Второй закон ньютона ускорение тела прямо пропорционально. Второй закон ньютона

Второй закон Ньютона - основной закон динамики. Этот закон выполняется только в инерциальных системах отсчета .

Приступая к формулировке второго закона, следует вспомнить, что в динамике вводятся две новые физические величины – масса тела m и сила а также способы их измерения. Первая из этих величин – масса – является количественной характеристикой инертных свойств тела. Она показывает, как тело реагирует на внешнее воздействие.

Вторая – сила – является количественной мерой действия одного тела на другое.

Познакомимся более подробно с понятием массы. Эту величину характеризует:

  • не зависит от скорости тела
  • равна сумме масс всех частиц, из которых состоит это тело
  • при любых процессах, происходящих в замкнутой системе тел, ее полная масса остается неизменной.

В Международной системе единиц (СИ) измеряется в килограммах.

Сила – векторная физическая величина, являющаяся мерой механического воздействия на тело со стороны других тел, в результате которого тело приобретает ускорение или изменяет форму и размеры.

Параметрами, характеризующими силу, являются:

  • величина,
  • направление
  • точка приложения.

Для того, чтобы найти равнодействующую силу, необходимо: во-первых, верно обозначить все силы , действующие на тело; затем изобразить координатные оси , выбрать их направления; на третьем шаге необходимо определить проекции векторов на оси; записать уравнения.

В качестве примера рассмотрим данный рисунокс велосипедистом. Велосипедист наклоняется в сторону поворота. Сила тяжести и сила реакции опоры со стороны земли дают равнодействующую силу, сообщающую центростремительное ускорение, необходимое для движения по окружности

Более подробно о записи уравнений. Если в некотором направлении тело двигается равномерно или покоится, то алгебраическая сумма (с учетом знаков) проекций сил равна нулю. Если в некотором направлении тело движется равноускоренно, то алгебраическая сумма проекций сил равна произведению массы на ускорение, согласно второму закону Ньютона.

Чтобы закрепить материал о силах, рассмотрим еще одну немного нестандартную ситуацию. Всем нам с детства знакомы басни И. Крылова. И мы предлагаем еще раз разобрать понятие равнодействующей силы .

Лебедь, Щука и Рак



Когда в товарищах согласья нет,
На лад их дело не пойдёт,
И выйдет из него не дело, только мука.
Однажды Лебедь, Рак да Щука
Везти с поклажей воз взялись
И вместе трое все в него впряглись;
Из кожи лезут вон, а возу всё нет ходу!
Поклажа бы для них казалась и легка:
Да Лебедь рвётся в облака,
Рак пятится назад, а Щука тянет в воду.
Кто виноват из них, кто прав - судить не нам;
Да только воз и ныне там.

И еще несколько примеров.
1)На движущееся равномерно по горизонтальной поверхности тело, действуют сила тяжести, сила реакции опоры, сила трения и сила, под действием которой тело движется.

Для начала о бозначим силы, выберем координатные оси.

(Обозначим все силы. Ось X направим слева направо, по направлению движения тела. Ось Y направим вверх. )

Найдем проекции:

Записываем уравнения:

2)Тело, которое прижимают к вертикальной стенке, равноускоренно движется вниз. На тело действуют сила тяжести, сила трения, реакция опоры и сила, с которой прижимают тело. Вектор ускорения направлен вертикально вниз. Равнодействующая сила направлена вертикально вниз.



3)Тело равноускоренно движется по клину, наклон которого альфа. На тело действуют сила тяжести, сила реакции опоры, сила трения.




Главное запомнить

1) Если тело покоится или движется равномерно, то равнодействующая сила равна нулю и ускорение равно нулю;
2) Если тело движется равноускоренно, значит равнодействующая сила не нулевая;
3) Направление вектора равнодействующей силы всегда совпадает с направлением ускорения;
4) Уметь записывать уравнения проекций действующих на тело сил

Второй закон Ньютона – это фундаментальный закон природы; он является обобщением опытных фактов, которые можно разделить на две категории:

Если на тела разной массы подействовать одинаковой силой, то ускорения, приобретаемые телами, оказываются обратно пропорциональны массам:



При m = const.

