Составьте возможные уравнения электролитической диссоциации h2so4. Электролитическая диссоциация

Контрольная работа по теме «Теория строения органических соединений А.М.Бутлерова» 1 вариант
Часть А


а) бензол б) циклогексан в) гексан г) гексин
2. Валентный угол в алканах составляет:
а) 180
· б) 120
· в) 109
·28
· г) 90
·
3. Число первичных, вторичных, третичных и четвертичных атомов углерода в веществе с названием 2,4-диметилпентан равно соответственно:
а) 2, 1, 2. 0 б) 4, 2, 1, 0 в) 2, 1, 0, 2 г) 4, 1, 2, 0
4. Тип гибридизации атомов углерода в молекуле бутена-1 слева направо:
а) sp2, sp2, sp2, sp2 б) sp2, sp, sp2, sp3 в) sp2, sp2, sp3, sp3 г) sp3, sp2, sp2, sp3
5. В молекуле пропина число всех
·- и всех

а) 2 и 2 б) 6 и 2 в) 5 и 1 г) 8 и 2
6. Гомологами не являются:
а) циклопентан и циклогексан б) бутен и пентен
в) циклопропан и пропан г) этан и гексан
7. Алкадиену соответствует формула:
а) С8Н18 б) С8Н16 в) С8Н14 г) С8Н10
8. Изомерами не являются:
а) циклобутан и 2-метилпропан б) пентен-1 и метилциклобутан
в) бутадиен-1,3 и бутин-1 г) гексан и 2,3-диметилбутан
9. Структурным изомером бутена-1 является:
а) бутин-1 б) 2-метилпропан в) 3-метилбутен-1 г) 2-метилпропен
10. Число
·-связей в ациклическом углеводороде состава С5Н8 равно:
а) 1 б) 2 в) 3 г) 4

Формула соединения
Класс соединения

1) С2Н4
А) алканы

2) С3Н8
Б) арены

3) С4Н6
В) алкены

4) С2Н5 СООН
Г) алкины

Д) карбоновые кислоты


·- и

Название соединения
Число
·- и
·-связей

1) бутен-2
А) 7 и 1

2) пропаналь
Б) 9 и 2

3) бутин-1
В) 9 и 1

4) этановая кислота
Г) 11 и 1

Часть С
При сгорании 29 г органического вещества образовалось 33,6 л углекислого газа и 27 г воды. Пары органического вещества в 2 раза тяжелее воздуха. Выведите молекулярную формулу вещества. В ответе укажите сумму атомов всех элементов в составе данного соединения.

Контрольная работа по теме «Теория строения органических соединений А.М.Бутлерова» 2 вариант
Часть А

1.К соединениям, имеющим общую формулу CnH2n , относится:
а) пентан б) пентин в) пентадиен г) пентен
2. Валентный угол в алкенах составляет:
а) 180
· б) 120
· в) 109
·28
· г) 90
·
3. Число первичных, вторичных, третичных и четвертичных атомов углерода в веществе с названием 2,2,4-триметилпентан равно соответственно:
а) 5, 1, 1, 1 б) 2, 1, 1, 1 в) 4, 1, 2, 1 г) 2, 3, 1. 1
4. Тип гибридизации атомов углерода в молекуле пентина-2 слева направо:
а) sp3, sp, sp, sp2, sp3 б) sp3, sp2, sp2, sp,sp3 в) sp, sp3, sp3, sp2, sp г) sp3, sp, sp, sp3, sp3
5. В молекуле пропена число всех
·- и всех
·-связей равно соответственно:
а) 8 и 1 б) 7 и 2 в) 2 и 1 г) 1 и 1
6. Гомологами являются:
а) этен и метан б) бутан и пропан
в) циклобутан и бутан г) этин и этен
7. Алкину соответствует формула:
а) С6Н14 б) С6Н12 в) С6Н10 г) С6Н6
8. Какое вещество не является изомером гексана?
а) циклогексан б) 2-метилпентан в) 2,2-диметилбутан г) 2,3-диметилбутан
9. Структурным изомером пентадиена-1,2 является:
а) пентен-1 б) пентан в) циклопентан г) пентин-2
10. Число
·-связей в ациклическом углеводороде состава С5Н10 равно:
а) 1 б) 2 в) 3 г) 4
Часть В

1. Установите соответствие между названием органического соединения и классом, к которому оно принадлежит. В ответе укажите полученную последовательность букв (без цифр, запятых и пропусков).

