Свойства и признаки биссектрисы треугольника. С помощью циркуля

Геометрия - одна из самых сложных и запутанных наук. В ней то, что кажется на первый взгляд очевидным, очень редко оказывается правильным. Биссектрисы, высоты, медианы, проекции, касательные - огромное количество действительно непростых терминов, запутаться в которых очень легко.

На самом деле при должном желании можно разобраться в теории любой сложности. Когда дело заходит о биссектрисе, медиане и высоте, нужно понимать, что они свойственны не только треугольникам. На первый взгляд это простые линии, но у каждой из них есть свои свойства и функции, знание которых существенно упрощает решение геометрических задач. Итак, что же такое биссектриса треугольника?

Определение

Сам термин "биссектриса" происходит из сочетания латинских слов "два" и "сечь", "резать", что уже косвенно указывает на её свойства. Обычно, когда детей знакомят с этим лучом, им предлагается для запоминания коротенькая фраза: «Биссектриса - это крыса, которая бегает по углам и делит угол пополам». Естественно, такое объяснение не подойдёт для школьников старшего возраста, к тому же у них обычно спрашивают не об угле, а о геометрической фигуре. Так что биссектриса треугольника - это луч, который соединяет вершину треугольника с противоположной стороной, при этом разделяя угол на две равные части. Точка противоположной стороны, в которую приходит биссектриса, для произвольного треугольника выбирается случайным образом.

Базовые функции и свойства

Основных свойств у этого луча немного. Во-первых, из-за того, что биссектриса треугольника делит угол напополам, любая точка, лежащая на ней, будет находиться на равном расстоянии от сторон, образующих вершину. Во-вторых, в каждом треугольнике можно провести три биссектрисы, по числу имеющихся углов (следовательно, в том же четырёхугольнике их будет уже четыре и так далее). Точка, в которой все три луча пересекутся, является центром окружности, вписанной в треугольник.

Свойства усложняются

Немного усложним теорию. Ещё одно интересное свойство: биссектриса угла треугольника делит противолежащую сторону на отрезки, отношение которых равно отношению образующих вершину сторон. На первый взгляд это сложно, но на самом деле всё просто: на предложенном рисунке RL:LQ = PR:PK. Кстати, это свойство получило название "Теорема о биссектрисе" и впервые появилось ещё в работах древнегреческого математика Евклида. Вспомнили его в одном из российских учебников только в первой четверти семнадцатого века.

Ещё чуть сложнее. В четырёхугольнике биссектриса отсекает равнобедренный треугольник. На этом рисунке обозначены все равные углы для медианы AF.

А ещё в четырёхугольниках и трапециях биссектрисы односторонних углов перпендикулярны друг другу. На представленном чертеже угол APB составляет 90 градусов.

В равнобедренном треугольнике

Биссектриса равнобедренного треугольника - гораздо более полезный луч. Она одновременно является не только делителем угла напополам, но и медианой, и высотой.

Медиана - это отрезок, который выходит из какого-то угла и падает на середину противолежащей стороны, разделяя её тем самым на равные части. Высота - это перпендикуляр, опущенный из вершины на противолежащую сторону, именно с её помощью любую задачу можно свести к простой и примитивной теореме Пифагора. В данной ситуации биссектриса треугольника равна корню из разности квадрата гипотенузы и другого катета. Кстати, именно это свойство встречается в геометрических задачах чаще всего.

Для закрепления: в данном треугольнике биссектриса FB является медианой (AB=BC) и высотой (углы FBC и FBA составляют 90 градусов).

В общих чертах

Итак, что же нужно запомнить? Биссектриса треугольника - это луч, который делит его вершину пополам. На пересечении трёх лучей находится центр окружности, вписанной в данный треугольник (единственный минус этого свойства в том, что оно не имеет практической ценности и служит только для грамотного выполнения чертежа). Она же делит противолежащую сторону на отрезки, отношение которых равно отношению сторон, между которыми прошёл этот луч. В четырёхугольнике свойства чуть усложняются, но, признаться, они практически не встречаются в задачах школьного уровня, поэтому обычно не затрагиваются в программе.

Биссектриса равнобедренного треугольника - предел мечтаний любого школьника. Она одновременно является и медианой (то есть делит противолежащую сторону пополам), и высотой (перпендикулярна этой стороне). Решение задач с такой биссектрисой сводится к теореме Пифагора.

Знание базовых функций биссектрисы, а также основных её свойств необходимо для решения геометрических задач как среднего, так и высокого уровня сложности. На самом деле встречается этот луч только в планиметрии, так что нельзя говорить о том, что зазубривание информации о нём позволит справляться со всеми типами заданий.

