Скорость. Ускорение

1. При неравномерном движении скорость тела с течением времени изменяется. Рассмотрим самый простой случай неравномерного движения.

Движение, при котором скорость тела за любые равные промежутки времени изменяется на одно и то же значение, называют равноускоренным.

Например, если за каждые 2 с скорость тела изменялась на4 м/с, то движение тела является равноускоренным. Модуль скорости при таком движении может как увеличиваться, так и уменьшаться.

2. Пусть в начальный момент времени t 0 = 0 скорость тела равна v 0 . В некоторый момент времени t она стала равной v . Тогда изменение скорости за промежуток времени t t 0 = t равно v v 0 , а за единицу времени - . Это отношение называется ускорением . Ускорение характеризует быстроту изменения скорости.

Ускорением тела при равноускоренном движении называют векторную физическую величину, равную отношению изменения скорости тела к промежутку времени, за который это изменение произошло.

a = .

Единица ускорения в СИ - метр на секунду в квадрате (1 ):

[a ] === 1 .

За единицу ускорения принимают ускорение такого равноускоренного движения, при котором скорость тела за 1 с изменяется на 1 м/с.

3. Поскольку ускорение - величина векторная, необходимо выяснить, как оно направлено.

Пусть автомобиль движется прямолинейно, имея начальную скорость v 0 (скорость в момент времени t = 0) и скорость v в некоторый момент времени t . Модуль скорости автомобиля возрастает. На рисунке 22, а изображены вектор скорости автомобиля. Из определения ускорения, следует, что вектор ускорения направлен в ту же сторону, что и разность векторов v – v 0 . Следовательно в данном случае направление вектора ускорения совпадает с направлением движения тела (с направлением вектора скорости).

Пусть теперь модуль скорости автомобиля уменьшается (рис. 22б ). В этом случае направление вектора ускорения противоположно направлению движения тела (направлению вектора скорости).

4. Преобразовав формулу ускорения при равноускоренном прямолинейном движении, можно получить формулу для нахождения скорости тела в любой момент времени:

v = v 0 + at .

Если начальная скорость тела равна нулю, т. е. в начальный момент времени оно покоилось, то эта формула приобретает вид:

v = at .

5. При вычислении скорости или ускорения пользуются формулами, в которые входят не векторы, а проекции этих величин на координатную ось. Поскольку проекция суммы векторов равна сумме их проекций, то формула для проекции скорости на ось X имеет вид:

v x = v 0x + a x t ,

где v x - проекция скорости в момент времени t , v 0x - проекция начальной скорости, a x - проекция ускорения.

При решении задач необходимо учитывать знаки проекций. Так, в случае, изображенном на рисунке 22, а , проекции скоростей и ускорения на ось X положительны; модуль скоростис течением времени возрастает. В случае, изображенном на рисунке 22, б , проекции на ось X скоростей положительны, а проекция ускорения - отрицательна; модуль скорости с течением времени уменьшается.

6. Пример решения задачи

Скорость автомобиля при торможении уменьшилась от 23 до 15 м/с. Каково ускорение тела, если торможение длилось 5 с?

Дано :

Решение

v 0 = 23 м/с

v = 15 м/с

t = 5 с

Автомобиль движется равноускоренно и прямолинейно; модуль его скорости уменьшается.

Систему отсчета свяжем с Землей, ось X направим в сторону движения автомобиля (рис. 23), за начало отсчета времени примем начало торможения.

a ?

Запишем формулу для нахождения скорости при равноускоренном прямолинейном движении:

v = v 0 + at .

В проекциях на ось X получим

v x = v 0x + a x t .

Учитывая, что проекция ускорения тела на ось X отрицательна, а проекции скоростей на эту ось положительны, запишем: v = v 0 – at .

Откуда:

a = ;

a == 1,6 м/с 2 .

Ответ: a = 1,6 м/с 2 .

Вопросы для самопроверки

1. Какое движение называют равноускоренным?

2. Что называют ускорением равноускоренного движения?

3. По какой формуле вычисляется ускорение при равноускоренном движении?

4. Какова единица ускорения в СИ?