Формула соединения
Класс соединения

1) С2Н4
А) спирты

2) С2Н2
Б) алканы

3) С2Н6
В) алкены

4) С2Н5 ОН
Г) алкины

Д) альдегиды

2. Установите соответствие между названием органического соединения и числом
·- и
·-связей в этом веществе. В ответе укажите полученную последовательность букв (без цифр, запятых и пропусков).

Название соединения
Число
·- и
·-связей

1) пропен
А) 12 и 2

2) этин
Б) 6 и 1

3) этаналь
В) 3 и 2

4) пентен-1-ин-4
Г) 8 и 1

Часть С
При сгорании 12 г органического вещества образовалось 13,44 л углекислого газа и 14,4 г воды. Пары органического вещества в 30 раз тяжелее воздуха. Выведите молекулярную формулу вещества. В ответе укажите сумму атомов всех элементов в составе данного соединения.

Водные растворы некоторых веществ являются проводниками электрического тока. Эти вещества относятся к электролитам. Электролитами являются кислоты, основания и соли, расплавы некоторых веществ.

ОПРЕДЕЛЕНИЕ

Процесс распада электролитов на ионы в водных растворах и расплавах под действием электрического тока называется электролитической диссоциацией .

Растворы некоторых веществ в воде не проводят электрический ток. Такие вещества называют неэлектролитами. К ним относятся многие органические соединения, например сахар и спирты.

Теория электролитической диссоциации

Теория электролитической диссоциации была сформулирована шведским ученым С. Аррениусом (1887 г.). Основные положения теории С. Аррениуса:

— электролиты при растворении в воде распадаются (диссоциируют) на положительно и отрицательно заряженные ионы;

— под действием электрического тока положительно заряженные ионы движутся к катоду (катионы), а отрицательно заряженные – к аноду (анионы);

— диссоциация – обратимый процесс

КА ↔ К + + А −

Механизм электролитической диссоциации заключается в ион-дипольном взаимодействии между ионами и диполями воды (рис. 1).

Рис. 1. Электролитическая диссоциация раствора хлорида натрия

Легче всего диссоциируют вещества с ионной связью. Аналогично диссоциация протекает у молекул, образованных по типу полярной ковалентной связи (характер взаимодействия – диполь-дипольный).

Диссоциация кислот, оснований, солей

При диссоциации кислот всегда образуются ионы водорода (H +), а точнее – гидроксония (H 3 O +), которые отвечают за свойства кислот (кислый вкус, действие индикаторов, взаимодействие с основаниями и т.д.).

HNO 3 ↔ H + + NO 3 −

При диссоциации оснований всегда образуются гидроксид-ионы водорода (OH −), ответственные за свойства оснований (изменение окраски индикаторов, взаимодействие с кислотами и т.д.).

NaOH ↔ Na + + OH −

Соли – это электролиты, при диссоциации которых образуются катионы металлов (или катион аммония NH 4 +) и анионы кислотных остатков.

CaCl 2 ↔ Ca 2+ + 2Cl −

Многоосновные кислоты и основания диссоциируют ступенчато.

H 2 SO 4 ↔ H + + HSO 4 − (I ступень)

HSO 4 − ↔ H + + SO 4 2- (II ступень)

Ca(OH) 2 ↔ + + OH − (I ступень)

+ ↔ Ca 2+ + OH −

Степень диссоциации

Среди электролитов различают слабые и сильные растворы. Чтобы охарактеризовать эту меру существует понятие и величина степени диссоциации (). Степень диссоциации – отношение числа молекул, продиссоциировавших на ионы к общему числу молекул. часто выражают в %.

К слабым электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации меньше 3%. К сильным электролитам относятся вещества, у которых в децимолярном растворе (0,1 моль/л) степень диссоциации больше 3%. Растворы сильных электролитов не содержат непродиссоциировавших молекул, а процесс ассоциации (объединения) приводит к образованию гидратированных ионов и ионных пар.

На степень диссоциации оказывают особое влияние природа растворителя, природа растворенного вещества, температура (у сильных электролитов с повышением температуры степень диссоциации снижается, а у слабых – проходит через максимум в области температур 60 o С), концентрация растворов, введение в раствор одноименных ионов.