Обобщая подобные наблюдения, Ньютон сформулировал основной закон динамики:
Сила, действующая на тело, равна произведению массы тела на сообщаемое этой силой ускорение:

Это и есть второй закон Ньютона. Он позволяет вычислить ускорение тела, если известна его масса m и действующая на тело сила :
Если на тело одновременно действуют несколько сил (например, и то под силой в формуле, выражающей второй закон Ньютона, нужно понимать равнодействующую всех сил :

Если равнодействующая сила то тело будет оставаться в состоянии покоя или равномерного прямолинейного движения. Таким образом, формально второй закон Ньютона включает как частный случай первый закон Ньютона, однако первый закон Ньютона имеет более глубокое физическое содержание – он постулирует существование инерциальных систем отсчета. Если действует на тело несколько сил, то берется результирующая (R =mа ).

Если R =0, то а = 0 (первый закон Ньютона)

Можно провести элементарный опыт по второму закону Ньютона.

Начнем с практической части. Нагрузите чем-нибудь две сумки или два пакета. Один чуть-чуть,а второй очень сильно. Только пакеты берите покрепче. А теперь примерно с одинаковой силойпо очереди резко поднимите оба пакета вверх. Вы увидите, что легкий пакет практическивзлетит, а вот тяжелый перемещаться будет намного медленнее.

А теперь другой опыт положите на землю футбольный мячик и пните его пару раз. Один раз легонько, а второй раз со всей силы. Понаблюдайте, как изменится скорость мяча после пинка. В первом случае он потихоньку откатится на небольшое расстояние, во втором улетит далеко и на весьма приличной скорости. Ну вот и все, с практической частью закончили. Теперь немного порассуждаем.

В зависимости от величины и направления силы тело получит то или иное ускорение. Это четко видно в опыте с мячом. Когда мы подействовали на тело небольшой силой, мяч ускорился не очень сильно. Когда же сила воздействия увеличилась, то мяч приобрел гораздо большее ускорение. То есть, ускорение связано с приложенной силой прямо пропорционально. Чем больше сила воздействия, тем большее ускорение приобретает тело.

От чего еще зависит ускорение, полученное телом в результате воздействия на него? Вспомним первую часть нашего опыта. Ускорение двух грузов у нас было ощутимо разным, хотя силу мы старались прикладывать одинаковую. А вот масса грузов у нас отличалась. И в случае с большей массой ускорение тела было небольшим, а в случае меньшей массы намного большим.

То есть, второй вывод это то, что масса тела напрямую связана с ускорением, приобретаемым телом в результате воздействия силы. При этом, масса тела обратно пропорциональна полученному ускорению. Чем больше масса, тем меньше будет величина ускорения.

1. Второй закон Ньютона отвечает на вопрос, каким будет движение тела относительно инерциальной системы отсчета при наличии сил.

Этот закон утверждает: тело под действием силы приобретает ускорение, пропорциональное этой силе.

Несмотря на то, что второй закон динамики является обобщением опытных фактов, проверить его со всей строгостью непосредственно на опыте, в реальных земных условиях невозможно. На опыте этот закон оправдывается лишь приближенно.

Во-первых, потому, что во всех таких опытах неизбежно присутствуют дополнительные воздействия (трение, сопротивление среды и т.д.), учесть которые оказывается далеко не просто.

Во-вторых, потому, что опыты проводятся на Земле - в неинерциальной системе отсчета, в системе, которая сама движется с ускорением . Результатом этого является то, что наблюдаемые ускорения не вполне соответствуют реально действующим силам. Наблюдаемые ускорения обусловлены не только воздействием сил, но и неинерциальностью системы отсчета . Однако если предпринять меры к тому, чтобы ускорения, обусловленные силами , были значительно больше ускорений, обусловленных неинерциальностью системы отсчета, то экспериментальная точность опытов будет вполне удовлетворительной.