5. По какой формуле вычисляется скорость тела при равноускоренном прямолинейном движении?

6. Каков знак проекции ускорения на ось X по отношению к проекции скорости тела на эту же ось, если модуль его скорости увеличивается; уменьшается?

Задание 5

1. Чему равно ускорение автомобиля, если через 2 мин после начала движения из состояния покоя он приобрел скорость 72 км/ч?

2. Поезд, начальная скорость которого равна 36 км/ч, разгоняется с ускорением 0,5 м/ с 2 . Какую скорость приобретет поезд через 20 с?

3. Автомобиль, движущийся со скоростью 54 км/ч, останавливается у светофора в течение 15 с. Чему равно ускорение автомобиля?

4. Какую скорость приобретет велосипедист через 5 с после начала торможения, если его начальная скорость равна 10 м/с, а ускорение при торможении составляет 1,2 м/с 2 ?

1. Реальное механическое движение - это движение с изменяющейся скоростью. Движение, скорость которого стечением времени изменяется, называют неравномерным движением .

При неравномерном движении координату тола уже нельзя определить но формуле ​\(x=x_0+v_xt \) ​, так как значение скорости движения не является постоянным. Поэтому для характеристики быстроты изменения положения тела с течением времени при неравномерном движении вводят величину, называемую средней скоростью .

Средней скоростью ​\(\vec{v}_{ср} \) ​ неравномерного движения называют физическую величину, равную отношению перемещении \(\vec{s} \) тела ко времени ​\(t \) ​, за которое оно произошло: ​\(\vec{v}_{ср}=\frac{s}{t} \) ​.

Записанная формула определяет среднюю скорость как векторную величину. В практических целях этой формулой можно воспользоваться для определения модуля средней скорости лишь в том случае, когда тело движется вдоль прямой в одну сторону. Если же нужно определить среднюю скорость движения автомобиля от Москвы до Санкт-Петербурга и обратно, чтобы рассчитать расход бензина, то эту формулу применить нельзя, поскольку перемещение в этом случае равно нулю и средняя скорость тоже равна нулю. Поэтому на практике при определении средней скорости пользуются величиной, равной отношению пути ​\(l \) ​ ко времени ​\(t \) ​, за которое этот путь пройден: \(v_{ср}=\frac{l}{t} \) . Эта скорость обычно называется средней путевой скоростью.

2. Важно, что, зная среднюю скорость неравномерного движения на каком-либо участке траектории, нельзя определить положение тела на этой траектории в любой момент времени. Например, если средняя скорость движения автомобиля за 2 часа 50 км/ч, то мы не можем сказать, где он находился через 0,5 часа от начала движения, через 1 час, 1,5 часа и т.п., поскольку он мог первые полчаса двигаться со скоростью 80 км/ч, затем какое-то время стоять, а какое-то время ехать в пробке со скоростью 20 км/ч.

3. Двигаясь по траектории, тело проходит последовательно все её точки. В каждой точке траектории оно находится в определённые моменты времени и имеет какую-то скорость.

Мгновенной скоростью называют скорость тела в данный момент времени в данной точке траектории.

Предположим, некоторое тело совершает неравномерное прямолинейное движение (рис. 17), его скорость в точке О можно определить следующим образом: выделим на траектории участок AB, внутри которого находится точка О. Перемещение тела на этом участке — \(\vec{s}_1 \) совершено за время \(t_1 \) . Средняя скорость движения на этом участке – \(\vec{v}_{ср.1}=\frac{s_1}{t_1} \) . Уменьшим перемещение тела. Пусть оно равно \(\vec{s}_2 \) , а время движения - ​\(t_2 \) ​. Тогда средняя скорость за это время: \(\vec{v}_{ср.2}=\frac{s_2}{t_2} \) . Еще уменьшим перемещение, средняя скорость на этом участке: \(\vec{v}_{ср.3}=\frac{s_3}{t_3} \) .

При дальнейшем уменьшении перемещения и соответственно времени движения тела они станут такими маленькими, что прибор, например спидометр, перестанет фиксировать изменение скорости, и движение за этот малый промежуток времени можно считать равномерным. Средняя скорость на этом участке и есть мгновенная скорость тела в т.О.