Амфотерные электролиты

Существуют электролиты, которые при диссоциации образуют и H + , и OH − ионы. Такие электролиты называют амфотерными, например: Be(OH) 2 , Zn(OH) 2 , Sn(OH) 2 , Al(OH) 3 , Cr(OH) 3 и т.д.

H + +RO − ↔ ROH ↔ R + + OH −

Ионные уравнения реакций

Реакции в водных растворах электролитов – это реакции между ионами – ионные реакции, которые записывают с помощью ионных уравнений в молекулярной, полной ионной и сокращенной ионной формах. Например:

BaCl 2 + Na 2 SO 4 = BaSO 4 ↓ + 2NaCl (молекулярная форма)

Ba 2+ + 2 Cl − + 2 Na + + SO 4 2- = BaSO 4 ↓ + 2 Na + + 2 Cl − (полная ионная форма)

Ba 2+ + SO 4 2- = BaSO 4 ↓ (сокращенная ионная форма)

Водородный показатель pH

Вода – слабый электролит, поэтому процесс диссоциации протекает в незначительной степени.

H 2 O ↔ H + + OH −

К любому равновесию можно применить закон действующих масс и записать выражение для константы равновесия:

K = /

Равновесная концентрация воды – величина постоянная, слеовательно.

K = = K W

Кислотность (основность) водного раствора удобно выражать через десятичный логарифм молярной концентрации ионов водорода, взятый с обратным знаком. Эта величина называется водородным показателем (рН).


Правила составления уравнений электролитической диссоциации веществ

Процесс разрушения или распада электролита на ионы называется электролитической диссоциацией. Составные части распавшихся молекул или кристаллов представляют собой частицы, имеющие заряд. Их называют ионы.

Ионы бывают отрицательные и положительные. Положительные ионы называются катионами, отрицательные — анионами.

Растворы веществ, молекулы или кристаллы которых способны распадаться на ИОНЫ (диссоциировать), могут проводить электрический ток. Именно поэтому их называют электролитами. Часто процесс электролитической диссоциации называют просто: диссоциация.

Процесс растворения вещества отличается от диссоциации тем, что при растворении частицы вещества равномерно распределяются между молекулами растворителя (воды) по всему объему раствора, а в процессе диссоциации частицы вещества (кристаллы или молекулы) распадаются на составные части.

Поэтому при хорошей растворимости вещество не всегда хорошо диссоциирует.

Существуют вещества, молекулы или кристаллы которых хорошо распадаются на ионы. Их называют сильными электролитами.

Сильные электролиты:

Диссоциация сильных электролитов происходит необратимо

Существуют вещества, молекулы или кристаллы которых плохо распадаются на ионы. Их называют слабыми электролитами.

Слабые электролиты:

Диссоциация слабых электролитов происходит обратимо, т. е. ионы, образовавшиеся при распаде молекулы, соединяясь снова, образуют исходную молекулу. Обратимость реакции показывают разнонаправленными стрелками: ↔для слабых электролитов обратная реакция (ассоциация) преобладает над распадом молекул на ионы.

1. Диссоциация сильных электролитов

При диссоциации кислот их молекулы распадаются всегда на положительно заряженные ноны водорода Н и отрицательно заряженные ионы кислотных остатков.

Рассмотрим уравнение диссоциации кислоты сильного электролита. (видео урок)

При диссоциации оснований их молекулы распадаются всегда на положительно заряженные ноны металла и отрицательно заряженныегидроксид-ионы (ОН -).

2. Рассмотрим уравнение диссоциации основания — сильного электролита.(видео урок)

3. При диссоциации солей их молекуль распадаются всегда на по ложительно заряженные ионы металла и отрицательно заряжен ные ноны кислотньтх остатков.

Рассмотрим уравнение диссоциации соли — сильного электролита. (видео урок)

4. Составление уравнения диссоциации соли, в которой кислотный остаток состоит из одного элемента (хлорид (С1), сульфиды (S ), отличается от тех уравнений, в которых молекулы солей имеют в кислотном остатке два элемента. (видео урок)

5. Диссоциация слабых электролитов (видео урок)

диссоциация многоосновных кислот слабых электролитов на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется один ион водорода Н и отрицательно заряженные ионы кислотных остатков. Рассмотрим уравнение диссоциации кислоты— слабого электролита (Н 2 СО 3)

6 Вторая стадия диссоциации HCO 3 - ↔ H + + CO 3 -

Число стадий диссоциации кислоты — слабого электролита равно числу атомов водорода Н в его молекуле.