Внутренних углов треугольника называется биссектрисой треугольника.
Под биссектрисой угла треугольника также понимают отрезок между его вершиной и точкой пересечения биссектрисы с противолежащей стороной треугольника.
Теорема 8. Три биссектрисы треугольника пересекаются в одной точке.
Действительно, рассмотрим сначала точку Р пересечения двух биссектрис, например АК 1 и ВК 2 . Эта точка одинаково удалена от сторон АВ и АС, так как она лежит на биссектрисе угла А, и одинаково удалена от сторон АВ и ВС, как принадлежащая биссектрисе угла В. Значит, она одинаково удалена от сторон АС и ВС и тем самым принадлежит третей биссектрисе СК 3 , то есть в точке Р пересекаются все три биссектрисы.
Свойства биссектрис внутреннего и внешнего углов треугольника
Теорема 9 . Биссектриса внутреннего угла треугольника делит противолежащую сторону на части, пропорциональные прилежащим сторонам.
Доказательство. Рассмотрим треугольник АВС и биссектрису его угла В. Проведем через вершину С прямую СМ, параллельную биссектрисе ВК, до пересечения в точке Мпродолжением стороны АВ. Так как ВК – биссектриса угла АВС, то ∠ АВК=∠ КВС. Далее, ∠ АВК=∠ ВМС, как соответственные углы при параллельных прямых, и ∠ КВС=∠ ВСМ, как накрест лежащие углы при параллельных прямых. Отсюда ∠ ВСМ=∠ ВМС, и поэтому треугольник ВМС – равнобедренный, откуда ВС=ВМ. По теореме о параллельных прямых, пересекающих стороны угла, имеем АК:К С=АВ:ВМ=АВ:ВС, что и требовалось доказать.
Теорема 10 Биссектриса внешнего угла В треугольника АВС обладает аналогичным свойством: отрезки AL и CL от вершины А и С до точки L пересечения биссектрисы с продолжением стороны АС пропорциональны сторонам треугольника: AL :CL =AB :BC .
Это свойство доказывается так же, как и предыдущее: на рисунке проведена вспомогательная прямая СМ, параллельная биссектрисе BL . Углы ВМС и ВСМ равны, а значит, и стороны ВМ и ВС треугольника ВМС равны. Из чего приходим к выводу AL:CL=AB:BC.

Теорема d4. (первая формула для биссектрисы): Если в треугольнике ABC отрезок AL является биссектрисой угла A, то AL? = AB·AC - LB·LC.

Доказательство: Пусть M - точка пересечения прямой AL с окружностью, описанной около треугольника ABC (рис. 41). Угол BAM равен углу MAC по условию. Углы BMA и BCA равны как вписанные углы, опирающиеся на одну хорду. Значит, треугольники BAM и LAC подобны по двум углам. Следовательно, AL: AC = AB: AM. Значит, AL · AM = AB · AC <=> AL · (AL + LM) = AB · AC <=> AL? = AB · AC - AL · LM = AB · AC - BL · LC. Что и требовалось доказать. Примечание: теорему об отрезках пересекающихся хорд в круге и о вписанных углах смотри в теме круг и окружность .

Теорема d5. (вторая формула для биссектрисы): В треугольнике ABC со сторонами AB=a, AC=b и углом A, равным 2? и биссектрисой l, имеет место равенство:
l = (2ab / (a+b)) · cos?.

Доказательство: Пусть ABC - данный треугольник, AL - его биссектриса (рис. 42), a=AB, b=AC, l=AL. Тогда S ABC = S ALB + S ALC . Следовательно, absin2? = alsin? + blsin? <=> 2absin?·cos? = (a + b)·lsin? <=> l = 2·(ab / (a+b))· cos?. Теорема доказана.

Треугольник – многоугольник с тремя сторонами, или замкнутая ломаная линия с тремя звеньями, или фигура, образованная тремя отрезками, соединяющими три точки, не лежащие на одной прямой (см. рис. 1).

Основные элементы треугольника abc

Вершины – точки A, B, и C;

Стороны – отрезки a = BC, b = AC и c = AB, соединяющие вершины;

Углы – α , β, γ образованные тремя парами сторон. Углы часто обозначают так же, как и вершины, – буквами A, B и C.

Угол, образованный сторонами треугольника и лежащий в его внутренней области, называется внутренним углом, а смежный к нему является смежным углом треугольника (2, стр. 534).

Высоты, медианы, биссектрисы и средние линии треугольника

Кроме основных элементов в треугольнике рассматривают и другие отрезки, обладающие интересными свойствами: высоты, медианы, биссектрисы исредние линии.