2. Будем воздействовать на одно и то же тело разными силами и всякий раз находить отношение силы к соответствующему ускорению - . Опыт покажет, что это отношение для данного тела является величиной постоянной. Обозначим эту величину буквой m :


(9.1)

Можно убедиться в том, что отношение силы к сообщаемому ею ускорению постоянно для любых других тел (при этом величина его может оказаться разной). Мы приходим к выводу, что от­ношение зависит только от того, к какому телу приложена сила. Следовательно, величина

, называемаямассой может служить мерой вполне определенного динамического свойства тел, а именно, свойства приобретать под действием данной силы вполне определенное ускорение, свойства изменять скорость механического движения не сразу, не мгновенно, а постепенно.

Свойство тел изменять величину и направление скорости постепенно называется инерцией.

Можно сказать, таким образом, что масса есть количественная мера инерции материальных тел.

Чем больше масса тела, тем меньшее ускорение оно приобретает под действием данной силы, т.е. тем медленнее изменяется его скорость.

Масса тела не зависит от температуры тела, его агрегатного состояния, химического состава, электрических, магнитных, упругих и иных свойств. В классической механике масса полагается величиной аддитивной (масса составного тела равна сумме масс отдельных его частей и не зависящей от скорости движения). Содержание массы, однако, не исчерпывается одними только динамическими проявлениями. В ряде физических явлений масса служит мерой иных свойств материальных объектов. Поэтому часто массу, фигурирующую во втором законе Ньютона и характеризующую инерционные свойства тел, называют «инертной».

3. Соотношение (9.1) позволяет по динамическому эффекту, обусловленному силой,- ускорению, найти массу тела.

Мы будем, однако, полагать, что масса измерена каким-либо другим способом (это возможно). Тогда соотношение (9.1) можно толковать как зависимость ускорения не только от силы, но и от массы:


, (9.2)

k - коэффициент пропорциональности, зависящий от выбора единиц измерения ускорения, силы и массы. Эти единицы выбирают таким образом, чтобы k = 1 .

Тогда

(9.3)

Опыт показывает, что направление ускорения всегда совпадает с направлением силы, вызвавшей это ускорение. Учитывая направления и, получаем: . (9.4)

Это – одна из простейших формулировок второго закона Ньютона.

Ускорение, приобретаемое телом относительно инерциальной системы отсчета, прямо пропорционально силе, действующей на тело, зависит от массы тела и направлено в сторону силы.

4. Формулу (9.4) можно записать в виде


(9.5)

Это соотношение используется в качестве определяющего уравнения при установлении единиц измерения силы.

В системе СИ масса измеряется в килограммах (сокращенно кг ), ускорение – в метрах на секунду за секунду (2). Единицей силы в системе СИ является ньютон (Н). Ньютон – это такая сила, под действием которой тело массой в 1кг приобретает ускорение :


.

Силу часто измеряют в килограммах (кГ ). Килограмм – это такая сила, которая телу массой 1кг сообщает ускорение 9,8 2:


.

5. Чтобы перейти от векторной формы записи второго закона к скалярной, векторные величины соотношения (9.5) следует спроектировать на координатные оси выбранной системы координат:

та х = F x ;

та y = F у; (9.6)

та z = F z ;

6. Опыт показывает, что при взаимодействии материальных тел выполняется принцип независимости действия сил (принцип суперпозиций): если на тело одновременно действует несколько сил, то действие каждой силы происходит независимо от других. Это значит, что

деформация или ускорение, обусловленные данной силой, будут тако-выми, как если бы других сил не было.

Следовательно, в общем случае, когда на тело одновременно действуют несколько сил, под в формуле (9.4) нужно пониматьрезультирующее ускорение, под - геометрическую сумму всех действующих сил, а не какую-то «особую» силу ускорения:




. (9.7)

т.е. ускорение, приобретенное телом, прямо пропорционально результирующей всех действующих на тело сил и обратно пропорционально его массе .

7. Приведем теперь более общую формулировку второго закона Ньютона.