Диссоциация слабых электролитов многокислотных оснований на ионы происходит постепенно (ступенчато). При этом на каждой стадии диссоциации образуется 1 гидроксид-ион (ОН-).(видео урок)

Такие основания, как правило, содержат несколько групп ОН. Рассмотрим уравнение диссоциации основания — слабого электролита Mg (OH ) 2

Первая стадия диссоциации

Mg (OH ) 2 ↔ MgOH + + OH -

Число стадий диссоциации основания — слабого электролита равно числу групп ОН в его молекуле. (видео урок)

Уравнения диссоциации солей слабых электролитов на ионы записывают в одну стадию. При этом образуются положительно заряженные ИОНЫ металла и отрицательно заряженные ИОНЫ кислотного остатка. Рассмотрим уравнение диссоциации соли — слабого электролита Са 3 (РО 4) 2

Са 3 (РО 4) 2 ↔ 3Са 2+ + 2РО 4 3- (видео урок)

Реакции на опыты (видео урок)

1. Реакции ионного обмена, идущие с выделением газа

Na 2 CO 3 + 2HCl = CO 2 + H 2 O + 2NaCl

2. Реакции ионного обмена, идущие с образованием ярко-окрашенных солей

FeCl 3 + 3KNCS= Fe(NCS) 3 + 3KCl

BaCl 2 + K 2 CrO 4 = BaCrO 4 ↓+ 2KCl

NiSO 4 + 2NaOH = Ni(OH) 2 ↓ + Na 2 SO 4

CuSO 4 + 2NaOH = Cu(OH) 2 ↓ + Na 2 SO 4

3. Реакция нейтрализации

NaOH + HCl = NaCl + H 2 O

4. Изменение диссоциации электролитов при различных температурах

Министерство образования и науки Российской Федерации

Национальный исследовательский ядерный университет «МИФИ»

Балаковский инженерно-технологический институт

Электролитическая диссоциация

Методические указания к выполнению лабораторной работы

по курсу «Химия» для студентов технических

специальностей и направлений,

по курсу «Общая и неорганическая химия»

для студентов направления ХМТН

всех форм обучения

Балаково 2014

Цель работы – изучение механизма диссоциации водных растворов электролитов.

ОСНОВНЫЕПОНЯТИЯ

Электролитической диссоциацией называется процесс распада молекул веществ на ионы под действием полярных молекул растворителя. Электролиты – вещества, проводящие в растворе или расплаве электрический ток (к ним относятся многие кислоты, основания, соли).

Согласно теории электролитической теории С. Аррениуса (1887 г), при растворении в воде электролиты распадаются (диссоциируют) на положительно и отрицательно заряженные ионы. Положительно заряженные ионы называют катионами, к ним относятся ионы водорода и металлов. Отрицательно заряженные ионы называются анионами, к ним относятся ионы кислотных остатков и гидроксид-ионы. Суммарный заряд всех ионов равен нулю, поэтому раствор в целом нейтрален. Свойства ионов отличаются от свойств атомов, из которых они образованы. Электролитическая диссоциация - процесс обратимый (обратная реакция называется ассоциацией). Эту теорию позднее дополнили Д.И. Менделеев и И.А. Каблуков.

Механизм электролитической диссоциации

Электролитами являются вещества, в молекулах которых атомы связаны ионной или полярной связью. По современным представлениям электролитическая диссоциация происходит в результате взаимодействия молекул электролита с полярными молекулами растворителя. Сольватация - взаимодействие ионов с молекулами растворителя. Гидратация –процесс взаимодействия ионов с молекулами воды.

В зависимости от структуры растворяющегося вещества в безводном состоянии его диссоциация протекает по–разному.

