Содержание углекислоты в воздухе. Осторожно! Углекислый газ! Гидроклиматические последствия антропогенного

Похоже, Земля переступила знаковый порог на фоне глобального потепления.

Обычно в сентябре показатели содержания углекислого газа (СО2) в атмосфере бывают минимальные. Эта концентрация является эталонной планкой, по которой измеряют колебания уровня парниковых газов весь следующий год. Но в сентябре текущего год уровень СО2 остается высоким, составляя примерно 400 миллионных долей, и многие ученые считают, что при нашей жизни концентрация парниковых газов не опустится ниже этого порогового значения.

Земля стабильно накапливает СО2 в атмосфере со времен промышленной революции, однако уровень в 400 миллионных долей создает новую норму, какой на нашей планете не было миллионы лет.

«Последний раз содержание СО2 в атмосфере нашей планеты составляло 400 миллионных долей около трех с половиной миллионов лет назад, и климат в то время очень сильно отличался от сегодняшнего», — сообщил по электронной почте Christian Science Monitor адъюнкт-профессор Школы по изучению моря и атмосферных явлений при Университете штата Нью-Йорк в Стоуни-Брук Дэвид Блэк (David Black).

«В частности, в Арктике (севернее 60-й широты) было значительно теплее, чем сегодня, а уровень моря на планете был на 5-27 метров выше нынешнего», — отметил Блэк.

«Тогда атмосфере понадобились миллионы лет, чтобы уровень СО2 в ней достиг 400 миллионных долей. А чтобы он упал до 280 миллионных долей (такой показатель был накануне промышленной революции), понадобились еще миллионы лет. Климатологов очень тревожит, что люди всего за несколько столетий сделали то, что природа сделала за миллионы лет, причем большая часть этих изменений приходится на последние 50-60 лет».

Глобальная концентрация СО2 уже несколько лет периодически поднимается выше 400 миллионных долей; но в летний сезон вегетации значительная часть углекислого газа в атмосфере поглощается в процессе фотосинтеза, и поэтому большую часть года уровень СО2 ниже этой отметки.

Контекст

Безумие парникового эффекта

Wprost 15.12.2015

Мир плохо подготовлен к глобальному потеплению

The Globe And Mail 09.05.2016

Климатическая катастрофа в Европе

Dagbladet 02.05.2016

Пора заняться климатом

Project Syndicate 26.04.2016

Ядовитый климат

Die Welt 18.01.2016
Но из-за деятельности человека (прежде всего, из-за сжигания органического топлива) в атмосферу выбрасывается больше СО2, и годовой минимум все ближе и ближе подходил к отметке 400 миллионных долей. Ученые опасаются, что в этом году планета достигла точки невозврата.

«Возможно ли, чтобы в октябре 2016 года месячный показатель был ниже сентябрьского, опустившись ниже 400 миллионных долей? Практически нет», — написал на прошлой неделе в своей статье директор программы из Института океанографии им. Скрипс Ральф Килинг (Ralph Keeling).

В прошлом бывали случаи, когда уровень СО2 падал ниже прежних сентябрьских значений, но они крайне редки. По словам ученых, даже если мир прямо с завтрашнего дня полностью прекратит выбрасывать углекислый газ в атмосферу, его концентрация еще несколько лет будет оставаться выше 400 миллионных долей.

«В лучшем случае (при таком сценарии) можно ждать стабилизации в ближайшей перспективе, а поэтому уровень СО2 вряд ли сильно изменится. Но лет через 10 или около того он начнет снижаться, — сказал изданию Climate Central главный климатолог НАСА Гэвин Шмидт (Gavin Schmidt). — На мой взгляд, мы больше не увидим месячный показатель ниже 400 миллионных долей».

Хотя рост концентрации СО2 в атмосфере дает повод для озабоченности, следует отметить, что сама по себе отметка в 400 миллионных долей это в большей степени маршрутный ориентир, чем жесткий показатель, предвещающий миру климатический апокалипсис.

«Людям нравятся округленные числа, — говорит профессор экологии из Университета Конкордия в Монреале Дэймон Мэтьюз (Damon Matthews). — Также весьма символично и то, что параллельно с увеличением СО2 мировая температура на один градус превысила доиндустриальный уровень».

Конечно, эти показатели в основном символические, но они являются реальной иллюстрацией той траектории, которой следует земной климат.

«Концентрация СО2 это в некоторой степени обратимый показатель, потому что растения поглощают углекислый газ, — отмечает доктор Мэтьюз. — А вот температура, возникающая на основе таких изменений, в отсутствие человеческих усилий необратима».

Двуокись углерода в виде парникового газа не только способствует глобальному потеплению, но и негативно влияет на состояние мирового океана из-за его подкисления. Когда углекислый газ в больших объемах растворяется в воде, часть его превращается в углекислоту, которая вступает в реакцию с молекулами воды, производя ионы водорода, что повышает кислотность среды океана. Это в свою очередь ведет к обесцвечиванию кораллов и создает помехи жизненному циклу мелких организмов, что также негативно отражается на организмах покрупнее, расположенных далее в пищевой цепочке.