Механическое движение в процессе взаимодействия тел может быть частично или полностью передано от одного тела к другому. Чтобы судить о потенциальных возможностях какого-либо тела в этом отношении, недостаточно знать одну только скорость перемещения – в этом нас убеждает опыт. Сравните, например, движения футбольного мяча, летящего со скоростью 20 м/с , и поезда, идущего со скоростью

20 м/с ; «запасы» механического движения этих тел различны, несмотря на одинаковую скорость. По-видимому, должна существовать единая мера механического движения, одинаковая для всех тел. Такая мера действительно существует и называется импульсом или количеством движения.

Импульс - это векторная физическая величина, характеризующая способность механического движения передаваться от одного тела к другому, численно равная произведению массы тела на его скорость и совпадающая по направлению с направлением скорости :


(9.8)

Заметим, что численное значение импульса и его направление зависят от выбора системы отсчета, так как от системы отсчета зависит величина и направление скорости.

Опыт показывает, что изменение импульса тела однозначно связано с величиной и направлением силы, которая на него действует. Пусть в некоторый момент времени t импульс тела был

. Под действием силы(она может быть переменной) за элементарный проме-жуток времени

импульс тела изменился на

(в случае переменной силы промежуток времени

должен быть таким, чтобы сила в течение этого промежутка времени практическине изменялась ). Разделив изменение импульса на промежуток времени, в течение которого это изменение произошло, мы рассчитаем, на сколько изменился импульс за единицу времени при условии, что во все последующие интервалы времени движение будет изменяться точно такими же темпами, что и в течение промежутка

. Отношение

есть скорость изменения импульса.

Ньютон установил, что скорость изменения импульса тела (произ-водная от импульса по времени), равна по величине действующей силе и совпадает с ней по направлению:


(9.9)

Это соотношение и есть общая форма математической записи второго закона Ньютона. Из этой формулы можно получить тот частный вид математического выражения второго закона, который мы привели выше. Действительно, если масса не изменяется с течением времени, то ее можно вынести за знак производной:


, но

, следовательно,

.

8. Создавая свою механику, Ньютон не подозревал, что масса, так же как и пространство, и время, - понятие относительное, зависящее от системы отсчета, от скорости движения. Поэтому предположение о неизменности массы без каких-либо специальных оговорок молчаливо положено в основу классической механики.

С точки зрения ньютоновской механики выражение второго закона динамики


, и

тождественны.

С точки зрения современной физики эти формулы равноправны только для медленных (по сравнению со скоростью света) движений, когда изменением массы, обусловленным изменением скорости тела, можно пренебречь.

При скоростях, соизмеримых со скоростью света, эффект возрастания массы будет столь ощутим, что формула (9.5) оказывается непригодной. Для быстрых движений необходимо пользоваться формулой (9.9). Дифференцируя левую часть этого уравнения по правилам дифференцирования сложной функции, получим:


. (9.10)

9. Соотношение (9.9) позволяет сделать вывод о том, что сила характеризует процесс передачи механического движения от одного тела к другому и численно равна импульсу, передаваемому за единицу времени.

10. Математическое выражение второго закона часто приводят еще в одном виде. Умножим обе части уравнения (9.9) на

:




. (9.11)

Величина

описывает действие силы во времени и называетсяимпульсом силы .

Импульс силы – это вектор, численно равный произведению силы на время ее действия и совпадающий по направлению с направлением силы.

В левой части соотношения (9.11) стоит изменение импульса тела за элементарный промежуток времени

. Таким образом,изменение импульса тела за время

равно импульсу действующей на него силы за тот же промежуток
. Это еще одна из формулировок второго закона Ньютона.

11. Из формулы (9.11) видно, что второй закон Ньютона – закон дифференциальный. Его можно привести к интегральному виду. Обозначим импульс буквой и перепишем формулу (9.11):


(9.12)

Сложим все элементарные приращения импульса за конечный промежуток времени

и одновременно подсчитаем импульс действующей силы за тот же промежуток. Для этого возьмем определенные интегралы от левой и правой частей соотношения (9.12):


. (9.13)

Если

const, мы получим: 2 - 1 =

(9.14)

Если



, то

(9.15)

12. Обратимся к более подробному рассмотрению понятия инерции.