Легче всего диссоциируют вещества с ионной связью, которые состоят из ионов. При растворении таких соединений (например, NaCl) диполи воды ориентируются вокруг положительного и отрицательного ионов кристаллической решетки. Между ионами и диполями воды возникают силы взаимного притяжения. В результате связь между ионами ослабевает, происходит переход ионов из кристалла в раствор. При этом образуются гидратированные ионы, т.е. ионы, химически связанные с молекулами воды

Рис.1. Схема диссоциации молекулы вещества с ионной связью

Процесс электролитической диссоциации можно выразить уравнением

NaCl + (m+n)H 2 O
Na + (H 2 O) m + Cl - (H 2 O) n

Обычно, процесс диссоциации записывают в виде уравнения, опуская растворитель (H 2 O)

NaCl
Na + + Cl -

Аналогично диссоциируют и молекулы с ковалентной полярной связью (например, HCl). Вокруг каждой полярной молекулы вещества также ориентируются диполи воды, которые своими отрицательными полюсами притягиваются к положительному полюсу молекулы, а положительными полюсами - к отрицательному полюсу. В результате этого взаимодействия связующее электронное облако (электронная пара) полностью смещается к атому с большей электроотрицательностью, полярная молекула превращается в ионную и затем легко образуются гидратированные ионы. Диссоциация полярных молекул может быть полной или частичной.

Рис.2. Схема диссоциации молекулы вещества с ковалентной

полярной связью

Электролитическая диссоциация HCl выражается уравнением

HCl + (m+n)H 2 O
H + (H 2 O) m + Cl - (H 2 O) n

или, опуская растворитель (H 2 O),

КАn
K + + A -

Для количественной характеристики процесса диссоциации введено понятие степени диссоциации (α). Степень диссоциации электролита показывает, какая часть растворенных молекул вещества распалась на ионы. Степенью диссоциации электролита называется отношение числа продиссоциировавших молекул (N дисс ) к общему числу растворенных молекул (N)

(1)

Степень диссоциации принято выражать или в долях единицы, или в процентах, например, для 0,1н раствора уксусной кислоты СН 3 СООН

α= 0,013 (или 1,3). Степень диссоциации зависит от природы электролита и растворителя, температуры и концентрации.

По степени диссоциации (α) все электролиты делят на три группы. Электролиты со степенью диссоциации больше 0,3 (30%) обычно называют сильными, со степенью диссоциации от 0,02 (2%) до 0,3 (30%)-средними, менее 0,02 (2%)-слабыми электролитами.

Сильные электролиты - химические соединения, молекулы которых в разбавленных растворах практически полностью диссоциированы на ионы. В растворе сильного электролита растворённое вещество находится в основном в виде ионов (катионов и анионов); недиссоциированные молекулы практически отсутствуют. Степень диссоциации таких электролитов близка к 1. К сильным электролитам относятся:

1) кислоты (H 2 SO 4 , HCl, HNO 3 , HBr, HI, HClO 4 , HМnO 4);

2) основания – гидроксиды металлов первой группы главной подгруппы (щелочи) – LiOH, NaOH, KOH, RbOH, CsOH, а также гидроксиды щелочноземельных металлов – Ba(OH) 2 , Ca(OH) 2 , Sr(OH) 2 ;.

3) соли, растворимые в воде (см. таблицу растворимости).

К электролитам средней силы относятся H 3 PO 4 , HF и др.

Слабые электролиты диссоциируют на ионы в очень малой степени, в растворах они находятся, в основном, в недиссоциированном состоянии (в молекулярной форме). К слабым электролитам относятся:

1) неорганические кислоты (H 2 CO 3 , H 2 S, HNO 2 , H 2 SO 3 , HCN, H 2 SiO 3 , HCNS, HСlO, HClO 2 , HBrO, Н 3 ВО 3 и др.);

2) гидроксид аммония (NH 4 OH);

3) вода Н 2 О;

4) нерастворимые и малорастворимые соли и гидроксиды некоторых металлов (см. таблицу растворимости);

5) большинство органических кислот (например, уксусная CH 3 COOH, муравьиная HCOOH).

Для слабых электролитов устанавливается равновесие между недиссоциированными молекулами и ионами.

CH 3 COOH
Н + + CH 3 COO -

При установившемся равновесии на основании закона действующих масс

Константа диссоциации K указывает на прочность молекул в данном растворе: чем меньше K, тем слабее диссоциирует электролит и тем устойчивее его молекулы.

Константа диссоциации связана со степенью диссоциации зависимостью

, (2)

где – α –степень диссоциации;

c –молярная концентрация электролита в растворе, моль/л.