Новость о пороге в 400 миллионных долей появилась в момент, когда мировые лидеры сделали ряд шагов к ратификации Парижского соглашения по климатическим изменениям, которое направлено на систематическое уменьшение углеродных выбросов во всем мире, начиная с 2020 года.

Ратифицирующим соглашение странам предстоит большая работа.

«Чтобы снизить уровень СО2 в атмосфере во временном масштабе нескольких столетий, нам надо не только использовать и разрабатывать источники энергии не на основе углерода; нам нужно также физическими, химическими и биологическими методами удалять СО2 из атмосферы, — говорит Блэк. — Технология удаления атмосферного СО2 есть, но в масштабах существующей проблемы она пока неприменима».

> Концентрация углекислого газа

Ученые уже давно подозревают, что повышенная концентрация углекислого газа в атмосфере имеет прямое отношение к глобальному потеплению, но, как оказалось, углекислый газ может иметь непосредственное отношение и к нашему здоровью. Человек является основным источником образования углекислого газа в помещении, поскольку мы выдыхаем от 18 до 25 литров этого газа в час. Высокий объем углекислого газа может наблюдаться во всех помещениях, где находятся люди: в школьных классах и институтских аудиториях, в комнатах для совещаний и офисных помещениях, в спальнях и детских комнатах.

То, что нам не хватает кислорода в душном помещении, – это миф. Расчеты показывают, что вопреки существующему стереотипу, головная боль, слабость, и другие симптомы возникают у человека в помещении не от недостатка кислорода, а именно от высокой концентрации углекислого газа.

Еще недавно в Европейских странах и США уровень объема углекислого газа в помещении измеряли только для того, чтоб проверить качество работы вентиляции, и считалось, что СО2 опасен для человека только в больших концентрациях. Исследования же о влиянии на организм человека углекислого газа в концентрации приблизительно 0,1% появились совсем недавно.

Мало кто знает, что чистый воздух за городом содержит около 0,04% углекислого газа, и, чем ближе содержание СО2 в помещении к этой цифре, тем лучше чувствует себя человек.

Осознаем ли мы влияния плохого качества воздуха в помещение на наше здоровье и здоровье наших детей? Понимаем ли мы, как влияет высокое содержание углекислого газа в помещении на нашу работоспособность и на успеваемость учащихся? Можем ли мы понять, почему мы и наши дети такие усталые в конце рабочего дня? В состоянии ли мы решить проблему нашей утренней усталости и раздражительности, а так же плохого ночного сна?

Группой Европейских ученых были проведены исследования того, как влияет высокий (приблизительно 0,1-0,2%) уровень углекислого газа в классах на организм школьников. Исследования показали, что больше половины школьников регулярно испытывают на себе негативное влияние высокого уровня СО2, и следствием этого является то, что проблемы с дыхательной системой, ринит и слабая носоглотка у таких детей наблюдаются гораздо чаще, чем у других детей.

В результате исследований, проведенных в Европе и США было выявлено, что повышенный уровень СО2 в классе ведет к снижении внимания школьников, к ухудшению успеваемости, а так же к увеличению числа пропусков уроков по болезни. Особенно это касается детей, которые больны астмой.

В России подобные исследования никогда не проводились. Однако, в результате комплексного обследования московских детей и подростков в 2004-2004 гг. оказалось, что среди обнаруженных болезней у юных москвичей преобладают заболевания органов дыхания.

В результате недавних исследований, проведенных индийскими учеными среди жителей города Калькутта, выяснено, что даже в низких концентрациях углекислый газ является потенциально токсичным газом. Ученые сделали вывод, что углекислый газ по своей токсичности близок к двуокиси азота, принимая во внимание его воздействие на клеточную мембрану и биохимические изменения, происходящие в крови человека, такие, как ацидоз. Длительный ацидоз в свою очередь приводит к заболеванию сердечнососудистой системы, гипертонии, усталости и другим неблагоприятным для человеческого организма последствиям.

Жители крупного мегаполиса подвергаются негативному влиянию углекислого газа с утра до вечера. Сначала в переполненном общественном транспорте и в собственных автомобилях, которые подолгу стоят в пробках. Затем на работе, где часто бывает душно и нечем дышать.

Очень важно поддерживать хорошее качество воздуха в спальне, т.к. люди проводят там треть своей жизни. Для того, чтоб хорошо выспаться гораздо важнее качественный воздух в спальне, чем продолжительность сна, а уровень углекислого газа в спальнях и детских комнатах должен быть ниже 0,08%. Высокий уровень СО2 в этих помещениях может явиться причиной таких симптомов, как заложенность носа, раздражение горла и глаз, головной боли и бессонницы.

Финские ученые нашли способ решения этой проблемы исходя из аксиомы, что если в природе уровень углекислого газа составляет 0,035-0,04%, то и в помещениях он должен быть приближен к этому уровню. Изобретенное ими устройство удаляет из воздуха помещений избыток углекислого газа. Принцип основан на абсорбции (поглощении) углекислого газа специальным веществом.