Инерция - важнейшее свойство, присущее всем материальным объектам (в том числе и полевой форме материи). Этим свойством тела обладают независимо от того, свободны они или взаимодействуют с другими телами, покоятся или движутся.

Необходимо чётко представлять, в чем проявляется инерция тел в различных условиях: в отсутствии внешнего воздействия и при наличии такового.

Ответ на этот вопрос дают первый и второй законы Ньютона.

В отсутствие внешнего воздействия инерция проявляется в том, что тело сохраняет неизменным свое состояние движения или покоя.

При наличии внешнего воздействия – сил , инерция проявляется не в том, что тело стремится сохранить свое состояние движения неизменным (ибо как только нескомпенсированая, даже сколь угодно малая сила начинает действовать, движение тела - величина и направление скорости - тотчас же изменяются , возникает ускорение), а в том, что изменения движения тела происходит постепенно .

Следовательно, инерция - это свойство тела сохранять имеющееся состояние движения или покоя (относительно инерциальной системы отсчета) неизменным при отсутствии воздействия и изменять это состояние постепенно при наличии воздействия.

С проявлениями инерции мы сталкиваемся очень часто. Но, к сожалению, объяснения этих проявлений иногда бывают ошибочными. Поэтому мы рассмотрим здесь один пример. Пусть на гладком, без бортиков столике движущегося вагона лежит предмет. При резком торможении поезда этот предмет может соскользнуть со столика. Почему? Потому, отвечают некоторые, «что предмет сохраняет свою первоначальную скорость», «продолжает двигаться по инерции». Такое объяснение, в сущности, ошибочно.

В самом деле, почему столик изменяет свою скорость, а предмет ее сохраняет ? Могут ответить: «на столик действует тормозящая сила со стороны вагона (столик жестко скреплен с вагоном). Это верно, но разве на предмет не действует тормозящая сила? Действует! Тормозящей силой для предмета является сила трения , приложенная к нему со стороны столика (при торможении поезда эта сила направлена в сторону, противоположную движению). Так как на предмет действует неуравновешенная сила, скорость его (относительно полотна дороги) не может сохраняться, она изменяется ! Вся суть в том, что изменение скорости столика и предмета происходят неодинаково быстро, иными словами, столик и предмет приобретают разные ускорения: столик большее, предмет меньшее . В результате предмет, опережая столик, начнет скользить по его поверхности в направлении по ходу поезда. Если же сила трения, действующая на предмет, достаточна для того, чтобы сообщить предмету такое же точно ускорение, какое имеет столик, - никаких относительных перемещений происходить не будет: столик и предмет будут тормозиться или ускоряться как единое целое.

Таким образом, инерционные эффекты объясняются не тем, что одни тела «сохраняют» свое движение (или покой) неизменным, а другие, напротив, изменяют, а тем, что изменение движения, изменение скорости всех взаимодействующих тел происходит неодинаково бы-стро : одни тела изменяют свое движение быстрее, другие медленнее. В результате мы наблюдаем относительные перемещения тел.

И еще одно обстоятельство не следует забывать. Изменение скорости тела зависит не от одной только инерции (читай: массы ) тела. Оно зависит также от величины силы и времени ее воздействия.

Из курса физики 7 класса вам известно, что причиной изменения скорости тела, а значит, и причиной возникновения ускорения является действие на это тело других тел с некоторой силой.

Когда на тело действует сразу несколько сил, то оно движется с ускорением, если равнодействующая F этих сил не равна нулю. Напомним, что равнодействующей нескольких сил, одновременно приложенных к телу, называется сила, производящая на тело такое же действие, как все эти силы вместе.

Поскольку ускорение возникает в результате действия силы, то естественно предположить, что существует количественная взаимосвязь между этими величинами.