Если степень диссоциации α очень мала, то ею можно пренебречь, тогда

К=
или α= (4)

Зависимость (4) является математическим выражением закона разбавления В. Оствальда.

Поведение растворов слабых электролитов описывается законом Оствальда, а разбавленных растворов сильных электролитов – Дебая-Хюккеля (5):

К=
, (5)

где концентрация (с) заменена на активность (а) наиболее точно характеризующую поведение сильных электролитов. Коэффициенты активности зависят от природы растворителя и растворенного вещества, от концентрации раствора, а также от температуры.

Активность связана с концентрацией следующим соотношением:

(6)

где γ – коэффициент активности, который формально учитывает все виды взаимодействия частиц в данном растворе, приводящие к отклонению от свойств идеальных растворов.

Диссоциация различных электролитов

Согласно теории электролитической диссоциации, кислотой является электролит, диссоциирующий с образованием ионов Н + и кислотного остатка

HNO 3
H + + NO 3 -

H 2 SO 4
2H + + SO 4 2-

Электролит, диссоциирующий с образованием гидроксид-ионов ОН - , называется основанием. Например, гидроксид натрия диссоциирует по схеме:

NaOH
Na + + OH -

Многоосновные кислоты, а также основания многовалентных металлов диссоциируют ступенчато, например,

1 ступень H 2 CO 3
H + + HCO 3 –

2 ступень HCO 3 –
H + + CO 3 2–

Диссоциация по первой ступени характеризуется константой диссоциации K 1 = 4,3·10 –7

Диссоциация по второй ступени характеризуется константой диссоциации K 2 = 5,6·10 –11

Суммарное равновесие

H 2 CO 3
2H + + CO 3 2-

Суммарная константа равновесия

Ступенчатая диссоциация многовалентных оснований

1 ступень Cu(OH) 2
+ + OH -

2 ступень +
Cu 2+ + OH -

Для ступенчатой диссоциации всегда K 1 >K 2 >K 3 >..., т.к. энергия, которую необходимо затратить для отрыва иона, минимальна при отрыве его от нейтральной молекулы.

Электролиты называют амфотерными, если они диссоциируют как кислота и как основание, например, гидроксид цинка:

2H + + 2-
Zn(OH) 2 + 2H 2 O
+ 2OH -

К амфотерным электролитам относится гидроксид алюминия Al(OH) 3 , свинца Pb(OH) 2 , олова Sn(OH) 2 и другие.

Средние (нормальные) соли, растворимые в воде, диссоциируют с образованием положительно заряженных ионов металла и отрицательно заряженных ионов кислотного остатка

Ca(NO 3) 2
Ca 2+ + 2NO 3 –

Al 2 (SO 4) 3 → 2Al 3+ +3SO 4 2–

Кислые соли (гидросоли) – электролиты, содержащие в анионе водород, способный отщепляться в виде иона водорода Н + . Диссоциация кислых солей происходит по ступеням, например:

1 ступень KHCO 3
K + + HCO 3 –

2 ступень HCO 3 –
H + + CO 3 2–

Степень электролитической диссоциации по второй ступени очень мала, поэтому раствор кислой соли содержит лишь незначительное число ионов водорода.

Основные соли (гидроксосоли) – электролиты, содержащие в катионе одну или несколько гидроксо-групп OH – .Основные соли диссоциируют с образованием основных и кислотных остатков. Например:

1 ступень FeOHCl 2
2+ + 2Cl –

2 ступень 2+
Fe 3+ + OH –

Двойные соли диссоциируют на катионы металлов и анионы

KAl(SO 4) 2
K + + Al 3+ + 2SO 4 2-

Комплексные соли диссоциируют с образованием комплексного иона

К 3
3K + + 3-

Реакции обмена в растворах электролитов

Обменные реакции между электролитами в растворе идут в направлении связывания ионов и образования малорастворимых, газообразных веществ или слабых электролитов. Ионно-молекулярные или просто ионные уравнения реакций обмена отражают состояние электролита в растворе. В этих уравнениях сильные растворимые электро­литы записывают в виде составляющих их ионов, а слабые электролиты, малорастворимые и газообразные вещества условно записывают в молекуляр­ной форме, независимо от того, являются они исходными реагентами или продуктами реакции. В ионно-молекулярном уравнении одинаковые ионы из обеих его частей исклю­чаются. При составлении ионно-молекулярных уравнений следует помнить, что сумма зарядов в левой части уравнения должна быть равна сумме зарядов в правой части уравнения. При составлении уравнений см. табл. 1,2 приложения.