В сентябре 2016 года концентрация углекислого газа в атмосфере Земли преодолела психологически значимую отметку в 400 ppm (долей на миллион). Это делает сомнительными планы развитых стран по недопущению повышения температуры на Земле более чем на 2 градуса.

Глобальное потепление — это повышение средней температуры климатической системы Земли. За период с 1906 по 2005 год средняя температура воздуха возле поверхности планеты выросла на 0,74 градуса, причем темпы роста температуры во второй половине столетия примерно в два раза выше, чем за период в целом. За все время наблюдений самым жарким считается 2015 год, когда все температурные показатели на 0,13 градуса превысили показатели 2014 года — предыдущего рекордсмена. В различных частях земного шара температуры меняются по-разному. С 1979 года температура над сушей выросла вдвое больше, чем над океаном. Объясняется это тем, что температура воздуха над океаном растет медленнее из-за его большой теплоемкости.

Движение углекислого газа в атмосфере

Основной причиной глобального потепления считается деятельность человека. Косвенными методами исследования было показано, что до 1850 года на протяжении одной или двух тысяч лет температура оставалась относительно стабильной, правда с некоторыми региональными флуктуациями.

Таким образом, начало климатических изменений практически совпадает с началом промышленной революции в большинстве западных стран. Основной причиной на сегодняшний день считаются выбросы парниковых газов. Дело в том, что часть энергии, которую планета Земля получает от Солнца, переизлучается обратно в космическое пространство в виде теплового излучения.

Парниковые газы затрудняют этот процесс, частично поглощая тепло и удерживая его в атмосфере.

Добавление в атмосферу парниковых газов ведет к еще большему разогреву атмосферы и росту температуры у поверхности планеты. Основные парниковые газы в атмосфере Земли — это углекислый газ (СО 2) и метан (СН 4). В результате промышленной деятельности человечества в воздухе растет концентрация именно этих газов, что приводит к ежегодному росту температуры.

Поскольку потепление климата угрожает буквально всему человечеству, в мире неоднократно принимаются попытки взять этот процесс под контроль. До 2012 года основным мировым соглашением о противодействии глобальному потеплению был Киотский протокол.

Он охватывал более 160 стран мира и покрывал 55% мировых выбросов парниковых газов. Однако после окончания первого этапа Киотского протокола страны-участники не смогли договориться о дальнейших действиях. Отчасти составлению второго этапа договора помешало то, что многие участники избегают применения бюджетного подхода для определения своих обязательств в отношении эмиссии СО 2 . Эмиссионный бюджет СО 2 — количество выбросов за определенный период времени, который рассчитывается из температуры, которую участники не должны превысить.

Согласно решениям, принятым в Дурбане, никакое обязывающее климатическое соглашение не будет действовать до 2020 года, несмотря на необходимость срочно предпринять усилия по сокращению эмиссии газа и снизить выбросы. Исследования показывают, что в настоящее время единственной возможностью обеспечить «разумную вероятность» ограничения потепления величиной 2 градуса (характеризующей опасное изменение климата) будет ограничение экономик развитых стран и их переход к стратегии антироста.

И вот в сентябре 2016 года, по данным обсерватории Мауна-Лоа, был преодолен очередной психологический барьер эмиссии парникового газа СО 2 — 400 ppm (долей на миллион). Нужно сказать, что эта величина многократно превышалась и раньше,

но сентябрь традиционно считается месяцем с самой низкой концентрацией СО 2 в Северном полушарии.

Объясняется это тем, что зеленая растительность успевает за лето поглотить некоторое количество парникового газа из атмосферы, прежде чем листья с деревьев опадут и часть СО 2 вернется обратно. Поэтому если психологически важный порог в 400 ppm был превышен именно в сентябре, то, скорее всего, ежемесячные показатели уже никогда не будут ниже этого значения.

«Возможно ли, что в октябре этого года концентрация снизится по сравнению с сентябрем? Полностью исключено,

— поясняет в своем блоге Ральф Килинг, сотрудник Скриппсовского института океанографии Сан-Диего. — Кратковременные падения уровня концентрации возможны, но усредненные за месяц величины теперь всегда будут превышать 400 ppm».

Также Килинг отмечает, что тропические циклоны могут снизить уровень концентрации СО 2 на короткое время. С ним соглашается и Гэвин Шмидт, главный климатолог NASA: «В лучшем случае можно ожидать некий баланс, и уровень СО 2 не будет расти слишком быстро. Но, по моему мнению, СО 2 уже никогда не упадет ниже 400 ppm».

Согласно прогнозу, к 2099 году концентрация СО 2 на Земле будет равняться 900 ppm, что составит порядка 0,1% от всей атмосферы нашей планеты. В результате средняя дневная температура в таких городах, как Иерусалим, Нью-Йорк, Лос-Анджелес и Мумбаи, будет близка к +45°C. В Лондоне, Париже и Москве летом температура будет превышать +30°C.