Высота

Высоты треугольника – это перпендикуляры, опущенные из вершин треугольника на противоположные стороны.

Для построения высоты необходимо выполнить следующие действия:

1) провести прямую, содержащую одну из сторон треугольника (в случае, если проводится высота из вершины острого угла в тупоугольном треугольнике);

2) из вершины, лежащей напротив проведенной прямой, провести отрезок из точки к этой прямой, составляющий с ней угол 90 градусов.

Точка пересечения высоты со стороной треугольника называется основанием высоты (см. рис. 2).

Свойства высот треугольника

    В прямоугольном треугольнике высота, проведенная из вершины прямого угла, разбивает его на два треугольника, подобные исходному треугольнику.

    В остроугольном треугольнике две его высоты отсекают от него подобные треугольники.

    Если треугольник остроугольный, то все основания высот принадлежат сторонам треугольника, а у тупоугольного треугольника две высоты попадают на продолжение сторон.

    Три высоты в остроугольном треугольнике пересекаются в одной точке и эту точку называют ортоцентром треугольника.

Медиана

Медианы (от лат. mediana– «средняя») – это отрезки, соединяющие вершины треугольника с серединами противолежащих сторон (см. рис. 3).

Для построения медианы необходимо выполнить следующие действия:

1) найти середину стороны;

2)соединить точку, являющуюся серединой стороны треугольника, с противолежащей вершиной отрезком.

Свойства медиан треугольника

    Медиана разбивает треугольник на два треугольника одинаковой площади.

    Медианы треугольника пересекаются в одной точке, которая делит каждую из них в отношении 2:1, считая от вершины. Эта точка называется центром тяжести треугольника.

Весь треугольник разделяется своими медианами на шесть равновеликих треугольников.

Биссектриса

Биссектрисами (от лат. bis – дважды» и seko – рассекаю) называют заключенные внутри треугольника отрезки прямых, которые делят пополам его углы (см. рис. 4).

Для построения биссектрисы необходимо выполнить следующие действия:

1) построить луч, выходящий из вершины угла и делящий его на две равные части (биссектрису угла);

2) найти точку пересечения биссектрисы угла треугольника с противоположной стороной;

3) выделить отрезок, соединяющий вершину треугольника с точкой пересечения на противоположной стороне.

Свойства биссектрис треугольника

    Биссектриса угла треугольника делит противоположную сторону в отношении, равном отношению двух прилежащих сторон.

    Биссектрисы внутренних углов треугольника пересекаются в одной точке. Это точка называется центром вписанной окружности.

    Биссектрисы внутреннего и внешнего углов перпендикулярны.

    Если биссектриса внешнего угла треугольника пересекает продолжение противолежащей стороны, то ADBD=ACBC.

    Биссектрисы одного внутреннего и двух внешних углов треугольника пересекаются в одной точке. Эта точка - центр одной из трех вневписанных окружностей этого треугольника.

    Основания биссектрис двух внутренних и одного внешнего углов треугольника лежат на одной прямой, если биссектриса внешнего угла не параллельна противоположной стороне треугольника.

    Если биссектрисы внешних углов треугольника не параллельны противоположным сторонам, то их основания лежат на одной прямой.

Биссектрисой треугольника называется отрезок, который делит угол треугольника на два равных угла. К примеру, если угол треугольника 120 0 , то проведя биссектрису, мы построим два угла по 60 0 .

А так как в треугольнике имеется три угла, то можно провести три биссектрисы. Все они имеют одну точку пресечения. Эта точка является центром окружности, вписанной в треугольник. По-другому эту точку пересечений называют инцентром треугольника.

При пересечении двух биссектрис внутреннего и внешнего угла, получается угол 90 0 . Внешний угол в треугольнике угол, смежный с внутренним углом треугольника.

Рис. 1. Треугольник, в котором проведены 3 биссектрисы

Биссектриса делит противоположную сторону на два отрезки, которые имеют связь со сторонами:

$${CL\over{LB}} = {AC\over{AB}}$$

Точки биссектрисы равноудаленные от сторон угла, это значит, что они находятся на одинаковом расстоянии от сторон угла. То есть, если из любой точки биссектрисы опустить перпендикуляры на каждую из сторон угла треугольника, то эти перпендикуляры будут равны..

Если с одной вершины провести медиану, биссектрису и высоту, то медиана будет самым длинным отрезком, а высота самым коротким.

Некоторые свойства биссектрисы

В определенных видах треугольников, биссектриса имеет особые свойства. В первую очередь это относится к равнобедренному треугольнику. Эта фигура имеет две одинаковые боковые стороны, а третья называется основанием.