Например, написать ионно-молекулярные уравнения реакции между веществма Сu(NO 3) 2 и Na 2 S.

Уравнение реакции в молекуляр­ном виде:

Сu(NO 3) 2 + Na 2 S = СuS+2NaNO 3

В результате взаимодействия электролитов образуется осадок СuS.

Ионно-молекулярное уравнение

Сu 2+ + 2NO 3 - + 2Na + + S 2- = СuS+2Na + + 2NO 3 -

Исключив одинаковые ионы из обеих частей равенства Na + и NO 3 - получим сокращенное ионно-молекулярное уравнение реакции:

Сu 2+ + S 2- = СuS

Диссоциация воды

Вода является слабым электролитом и в малой степени диссоциирует на ионы

Н 2 О
Н + + ОН -

К=

или = K · = K в

K в = 10 -14 называется ионным произведением воды и является постоянной величиной. Для чистой воды при 25 0 С концентрации ионов H + и OH - равны между собой и равны 10 -7 моль/л, поэтому · = 10 -14 .

Для нейтральных растворов =10 -7 , для кислых растворов >10 -7 , а для щелочных <10 -7 . Но какова бы ни была реакция раствора, произведение концентраций ионов водорода и гидроксид-ионов остается постоянным. Если концентрация ионов водорода равна 10 -4 , то концентриция гидроксид-ионов равна:

= /10 -4 = 10 -10 моль/л.

На практике кислотность или щелочность раствора выражают более удобным способом, используя водородный показатель рН или рОН.

рН =– lg ;

рОН =– lg[ОH - ]

Например, если = 10 -3 моль/л, то рН =– lg = 3; если = 10 -8 моль/л, то рН =– lg = 8. В нейтральной среде рН = 7, в кислой среде рН< 7, в щелочной среде рН >7.

Приближено реакцию раствора можно определить с помощью специальных веществ, называемых индикаторами, окраска которых изменятся в зависимости от концентрации ионов водорода.

ТРЕБОВАНИЯ БЕЗОПАСНОСТИ ТРУДА

1. Опыты с неприятнопахнущими и ядовитыми веществами прово­дить обязательно в вытяжном шкафу.

2. При распознавании выделяющегося газа по запаху следует направ­лять струю движениями руки от сосуда к себе.

3. Выполняя опыт, необходимо следить за тем, чтобы реактивы не попали на лицо, одежду и рядом стоящего товарища.

    При нагревании жидкостей, особенно кислот и щелочей, держать пробирку отверстием в сторону от себя.

    При разбавлении серной кислоты нельзя приливать воду к кислоте, необходимо вливать кислоту осторожно, небольшими порциями в холод­ную воду, перемешивая раствор.

    Все склянки с реактивами необходимо закрывать соответствующими пробками.

    Оставшиеся после работы реактивы нельзя выливать или высыпать в реактивные склянки (во избежания загрязнения).

ПОРЯДОК ВЫПОЛНЕНИЯ РАБОТЫ

Задание 1. Изменение окраски индикаторов в нейтральной, кислой и щелочной среде.

Реактивы и оборудование: лакмус; метилоранж; фенолфталеин; раствор соляной кислоты HCl, 0,1н; раствор гидроксида NaOH, 0,1н; пробирки.

1. Налейте в три пробирки по 1-2 мл дистиллированной воды и прибавьте индикаторы: лакмус, метилоранж, фенолфталеин. Отметьте их цвет.

2. Налейте в три пробирки по 1-2 мл 0,1 раствора соляной кислоты и прибавьте тех же индикаторов. Наблюдайте изменение окраски индикаторов по сравнению с их цветом в воде.

3. Налейте в три пробирки по 1-2 мл 0,1н раствор гидроксида натрия и прибавьте тех же индикаторов. Наблюдайте изменение окраски индикаторов по сравнению с их цветом в воде.

Результаты наблюдения оформите в виде таблицы:

Задание 2. Относительная сила оснований

Реактивы и оборудование: раствор хлорида кальция СаCl 2 , 2н; раствор гидроксида NaOH, 2н; раствор гидроксида аммония NН 4 ОН, 2н; пробирки.