Есть прописные истины, знакомые любому человеку практически с рождения. Зимой холодно, а летом тепло. При дыхании потребляется кислород и выделяется углекислый газ. Когда в помещении скапливается много углекислого газа, то становится душно, а чтобы в помещении стало находиться комфортнее - его нужно проветрить. Но при этом большинство людей склонно недооценивать влияние повышенной концентрации CO2 на здоровье и качество жизни. Об этом я и хочу поговорить в данной статье, а также показать, как влияет кондиционер на процесс очистки воздуха. И заодно представить обзор детектора уровня CO2, который помогает держать качество воздуха в помещении под контролем.

1 Что нужно знать о CO2
2 Техническая информация
3 Внешний вид и принцип действия
4 Измерения
5 Домашняя автоматизация
6 Выводы

1. Что нужно знать о CO2

CO2 или углекислый газ - неотъемлемая часть любой воздушной смеси, содержание которого измеряется в миллионных долях (ppm - parts per million). Условно нормальный уровень CO2 в свежем уличном воздухе принято считать за 400ppm. Эта цифра непостоянна и зависит от конкретной локации - так, в экологически чистом районе с отсутствием промышленности и малой плотностью заселенности содержание углекислого газа в атмосфере может быть ниже среднего значения, а в густонаселенном мегаполисе, да еще с промышленными предприятиями практически наверняка будет выше среднего.

Воздух в помещении считается качественным, если содержание CO2 в нем колеблется в пределах 800ppm. При достижении концентрации углекислого газа 1000ppm у многих людей уже появляется ощущение духоты и вялости, а 1400ppm - предел нормы по рекомендациям Сан-Пина.

Опасным уровнем является 30000ppm - при достижении такой концентрации CO2 у человека учащается пульс, возникает ощущение тошноты и прочие симптомы кислородного голодания. Хорошая новость заключается в том, что «надышать» такую концентрацию углекислого газа практически невозможно в офисных и жилых помещениях даже очень низкого качества. Тем не менее, даже небольшие превышения допустимой концентрации CO2 способны существенно влиять на качество жизни. Уже при 1000ppm снижается концентрация внимания, появляется ощущение вялости, мозг начинает хуже обрабатывать информацию. При концентрации CO2 выше 1400ppm в офисе становится трудно концентрироваться на работе, а дома появятся проблемы со сном. Содержание СО2 зависит, в большей степени, от количества людей, находящихся в закрытом помещении.

«Управлять можно только тем, что можно измерить», писал основоположник современной теории управления Питер Друкер. И первый шаг к управлению микроклиматом помещения заключается в начале отслеживания его объективных показателей.

В этом-то нам и поможет от компании Даджет.

2. Техническая информация

Название модели: Детектор СО2 (Mini Monitor СО2)
Диапазон измерения CO2: 0 - 3000 ppm
Диапазон измерения температуры: 0 - 50
Точность измерений: ±10% ppm, ±1,5°C
Вывод информации: ЖК-дисплей, светодиодные индикаторы
Потребление тока: до 200мА
Дополнительные функции: звуковой сигнал превышения концентрации CO2

3. Внешний вид и принцип действия

Детектор CO2 поставляется в картонной коробке, содержащей сведения о производителе и краткую памятку по влиянию повышенных концентраций углекислого газа на самочувствие человека.

Внутри находится сам прибор, инструкция на русском языке и USB-кабель. У детектора нет встроенного аккумулятора, поэтому работать он может только от внешнего источника питания: USB-порта компьютера или обычного зарядного устройства для смартфона.

Само устройство крупным планом. На передней панели находится экран и три индикационных светодиода, отображающих усреднённо результаты измерений: при концентрации CO2 ниже 800ppm светится зеленый светодиод, при 800-1200ppm - желтый, выше 1200ppm - красный. Значения интервалов действия индикаторов можно изменить в настройках.

Вообще, светодиодная индикация оказалась очень информативной вещью. Не нужно подходить к прибору и всматриваться в текущие значения показателей. Издалека видно, что если индикатор переключился с зеленого на желтый, то помещение можно уже и проветрить, а если он покраснел - проветривание желательно начать уже прямо сейчас.

На правом боку находится microUSB-порт и отверстие, через которое происходит забор воздуха для анализа.

Сзади отверстия для вентиляции, наклейка с технической информацией и две кнопки, которыми осуществляется настройка.

Сердцем устройства является датчик углекислого газа ZGm053UK, работающий по технологии NDIR (non-dispersive infrared radiation, недисперсионное инфракрасное излучение): в световодную трубку заходит поток воздуха и попадает под излучение инфракрасной лампы, а на другом конце трубки стоит инфракрасный детектор с соответствующим фильтром. Чем больше в воздушной смеси содержится CO2 - тем сильнее ослабевает инфракрасное свечение, что и позволяет датчику определить текущую концентрацию CO2.

Себестоимость NDIR-сенсоров выше, чем у аналогов с другим принципом работы (электрохимическим или электроакустическим), но при этом они имеют длительный срок службы и обеспечивают более точные результаты.

4. Измерения

Теперь испытаем детектор в работе. Место проведения измерений - Челябинск, двухкомнатная квартира в относительно тихом районе, окна выходят во двор.

Опыт №1. Знакомство с прибором

Первым делом я измерил концентрацию углекислого газа на улице, разместив детектор у открытого окна на 4 этаже.