Жизненный опыт убеждает нас в том, что чем больше будет равнодействующая приложенных к телу сил, тем большее ускорение получит при этом тело. Например, чем сильнее футболист бьёт ногой по лежащему на поле мячу, тем большее ускорение приобретает при этом мяч и тем большую скорость он успевает набрать за те доли секунды, пока взаимодействует с ногой футболиста (о приобретённой мячом скорости можно судить по тому, насколько далеко он отлетает после удара).

Многочисленные наблюдения и опыты свидетельствуют также о том, что ускорения, получаемые телами, зависят от массы этих тел.

Чтобы в этом удостовериться, проделаем опыт. Возьмём два одинаковых воздушных шарика. В один из них вложим маленькую бусинку такого веса, чтобы шарик вместе с бусинкой мог взлететь. Наполним оба шарика гелием до одного и того же объёма. Расположим шарики на одной и той же высоте (ближе к полу) и отпустим. Мы увидим, что шарик с бусинкой достигнет потолка позже (рис. 20). Значит, под действием одной и той же равнодействующей силы F, равной разности действующих на шарики архимедовой силы и силы сопротивления воздуха (F = F A - F conp), шарик без груза получил большее ускорение. О величине его ускорения можно судить по тому, что одно и то же расстояние - от места старта до потолка - он прошёл за меньший промежуток времени, чем шарик с бусинкой, масса которого больше. Значит, его скорость росла быстрее, что свидетельствует о большем ускорении движения.

Рис. 20. Опыт, свидетельствующий о том, что ускорение, получаемое телом, зависит от массы тела

Для подтверждения того, что при данной силе получаемое телом ускорение зависит от массы этого тела, рассмотрим ещё один опыт.

На рисунке 21, а изображена легкоподвижная тележка с укреплёнными на ней маленькой капельницей и двумя одинаковыми лёгкими вентиляторами (работающими от находящейся внутри каждого из них батарейки одной и той же мощности). Допустим, масса тележки вместе с капельницей и вентиляторами нам известна.


Рис. 21. Демонстрация второго закона Ньютона

К тележке привязан один из концов нити, перекинутой через блок. К другому концу нити прикреплён небольшой груз. Этот груз нужен для того, чтобы скомпенсировать силу трения, действующую на движущуюся тележку.

Вдоль траектории движения тележки расположим бумажную ленту. Откроем кран и включим вентиляторы. В результате взаимодействия их винтов с воздухом вентиляторы будут толкать тележку с некоторой постоянной силой по направлению к ограничителю на краю стола. При этом на бумажной ленте будут оставаться следы капель, падающих через равные промежутки времени Т.

После того как тележка остановится, выключим вентиляторы. Измерив расстояния между соседними метками на ленте, можно убедиться в том, что эти расстояния относятся как ряд нечётных последовательных чисел (1:3:5:7:9...). Значит, под действием постоянной силы тележка двигалась равноускоренно.

Чтобы определить ускорение движения тележки, измерим модуль (s) вектора её перемещения (т. е. расстояние между крайними метками на ленте). Затем посчитаем число (n) промежутков между соседними метками на ленте, или, что то же самое, число промежутков времени Т за время движения тележки. По формуле t = Tn вычислим промежуток времени t, за который тележка переместилась на расстояние s. Из формулы

выразим модуль ускорения

и рассчитаем его.

Теперь удвоим массу всей движущейся системы (состоящей из тележки с вентиляторами и капельницей и груза на нити) с помощью гирь, как показано на рисунке 21,б (при этом одна гирька добавляется к уже имеющемуся грузу на конце нити для компенсации возросшей силы трения).

Повторим опыт. Определив ускорение и сравнив его с ускорением в предыдущем опыте, можно убедиться в том, что при действии одной и той же силы система тел, масса которой стала вдвое больше, приобрела в 2 раза меньшее ускорение, т.е. a/2.

Из рассмотренного опыта и ряда подобных следует, что ускорения, сообщаемые телам одной и той же постоянной силой, обратно пропорциональны массам этих тел.

С помощью этой же экспериментальной установки можно провести опыт, позволяющий установить количественную взаимосвязь между ускорением и силой, сообщающей телу это ускорение.