Таким образом, мгновенной скоростью называют векторную физическую величину, равную отношению малого перемещения (​\(\Delta{\vec{s}} \) ​) к малому промежутку времени \(\Delta{t} \) , за которое это перемещение произошло: ​\(\vec{v}=\frac{\Delta{s}}{\Delta{t}} \) ​.

4. Одним из видов неравномерного движения является равноускоренное движение. Равноускоренным движением называют движение, при котором скорость тела за любые равные промежутки времени изменяется на одно и то же значение.

Слова «любые равные промежутки времени» означают, что какие бы равные промежутки времени (2 с, 1 с, доли секунды и т.п.) мы ни взяли, скорость всегда будет изменяться одинаково. При этом её модуль может как увеличиваться, так и уменьшаться.

5. Характеристикой равноускоренного движения, помимо скорости и перемещения, является ускорение.

Пусть в начальный момент времени ​\(t_0=0 \) ​скорость тела равна ​\(\vec{v}_0 \) ​. В некоторый момент времени ​\(t \) ​ она стала равной \(\vec{v} \) . Изменение скорости за промежуток времени ​\(t-t_0=t \) ​ равно ​\(\vec{v}-\vec{v}_0 \) ​ (рис.18). Изменение скорости за единицу времени равно: \(\frac{\vec{v}-\vec{v}_0}{t} \) . Эта величина и есть ускорение тела, она характеризует быстроту изменения скорости \(\vec{a}=\frac{\vec{v}-\vec{v}_0}{t} \) .

Ускорение тела при равноускоренном движении - векторная физическая величина, равная отношению изменения скорости тела к промежутку времени, за который это изменение произошло.

Единица ускорения ​\([a]=[v]/[t] \) ; ​\([a] \) ​​ = 1 м/с/1 с = 1 м/с 2 . 1 м/с 2 - это такое ускорение, при котором скорость тела изменяется за 1 с на 1 м/с.

Направление ускорения совпадает с направлением скорости движения, если модуль скорости увеличивается, ускорение направлено противоположно скорости движения, если модуль скорости уменьшается.

6. Преобразовав формулу ускорения, можно получить выражение для скорости тела при равноускоренном движении: \(\vec{v}=\vec{v}_0+\vec{a}t \) . Если начальная скорость тела ​\(v_0=0 \) ​, то \(\vec{v} = \vec{a}t \) .

Чтобы определить значение скорости равноускоренного движения в любой момент времени, следует записать уравнение для проекции скорости на ось ОХ. Оно имеет вид: \(v_x = v_{0x} + a_xt \) ; если\(v_{0x}=0 \) , то \(v_x = a_xt \) .

7. Как видно из формулы скорости равноускоренного движения, она линейно зависит от времени. Графиком зависимости модуля скорости от времени является прямая, составляющая некоторый угол с осью абсцисс (осью времени). На рисунке 19 приведены графики зависимости модуля скорости от времени.

График 1 соответствует движению без начальной скорости с ускорением, направленным так же, как и скорость; график 2 - движению с начальной скоростью \(v_{02} \) и с ускорением, направленным так же, как и скорость; график 3 - движению с начальной скоростью \(v_{03} \) и с ускорением, направленным в сторону, противоположную направлению скорости.

8. На рисунке приведены графики зависимости проекции скорости равноускоренного движения от времени (рис. 20).

График 1 соответствует движению без начальной скорости с ускорением, направленным вдоль положительного направления оси X; график 2 - движению с начальной скоростью \(v_{02} \) , с ускорением и скоростью, направленными вдоль положительного направления оси X; график 3 - движению с начальной скоростью \(v_{03} \) : до момента времени \(t_0 \) направление скорости совпадает с положительным направлением оси X, ускорение направлено в противоположную сторону. В момент времени \(t_0 \) скорость равна нулю, а затем и скорость, и ускорение направлены в сторону, противоположную положительному направлению оси X.

9. На рисунке 21 приведены графики зависимости проекции ускорения равноускоренного движения от времени.