Измерения показали 440ppm. Нормальный уровень содержания CO2 в атмосфере, напоминаю, составляет 400ppm. Ну что же, с поправкой на безветренную погоду и проживание в промышленном мегаполисе с традиционно проблемной экологией, 440ppm можно считать нормальным результатом.

Теперь измерим уровень CO2 в самой квартире, предварительно хорошо ее проветрив все комнаты.

Получилось 550ppm. Это отличный результат, воздух почти как на улице.

Но, забегая наперед, скажу: поддерживать такое качество воздуха на постоянной основе в квартире, не оснащенной продвинутыми системами вентиляции, практически невозможно.

Опыт №2. Длительные измерения

По ходу обзора я еще не упоминал, что детектор не только отображает моментальные значения концентрации CO2, но и способен работать в связке с компьютером.

Если установить специальную программу, то устройство будет фиксировать уровень концентрации CO2 и температуры в помещении с привязкой ко времени и строить график на основании этих показателей.

Дальнейшие измерения будем проводить при помощи этой программы.

Ночь с закрытыми окном и дверью. К утру концентрация CO2 в комнате подскакивает практически до 2000ppm.

Открываем створку окна на проветривание и смотрим на график. Примерно за 40 минут концентрация углекислого газа снижается с 2000ppm до здорового уровня 700ppm.

Вечер. Затихает естественный шум и становятся особенно слышны голоса отдыхающих во дворе компаний. Они мешают, поэтому закрываю окно.

За час концентрация CO2 повышается почти что вдвое, с 700ppm до 1300ppm.

Опыт №3. Суточный мониторинг

Теперь посмотрим, как меняется концентрация CO2 в помещении в течение одного полного дня.
Исходные данные: все та же двухкомнатная квартира, в которой одновременно находятся от одного до трех человек. Окно на кухне практически всегда открыто, окна и балконная дверь в комнатах открываются и закрываются в течение дня, межкомнатные двери закрываются на ночь.

Хорошо проветриваю комнату перед сном, закрываю окно и ложусь спать.

К полуночи концентрация CO2 уже превышена, но до пяти часов утра сохраняется на уровне, который с натяжкой можно назвать удовлетворительным. На временном промежутке с пяти до девяти утра концентрация CO2 повышается до 2000ppm. Кстати, это вполне коррелирует с личными ощущениями при сне с закрытым окном. Где-то в 5 утра я просыпаюсь в достаточно бодром состоянии, но поскольку еще слишком рано - остаюсь в кровати досыпать до звонка будильника. По звонку будильника в 7 утра просыпаюсь с тяжелой головой и в подавленном настроении, как будто и не спал всю ночь - к этому времени организм уже успевает надышаться «плохим» воздухом, что сказывается на самочувствии.

С 9 до 10 часов - проветривание. Открыты окна во всех комнатах, концентрация CO2 спадает с 2000ppm до 600ppm.

С 10 до 15 часов - окна в комнатах закрыты, на кухне открыта форточка. В квартире 1 человек. Концентрация CO2 в норме.

С 15 до 18 часов - открыты форточки во всех комнатах. В квартире 2 человека. Концентрация CO2 всё еще в норме.

С 18 до 21 часа - открыты форточки во всех комнатах. В квартире 3 человека. Концентрация CO2 начинает нарастать, форточки уже не спасают.

С 21 до 22-30 часов - проветривание с открытыми окнами. В квартире 3 человека. Концентрация CO2 приходит в норму, но начинает повышаться сразу же, стоит закрыть окна и оставить одни форточки для проветривания.

А теперь рассмотрим другой день с другим распорядком.

Ночью в комнате открыта форточка, концентрация CO2 немного превышена, но все же не растет до совсем диких величин.

С 8 до 14 часов - в квартире никого нет, межкомнатные двери открыты, во всех комнатах открыты окна. Концентрация CO2 спадает до уровня уличного воздуха.

С 14 до 18 часов - в квартире 2 человека, межкомнатные двери открыты, во всех комнатах открыты форточки. Концентрация CO2 уже не как на улице, но в пределах нормы.

С 18 часов и до утра - в квартире 3 человека, межкомнатные двери закрыты, форточки открыты. Концентрация CO2 немного превышена, но стабильна.

Вывод: если жить одному в двухкомнатной квартире, то о качестве воздуха можно практически не беспокоиться. Достаточно лишь иногда проветривать помещение. А вот при двух-трех обитателях на том же количестве квадратных метров для поддержания концентрации углекислого газа в нормальных пределах придется осуществлять проветривание практически круглосуточно.

Опыт №4. CO2 и кондиционер

Теперь посмотрим, что происходит в комнате при использовании кондиционера.
Исходные данные: проветренное помещение, но на улице жарко, а соответственно и в помещении тоже.

Закрываю окна чтобы воздух не уходил, включаю кондиционер.

В результате, за час работы кондиционера температура в комнате упала на несколько градусов, а концентрация CO2 возросла.

Подвох в том, что если не выходить из помещения на свежий воздух, то субъективно воздух в нем воспринимается как свежий и качественный просто за счет своей прохлады. И только цифры на приборе показывают реальную картину.

