дает многочлен 23·x 2 −17·x+2−3·x 3 .

Удобно решение записывать в виде цепочки равенств, которая отражает все выполняемые действия. Для нашего примера краткое решение выглядит так:
(2−3·x)·(x 2 −7·x+1)= 2·x 2 +2·(−7·x)+2·1− 3·x·x 2 −3·x·(−7·x)−3·x·1= 2·x 2 −14·x+2−3·x 3 +21·x 2 −3·x= (2·x 2 +21·x 2)+(−14·x−3·x)+2−3·x 3 = 23·x 2 −17·x+2−3·x 3 .

Ответ:

(2−3·x)·(x 2 −7·x+1)=23·x 2 −17·x+2−3·x 3 .

Стоит заметить, что если умножаемые многочлены заданы в виде, отличном от стандартного, то перед умножением их целесообразно привести к стандартному виду. В результате получится тот же результат, что и при умножении многочленов в исходном не стандартном виде, но решение получится намного короче.

Пример.

Выполните умножение многочленов и x·y−1 .

Решение.

Многочлен дан не в стандартном виде. Прежде чем выполнять умножение, приведем многочлен его к стандартному виду:

Теперь можно выполнять умножение многочленов:

Ответ:

В заключение скажем, что иногда приходится выполнять умножение трех, четырех и большего количества многочленов. Оно сводится к последовательному умножению двух многочленов. То есть, сначала умножаются первые два многочлена, полученный результат умножается на третий многочлен, этот результат умножается на четвертый многочлен и так далее.

Пример.

Найдите произведение трех многочленов x 2 +x·y−1 , x+y и 2·y−3 .

Список литературы.

  • Алгебра: учеб. для 7 кл. общеобразоват. учреждений / [Ю. Н. Макарычев, Н. Г. Миндюк, К. И. Нешков, С. Б. Суворова]; под ред. С. А. Теляковского. - 17-е изд. - М. : Просвещение, 2008. - 240 с. : ил. - ISBN 978-5-09-019315-3.
  • Мордкович А. Г. Алгебра. 7 класс. В 2 ч. Ч. 1. Учебник для учащихся общеобразовательных учреждений / А. Г. Мордкович. - 17-е изд., доп. - М.: Мнемозина, 2013. - 175 с.: ил. ISBN 978-5-346-02432-3.
  • Алгебра и начала математического анализа. 10 класс: учеб. для общеобразоват. учреждений: базовый и профил. уровни / [Ю. М. Колягин, М. В. Ткачева, Н. Е. Федорова, М. И. Шабунин]; под ред. А. Б. Жижченко. - 3-е изд. - М.: Просвещение, 2010.- 368 с. : ил. - ISBN 978-5-09-022771-1.
  • Гусев В. А., Мордкович А. Г. Математика (пособие для поступающих в техникумы): Учеб. пособие.- М.; Высш. шк., 1984.-351 с., ил.