График 1 соответствует движению, проекция ускорения которого положительна, график 2 - движению, проекция ускорения которого отрицательна.

10. Формулу перемещения тела при равноускоренном движении можно получить, используя график зависимости проекции скорости этого движения от времени (рис. 22).

Выделим на графике малый участок ​\(ab \) ​ и опустим перпендикуляры из точек​ \(a \) ​ и ​\(b \) ​ на ось абсцисс. Если промежуток времени ​\(\Delta{t} \) ​, соответствующий участку ​\(cd \) ​ на оси абсцисс мал, то можно считать, что скорость в течение этого промежутка времени не изменяется и тело движется равномерно. В этом случае фигура ​\(cabd \) ​ мало отличается от прямоугольника и её площадь численно равна проекции перемещения тела за время, соответствующее отрезку ​\(cd \) ​.

На такие полоски можно разбить всю фигуру ОАВС, и её площадь равна сумме площадей всех полосок. Следовательно, проекция перемещения тела за время ​\(t \) ​ численно равна площади трапеции ОАВС. Площадь трапеции равна произведению полусуммы её оснований на высоту: ​\(S_x= \frac{1}{2}(OA+BC)OC \) ​.

Как видно из рисунка, ​\(OA=v_{0x},BC=v_x,OC=t \) ​. Отсюда следует, что проекция перемещения выражается формулой \(S_x= \frac{1}{2}(v_{0x}+v_x)t \) . Так как \(v_x = v_{0x} + a_{xt} \) , то \(S_x= \frac{1}{2}(2v_{0x} + a_xt)t \) , отсюда \(S_x=v_{0x}t+ \frac{a_xt^2}{2} \) . Если начальная скорость равна нулю, то формула имеет вид \(S_x=\frac{at^2}{2} \) . Проекция перемещения равна разности координат \(S_x=x-x_0 \) , поэтому: \(x-x_0=v_{0x}t+\frac{at^2}{2} \) , или \(x=x_{0x}+v_{0x}t+\frac{at^2}{2} \) .

Полученная формула позволяет определить положение (координату) тела в любой момент времени, если известны начальная скорость, начальная координата и ускорение.

11. На практике часто используют формулу или \(v^2_x-v^2_{0x}=2a_xs_x \) , или \(v^2-v^2_{0}=2as \) .

Если начальная скорость тела равна нулю, то: ​\(v^2_x=2a_xs_x \) ​.

Полученная формула позволяет рассчитать тормозной путь транспортных средств, т.е. путь, который проезжает, например, автомобиль до полной остановки. При некотором ускорении движения, которое зависит от массы автомобиля и силы тяги двигателя, тормозной путь тем больше, чем больше начальная скорость автомобиля.

Часть 1

1. Hа рисунке приведены графики зависимости пути и скорости тела от времени. Какой график соответствует равноускоренному движению?

2. Автомобиль, начав двигаться из состояния покоя но прямолинейной дороге, за 10 с приобрел скорость 20 м/с. Чему равно ускорение автомобиля?

1) 200 м/с 2
2) 20 м/с 2
3) 2 м/с 2
4) 0,5 м/с 2

3. На рисунках представлены графики зависимости координаты от времени для четырёх тел, движущихся вдоль оси ​\(Оx \) ​. У какого из тел в момент времени ​\(t_1 \) ​ скорость движения равна нулю?

4. На рисунке представлен график зависимости проекции ускорения от времени для тела, движущегося прямолинейно вдоль оси ​\(Оx \) ​.

Равноускоренному движению соответствует участок

1) только ОА
2) только АВ
3) только ОА и ВС
4) только CD

5. При изучении равноускоренного движения измеряли путь, пройденный телом из состояния покоя за последовательные равные промежутки времени (за первую секунду, за вторую секунду и т.д.). Полученные данные приведены в таблице.

Чему равен путь, пройденный телом за третью секунду?

1) 4 м
2) 4,5 м
3) 5 м
4) 9 м

6. На рисунке представлены графики зависимости скорости движения от времени для четырёх тел. Тела движутся по прямой.

Для какого(-их) из тел - 1, 2, 3 или 4 - вектор ускорения направлен противоположно вектору скорости?