Кондиционирование не заменяет проветривания, поэтому сидя целый день в уютной и прохладной комнате можно незаметно для себя «надышать» концентрацию CO2 в 2000ppm, а то и больше. Особенно это актуально для офисов, где в одном небольшом помещении находятся сразу несколько человек. Широко распространено заблуждение, что раз для кондиционера монтируется отдельный воздуховод прямо на улицу, то кондиционер забирает уличный воздух, охлаждает его внутри себя и выпускает в помещение. На самом же деле воздуховод служит для выброса горячего воздуха из помещения на улицу, то есть работает как вытяжка. Причём такие кондиционеры встречаются далеко не везде. Обычная сплит система «гоняет» воздух в помещении по кругу, а по трубкам поступает охлаждённых хладагент.

Пользуясь кондиционером следует помнить о необходимости насыщать помещение свежим воздухом.

5. Домашняя автоматизация

В завершение обзора хочу отметить, что сфера применения детектора CO2 не ограничивается одним лишь проведением измерений и построением графиком на компьютере.

Это устройство можно использовать в проектах домашней автоматизации, причём сделать это можно двумя различными способами.

Первый способ - подключение силового реле к одному из индикационных светодиодов.

Принцип действия очевиден: при повышении концентрации CO2 в воздухе зеленый индикатор сменяется на желтый, при этом автоматически замыкается электронный ключ в реле, что в свою очередь включает подключенное к реле устройство (например, вентилятор приточной системы).

Второй способ - программный.

Поскольку детектор поддерживает передачу данных с датчика на компьютер по USB-протоколу, его можно внедрить в любую самодельную систему «умного дома», считывая показатели с датчика на головное устройство. А уже с головного устройства, на основании получаемых показателей, управлять другой подключенной к системе электроникой.

6. Выводы

Было интересно увидеть реальное состояние воздуха в своей квартире. С использованием стало наглядно видно, что имеющаяся пассивная вентиляция малоэффективна, и если в теплое время еще можно держать окна открытыми практически круглосуточно (хотя и летом это не всегда удобно из-за уличного шума), то зимой это неосуществимо по причине быстрого остывания помещений. Появился повод задуматься о модернизации домашней вентиляции, да и о поддержании здорового микроклимата в помещении в целом. Кроме того, в ассортименте магазина имеется , обладающий более крупным дисплеем и позволяющий измерять помимо концентрации CO2 и температуры еще и относительную влажность воздуха. Скидка 10% предоставляется по промокоду GT-CO2 в течение 14 дней.

В одной из следующих статей будет описано, как подружить детектор СО2 с микрокомпьютером Raspberry Pi. Добавить метки

Правообладатель иллюстрации AFP

Средний уровень содержания углекислого газа в атмосфере нашей планеты в 2015 году впервые за время наблюдений достиг критической отметки в 400 долей на миллион, сообщила Всемирная метеорологическая организация.

Критический уровень содержания диоксида углерода зафиксировала станция мониторинга воздуха, расположенная на Гавайях.

Как предполагают эксперты, содержание углекислого газа в атмосфере не опустится ниже 400 долей на миллион в течение всего 2016 года, а возможно, что и в ближайшие десятилетия.

Что это означает для нас с вами?

Ведущий программы "Пятый этаж" Александр Баранов обсуждает тему с директором программы "Климат и энергетика" Всемирного фонда дикой природы Алексе ем Кокорин ым и старшим научным сотрудником Института экологии растений и животных уральского отделения Российской академии наук Евгени ем Зиновьев ым .

А лександр Б аранов: 400 частей на миллион для простого человека, который не разбирается в климатических вопросах, но зато учил арифметику в школе, это очень мало. Так же мало, как 200, 100 или 500. Особенно, когда речь идет о газе без цвета и запаха. Почему вдруг так переполошились ученые?

А лексей Кокорин: CO2 - это один из газов, создающих парниковый эффект, второй после водяного пара, и главный газ, на концентрацию которого в атмосфере оказывает влияние человек.

И то, что человек не оказывает влияние на содержание водяного пара, не сильно облегчает дело, потому что влияние на содержание CO2 велико, и изотопным анализом доказано, что этот CO2 именно от сжигания топлива. Это много.

Число очень маленькое, но это на 30% больше, чем 50-60 лет назад. А до этого уровень был постоянен в течение долгого времени, имеются данные прямых измерений.

А.Б. : Ученые сейчас согласны с тем, что CO2 влияет на изменение климата, а не наоборот? Какое-то время назад некоторые ученые говорили, что на рост выброса углекислого газа влияет нагревание океана. А человек, по сравнению с океаном, выбрасывает намного меньше CO2 в атмосферу. Каков сейчас консенсус по этому поводу?

А.К. : Консенсус практически полный. Я упомянул изотопный анализ, потому что в прошлом, и это тоже доказано, сначала менялась температура, а потом концентрация CO2.

Это было в переходный период между ледниковыми периодами и в других случаях. Корреляция шла в такой последовательности. Здесь корреляция идет в другой последовательности. Но главное, есть доказательства изотопного анализа. Тут консенсус есть.