Для этого снимем добавленные в предыдущем опыте гири, чтобы масса системы опять стала такой, как в первом опыте (рис. 21, в). Но теперь приведём тележку в движение, включив только один вентилятор, в результате чего на тележку будет действовать в 2 раза меньшая сила, чем при двух включённых вентиляторах (придававших тележке ускорение а).

Как показывают измерения и вычисления, при уменьшении силы в 2 раза ускорение тоже уменьшается в 2 раза, т. е. становится равным a/2 (при неизменной массе тележки).

Значит, ускорение, с которым движется тело постоянной массы, прямо пропорционально приложенной к этому телу силе, в результате которой возникает ускорение.

Количественная взаимосвязь между массой тела, ускорением, с которым оно движется, и равнодействующей приложенных к телу сил, вызывающих это ускорение, называется вторым законом Ньютона. Он формулируется так:

  • ускорение тела прямо пропорционально равнодействующей сил, приложенных к телу, и обратно пропорционально его массе

Следует помнить, что во втором законе Ньютона, так же как и в первом, под телом подразумевается материальная точка, движение которой рассматривается в инерциальной системе отсчёта.

Математически второй закон Ньютона записывается так:

Из формулы следует, что вектор ускорения совпадает по направлению с вектором равнодействующей приложенных к телу сил.

В скалярном виде второй закон Ньютона можно записать:

где а х и F x - проекции векторов ускорения и силы на ось X, а а и F - модули этих векторов.

Вам уже известно, что сила измеряется в ньютонах (Н).

Покажем, как с помощью второго закона Ньютона даётся определение единицы силы - 1 Н. Для этого выразим модуль силы:

В соответствии с этой формулой сила равна единице (1 Н), если масса равна единице (1 кг) и ускорение равно единице (1 м/с 2).

В СИ за единицу силы принимается сила, сообщающая телу массой 1 кг ускорение 1 м/с 2 в направлении действия силы.

Получим соотношение между единицами силы, массы и ускорения:

1 Н = 1 кг 1 м/с 2 = 1 кг м/с 2 .

Вопросы

  1. Что является причиной ускоренного движения тел?
  2. Приведите примеры из жизни, свидетельствующие о том, что чем больше приложенная к телу сила, тем больше сообщаемое этой силой ускорение.
  3. Используя рисунки 20 и 21, расскажите о ходе опытов и выводах, следующих из этих опытов.
  4. Сформулируйте второй закон Ньютона. Какой математической формулой он выражается?
  5. Что можно сказать о направлении вектора ускорения и вектора равнодействующей приложенных к телу сил?

Упражнение 11

  1. Определите силу, под действием которой велосипедист скатывается с горки с ускорением, равным 0,8 м/с 2 , если масса велосипедиста вместе с велосипедом равна 50 кг.
  2. Через 20 с после начала движения электровоз развил скорость 4 м/с. Найдите силу, сообщающую ускорение, если масса электровоза равна 184 т.
  3. Два тела равной массы движутся с ускорениями 0,08 и 0,64 м/с 2 соответственно. Равны ли модули действующих на тела сил? Чему равна сила, действующая на второе тело, если на первое действует сила 1,2 Н?
  4. С каким ускорением будет всплывать находящийся под водой мяч массой 0,5 кг, если действующая на него сила тяжести равна 5 Н, архимедова сила - 10 Н, а средняя сила сопротивления движению - 2Н?
  5. Баскетбольный мяч, пройдя сквозь кольцо и сетку, под действием силы тяжести сначала движется вниз с возрастающей скоростью, а после удара о пол - вверх с уменьшающейся скоростью. Как направлены векторы ускорения, скорости и перемещения мяча по отношению к силе тяжести при его движении вниз; вверх?
  6. Тело движется прямолинейно с постоянным ускорением. Какая величина, характеризующая движение этого тела, всегда сонаправлена с равнодействующей приложенных к телу сил, а какие величины могут быть направлены противоположно равнодействующей?