Если из вершины угла равнобедренного треугольника провести биссектрису к основанию, то она будет иметь свойства одновременно и высоты и медианы. Соответственно, длина биссектрисы совпадает с длиной медианы и высоты.

Определения:

  • Высота – перпендикуляр, опущенный из вершины треугольника к противоположной стороне..
  • Медиана – отрезок, который соединяет вершину треугольника и середину противоположной стороны.

Рис. 2. Биссектриса в равнобедренном треугольнике

Это касается и равностороннего треугольника, то есть треугольника, в котором все три стороны равны.

Пример задания

В треугольнике ABC: BR биссектриса, причем AB = 6 см, BC = 4 см, а RC = 2 см. Вычесть длину третей стороны.

Рис. 3. Биссектриса в треугольнике

Решение:

Биссектриса делит сторону треугольника в определенной пропорции. Воспользуемся этой пропорцией и выразим AR. После найдем длину третьей стороны как сумму отрезков, на которые эту сторону поделила биссектриса.

  • ${AB\over{BC}} = {AR\over{RC}}$
  • $RC={6\over{4}}*2=3 см$

Тогда весь отрезок AC = RC+ AR

AC = 3+2=5 см.

Всего получено оценок: 107.

Среди многочисленных предметов среднеобразовательной школы есть такой, как «геометрия». Традиционно считается, что родоначальниками этой систематической науки являются греки. На сегодняшний день греческую геометрию называют элементарной, так как именно она начала изучение простейших форм: плоскостей, прямых, и треугольников. На последних мы и остановим свое внимание, а точнее на биссектрисе этой фигуры. Для тех, кто уже подзабыл, биссектриса треугольника представляет собой отрезок биссектрисы одного из углов треугольника, который делит его пополам и соединяет вершину с точкой, размещенной на противолежащей стороне.

Биссектриса треугольника имеет ряд свойств, которые необходимо знать при решении тех или иных задач:

  • Биссектриса угла представляет собой геометрическое место точек, удаленных на равных расстояниях от прилегающих к углу сторон.
  • Биссектриса в треугольнике делит противоположную от угла сторону на отрезки, которые пропорциональны прилежащим сторонам. Например, дан треугольник MKB, где из угла K выходит биссектриса, соединяющая вершину этого угла с точкой A на противолежащей стороне MB. Проанализировав данное свойство и наш треугольник, имеем MA/AB=MK/KB.
  • Точка, в которой пересекаются биссектрисы всех трех углов треугольника, является центром окружности, которая вписана в этот же треугольник.
  • Основание биссектрис одного внешнего и двух внутренних углов находятся на одной прямой, при условии, что биссектриса внешнего угла не является параллельной противоположной стороне треугольника.
  • Если две биссектрисы одного то этот

Необходимо отметить, что если заданы три биссектрисы, то построение треугольника по ним, даже с помощью циркуля, невозможно.

Очень часто при решении задач биссектриса треугольника неизвестна, а необходимо определить ее длину. Для решения такой задачи необходимо знать угол, который делится биссектрисой пополам, и прилегающие к этому углу стороны. В этом случае искомая длина определяется как отношение удвоенного произведения прилегающих к углу сторон и косинуса угла деленного пополам к сумме прилегающих к углу сторон. Например, дан все тот же треугольник MKB. Биссектриса выходит из угла K и пересекает противоположную сторону МВ в точке А. Угол, из которого выходит биссектриса, обозначим y. Теперь запишем все то, что сказано словами в виде формулы: KA = (2*MK*KB*cos y/2) / (MK+KB).

Если величина угла, из которого выходит биссектриса треугольника, неизвестна, но известны все его стороны, то для вычисления длины биссектрисы мы воспользуемся дополнительной переменной, которую назовем полупериметр и обозначим буквой P: P=1/2*(MK+KB+MB). После этого внесем некоторые изменения в предыдущую формулу, по которой определялась длина биссектрисы, а именно, в числитель дроби ставим удвоенный из произведения длин сторон, прилегающих к углу, на полупериметр и частное, где из полупериметра вычитается длина третьей стороны. Знаменатель оставим без изменения. В виде формулы это будет выглядеть так: KA=2*√(MK*KB*P*(P-MB)) / (MK+KB).

Биссектриса равнобедренного треугольника вместе с общими свойствами имеет и несколько своих. Вспомним, что это за треугольник. У такого треугольника две стороны равны, и равны прилегающие к основанию углы. Отсюда следует, что биссектрисы, которые опускаются на боковые стороны равнобедренного треугольника, равны между собой. Кроме того, биссектриса, опущенная на основание, одновременно является и высотой, и медианой.