Е вгений З иновьев: Я не климатолог, я палеонтолог. У нас в институте мы наблюдаем на севере, в Арктике, повышение как содержания CO2, и это показано нашими коллегами дендрохронологами, так и сопутствующие изменения - это наступление границы леса. У нас проводится мониторинг ландшафтов северной части Западно-Сибирской равнины и Полярного и приполярного Урала, и на протяжении последних сорока лет северная граница леса смещается к северу.

Это еще не достигает границ, которые были в климатический оптимум голоцена, когда древесная растительность достигала среднего Ямала, но процесс идет в том направлении и опосредованно связан с потеплением климата. Древесные растения занимают постепенно территории, от которых они когда-то отступили.

То потепление, которое мы сейчас наблюдаем - не самое значительное, сейчас не самый теплый климат. Я могу сравнивать с недавним геологическим прошлым - последние 130-140 тысяч лет. Этот период называется Микулинское межледниковье, и тогда растения и теплолюбивые животные продвигались к северу гораздо дальше, чем сейчас.

В наше время, по объективным данным, пока еще такие уровни не достигнуты. Но то потепление было очень кратковременным, всего около 5 тысяч лет. Потом оно сменилось похолоданием, потом опять потеплением, и потом наступил длительный холодный период, зырянское оледенение, которое тоже делилось на более теплые и более холодные эпохи. Тогда начал формироваться скандинавский ледниковый щит.

А.Б. : То есть в ы говорите о похолодании в Средневековый период?

Е.З. : Это вы говорите про исторические времена, а я имею в виду более ранние границы. Это поздний плейстоцен.

А.Б. : А какие выводы из этого делать нам, неспециалистам? Противники теории глобального потепления, вызванного человеческой деятельностью, говорят, что мы просто находимся в периоде определенного цикла и с этим связаны различные колебания концентрации CO2.

Углекислый газ - пища для растений. В процессе фотосинтеза растения поглощают углекислый газ, выделяют в атмосферу кислород, и чем выше содержание углекислого газа, тем активнее растения начинают его потреблять и тем быстрее они растут.

Е.З. : Развития древесной растительности не наблюдается, наоборот. В Северной Америке, южной Европе леса горят, лесная растительность деградирует, идет аридизация, осушение климата. Легкие планеты сокращаются.

А.Б. : А почему это происходит? По идее, они должны расширяться?

Е.З. : Климат - многовекторная система, могут быть разные факторы, которые мы не всегда можем учитывать. Существует точка зрения, что начнут таять ледники, что связано с потеплением климата, а это происходит.

Деградирует и Гренландский ледниковый щит, и в Арктике то высвободившееся большое количество пресной воды может изменить направление движения Гольфстрима. Тогда эта печка для Европы перестанет обогревать север Европы, и там снова начнется образование ледников. Это будет очень плохо.

Резкое потепление может дать толчок резкому похолоданию. Ледниковая шапка аккумулирует воду, начинается иссушение климата. Исчезают сплошные леса, образуются редкостойные леса. Климат становится сухой, холодный, континентальный, и он таким становится не только в Сибири, но и в Европе тоже.

Все очень сложно и взаимосвязано. Я не стал бы это упрощать, надо учитывать и современный фактор - увеличение выбросов CO2, связанное с промышленной деятельностью человека, с наличием большого количества производств, машин и так далее - с этим не поспоришь. Особенно в крупных мегаполисах, где сосредоточены большие производства.

Но другой вопрос, какие последствия это будет иметь. Человечество привыкло жить в определенных комфортных условиях. Если начнется увеличение или уменьшение уровня мирового океана, то начнутся катастрофы. Их может спровоцировать антропогенное воздействие. Человечество не настолько мало, чтобы не влиять на природную обстановку. Оно стало геологическим фактором, а не только биологическим, оно меняет более фундаментальные вещи в биосфере, в земной коре.

А.Б. : Допустим, человечество сможет сократить выброс CO2. Но это лишь один из факторов , и не самый большой. Может ли это что-то изменить, привести к какому-то резкому улучшению ситуации?

А.К. : Очень важно, с точки зрения физики атмосферы и океана, понимать, что происходит. Происходят два процесса: это процесс естественной изменчивости климата - солнце, самое наглядное, сложные периодические процессы в океане, Атлантическом, Тихом.

Есть и более изученные вещи - перетоки тепла из атмосферы в океан и обратно, которые носят цикличный характер. Эти циклические процессы накладываются на постоянное воздействие, которое носит линейный характер.

За XXI век ожидается повышение температуры в лучшем случае на два градуса, но реально - на три или три с половиной. И при этом циклически будут происходит похолодания и потепления, причем потепления - гораздо быстрее. И совершенно не очевидно, что увеличение числа опасных гидрологических явлений при понижении температуры станет меньше.

А.Б. : Это очень сложно понять человеку, который не занимается этой проблемой и в основном смотрит научно-популярные передачи, где эти вопросы примитивизируются, упрощаются, но простые аргументы действуют на сознание простого человека, который смотрит на это со стороны.