Налейте в две пробирки по 1-2 мл хлорида кальция, в первую пробирку прибавьте раствор гидроксида аммония, во вторую – столько же раствора гидроксида натрия.

Запишите наблюдения. Сделайте вывод о степени диссоциации указанных оснований.

Задание 3. Обменные реакции между растворами электролитов

Реактивы и оборудование: раствор хлорида железа FeCl 3 , 0,1н; раствор сернокислой меди CuSO 4 , 0,1н; раствор карбоната натрия Na 2 CO 3 , 0,1н; раствор гидроксида NaOH, 0,1н; раствор соляной кислоты HCl, 0,1н; раствор хлорида бария BaCl 2 , 0,1н; раствор сернокислого натрия Na 2 SO 4 , 0,1н; раствор гексацианоферрата(II) калия K 4 , 0,1н; пробирки.

а) Реакции с образование нерастворимых веществ (осадка).

Налейте в первую пробирку 1-2 мл хлорида железа FeCl 3 и прибавьте такой же объем гидроксида натрия NaOH , во вторую пробирку – 1-2 мл BaCl 2 и такой же объем сернокислого натрия Na 2 SO 4 .

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

б) Реакции с образованием газов.

Налейте в пробирку 1-2 мл раствора карбоната натрия Na 2 CO 3 и добавьте такой же объем раствор соляной кислоты HCl.

Запишите наблюдения (укажите цвет и запах газа). Назовите полученнoе газообразнoе веществo.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

в) Реакции, идущие с образованием малодиссоциирующих веществ.

Налейте в первую пробирку– 1-2 мл раствора гидроксида NaOH и добавьте такой же объем раствора соляной кислоты HCl, во вторую пробирку - 1-2 мл раствора сульфата меди CuSO 4 добавить такой же объем раствора гексацианоферрата(II) калия K 4 .

Запишите наблюдения (укажите цвет образовавшегося осадка комплексной соли гексацианоферрата меди).

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

Задание 4. Различие между двойной и комплексной солью

Реактивы и оборудование: раствор хлорида железа FeCl 3 , 0,1н; раствор роданида калия KSCN, 0,1н; раствор железо-аммиачных квасцов NH 4 Fe(SO 4) 2 , 0,1н; раствор железо-синеродистого калия K 3 ; 0,1н; пробирки.

1. В пробирку налейте раствор хлорного железа FeCl 3 , затем добавьте немного роданида калия KSCN. Запишите наблюдения.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде. Ион SCN ­– является характерным реактивом на ион Fe 3+ , при их взаимодействии получается родановое железо Fe(SСN) 3 – слабодиссоциирующая соль кроваво-красного цвета.

2. В одну пробирку налейте раствор железоаммиачных квасцов NH 4 Fe(SO 4) 2 , в другую – раствор железо-синеродистого калия K 3 и в каждую из них прилейте понемногу раствор роданида калия KSCN.

Составьте уравнения происходящих реакций в молекулярном, ионном и сокращенном ионном виде.

Запишите наблюдения. В каком соединении обнаруживается ион трехвалентного железа? В каком соединении этот ион связан в виде комплексного иона?

Задание 5 . Смещение ионного равновесия при введении в раствор одноименного иона

NH 4 ОН – слабое основание, диссоциирующее по уравнению:

NH 4 ОН
NH 4 + +ОН –

NH 4 Cl – в растворе диссоциирует по уравнению

NH 4 Cl
NH 4 + + Cl

Реактивы и оборудование: 0,1м раствор гидроксида аммония NH 4 OH, 0,1н; фенолфталеин, кристаллический хлорид аммония NH 4 Сl; пробирки.

В пробирку с раствором NH 4 ОН прибавьте 2-3 капли фенолфталеина, который является индикатором на группу ОН - , перемешайте и разлейте раствор в две пробирки: одну пробирку оставьте для сравнения, во вторую прибавьте щепотку кристаллического NH 4 Сl – наблюдается ослабление цвета раствора.

Ослабление малиновой окраски раствора объясняется тем, что при введении в раствор хлористого аммония увеличивается концентрация иона NH 4 + , что смещает равновесие в левую сторону, а это приводит к уменьшению концентрации ионов ОН – в растворе.