Когда ему дают график изменения температуры в XX веке и говорят: смотрите, пока человек особенно не влиял на атмосферу, температура поднималась, а когда он начал влиять, когда индустриализация была более мощной после 1940 до 1970 года, когда ситуация должна была ухудшиться, мы наблюдали похолодание.

На основе таких графиков люди говорят, что человек на самом деле не влияет, есть какие-то более мощные факторы, не зависящие от нас. Поэтому разговоры про роль человека в глобальном потеплении - миф, за которым стоят те, кому это выгодно.

Е.З. : Начитает срабатывать кумулятивный эффект, воздействие человека идет по нарастающей. На каком-то этапе оно может не проявляться, но потом, по мере увеличения концентрации CO2, парниковых газов, оно рано или поздно проявляется фактически по всему земному шару. Как в развитых районах, так и на севере, в Арктике.

Антропогенный фактор накладывается на факторы астрономические, связанные с орбитой движения Земли, цикличность сильно проявляется и так далее. И когда все друг на друга накладывается, могут произойти совершенно непредсказуемые события.

И антропогенное воздействие будет все увеличиваться, даже если будут введены ограничения на производство и так далее. Очень много выпускается автомобилей, которые загрязняют атмосферу очень сильно. И другие факторы. Они никуда не уйдут.

А травяная и древесная растительность не увеличивается, а, наоборот, происходит деградация лесного покрова.

А.Б. : Но мы видели и сообщения другого рода, что в Бразилии вдруг начали расти леса Амазонки.

Е.З. : Это есть, но вы посмотрите, что в Америке творится? На юго-западе, в Калифорнии? Там массовые лесные пожары. Нужно время, чтобы после пожара лес восстановился. После пожара несколько лет проходит, прежде чем лес начинает подрастать. А где сухо, он просто перестает расти. Лес превращается в степь, пустыню и так далее.

А.Б. : Это серьезные факторы, но для обыденного сознания трудно это совместить с его собственной деятельностью. Можно придерживаться теории, что деятельность человека - это последняя капля, которая может перевесить экологический баланс на фоне более серьезных факторов. Но когда говорят, что есть такой фактор, как пятна на Солнце, активизация Солнца, который представляет собой мощный источник энергии, по сравнению с которым вся наша деятельность - мелочь, даже сравнивать невозможно.

То же показывают графики - когда Солнце активно, температура повышается, а когда менее активно - понижается, все это коррелируется. Потом говорят, что все зависит от того, по какой орбите Земля движется. Если орбита эллиптическая - становится холоднее. И когда все это человеку говорят, он думает: ну что по сравнению с такими космическими явлениями наши несчастные выбросы в атмосферу. Как можно убедить человека, что мы своими действиями можем этот баланс нарушить?

Е.З. : Надо как-то убеждать, потому что это действительно фактор не последний. Например, леса горят и без человека - сухие грозы и так далее. Но человеческая деятельность этому способствует. Каждый должен начинать с себя. Люди должны понимать, что от них многое зависит.

Один человек может сказать: я буду делать, что считаю нужным, все равно от меня ничего не зависит. Но людей - миллионы, и если каждый так будет считать, от этого лучше не будет. Косность человеческого мышления существует, к сожалению.

А.Б. : Как убедить человека, что его машина, на которой он проедет лишние пять километров, тоже влияет на климат, даже на фоне того, что Земля на эллиптической орбите, а не на какой-то другой?

А.К. : Российские климатологи, и не только российские, задумывались, как это наглядно показать. Вероятные реакции Солнца лет через 15-20 с высокой вероятностью снизят температуру на земном шаре примерно на 0,25 градуса. А антропогенное воздействие - как минимум на два градуса. Так же было и в 30-40 годы ХХ века.

И еще характерная вещь такая: прогреваются и стратосфера, и тропосфера. То есть у вас как бы пленка парниковая, и, если греется над пленкой и под пленкой, значит - лампочка стала греть сильнее. А если под пленкой греется, а над пленкой холодает - значит, пленка стала толще. Вот как-то так наглядно можно попытаться объяснить.

А.Б. : Вы допускаете вероятность, что мы действительно находимся между двумя ледниковыми периодами и что-то произойдет, и начнется похолодание на Земле?

Е.З. : Ваш вопрос говорит о том, что мы с коллегой говорим плохо. Безусловно, мы находимся между двумя ледниковыми периодами, тем, который закончился примерно 300 тыс лет назад, и тем, который начнется через несколько тысяч лет - может быть 20, может быть, 100. Об этом мой коллега как климатолог знает лучше. Но это будет абсолютно точно. Мы говорим об иных временных масштабах. В этих масштабах влияние человека на глобальное потепление не может рассматриваться, это сотни тысяч лет.

А.Б. : То есть мы можем до этого похолодания не дожить?

Е.З. : К сожалению, точно не доживем до глобального похолодания, даже из наших правнуков никто не доживет. Будут ли периоды похолодания в течение XXI века? Да, наверное будут. Мы живем в эпоху наложения различных вариаций, в том числе солнечных, на глобальный тренд.

_____________________________________________________________

Загрузить подкаст передачи "Пятый этаж" можно .