1) только 1
2) только 2
3) только 4
4) 3 и 4

7. Используя график зависимости скорости движения тела от времени, определите его ускорение.

Пример 1. Кинематическое уравнение движения материальной точки по прямой имеет вид , где
,
,
. Для момента времени
определить: 1) координатуточки; 2) мгновенную скорость; 3) мгновенное ускорение; 4) среднюю скорость за промежуток времени с момента начала движения до
.

1. Координату точки, для которой известно кинематическое уравнение движения, найдем, подставив в уравнение движения заданное значение времени :

.

Подставив в это выражение значения постоянных А, В, С, и , произведем вычисления:

2. Уравнение, описывающее зависимость скорости от времени найдем, продифференцировав координату по времени:
. Тогда в заданный момент временимгновенная скорость
.

Подставим сюда значения В, С, и произведем вычисления:

.

Знак минус в полученном значении скорости указывает на то, что в данный момент времени скорость материальной точки направлена в сторону, противоположную положительному направлению оси X.

3. Функциональную зависимость ускорения от времени найдем, используя определение ускорения, как второй производной от координаты по времени:

.

Подставим значения С, и произведем вычисления


.

4. По определению, среднее значение скорости равно:
, гдеS – путь, пройденный точкой за время
.

Если в течение рассматриваемого промежутка времени скорость точки не изменяется по направлению, то

,

где x(t 1) и x(t 0) – координаты материальной точки в конечный и начальный моменты времени, соответственно.

В нашем случае в начальный момент времени
с скорость точки равна 2 м/с, а в момент временискорость -
. Следовательно, в некоторый момент временискорость точки обращается в нуль, т.е. в этот момент времени материальная точка изменяет направление своего движения. Тогда весь путь, пройденный точкой можно представить в виде:
, где
- путь, пройденный точкой до остановки, а
- путь, пройденный в обратном направлении.

Найдем момент времени, в который скорость точки равна нулю:
.

Отсюда
. Подставив численные значения, получим:=1,155 с.

Тогда =7,08 м,

=4 м,

Следовательно S =(7,08-4)+(7,08-4)=6,16 м, средняя скорость
.

Пример 2. Тело массой 10 кг движется вверх по наклонной плоскости. На тело действует сила F=100 Н, направленная вверх под углом =
к поверхности наклонной плоскости. Коэффициент трения=0,1. Угол наклона плоскости=
. Определить ускорение, с которым движется тело.

Решение.

При движении тела кроме силы на него действуют также: сила тяжести -
, сила реакции опоры -и сила трения -, показанные на рисунке.

Ускорение тела определим, используя основной закон динамики, который в векторной форме в условиях данной задачи имеет вид:

(1)

Направим ось X вдоль наклонной плоскости в сторону движения тела, а ось Y - перпендикулярно ей.

Запишем уравнение (1) в проекциях на выбранные оси координат.

На ось X: (2)

на ось Y: (3)

По определению силы трения:
.

Силу реакции опоры найдем из уравнения (3):

Подставим это выражение в (2) и получим рабочую формулу: .

Проведя подстановку данных и вычисления, найдем: а=3,3м/с 2 .

Пример 3. К ободу однородного диска радиусом 0,2 м, вращающегося вокруг своей оси, приложена касательная сила F=98,1 Н. При вращении, на диск действует момент сил трения
Найти массу диска, если известно, что диск вращается с угловым ускорением=100
.

Р

М тр = 4,9 Н м

- 100 рад/c 2

ешение:

Известно, что момент инерции диска относительно оси, проходящей через его центр, равен:
.

Отсюда масса диска:
(1)

Воспользовавшись законом динамики вращательного движения твердого тела, найдем момент инерции J:

, (2)

где М - результирующий момент сил, под действием которого вращается диск. Запишем уравнение (2) в проекции на ось вращения (с учетом направлений моментов).

Здесь
– момент силыF относительно оси вращения.

Подставляя (2) и (3) в (1) находим:

.

Проведя необходимые расчеты, получим: m=7,36 кг.

Пример 4 . Два свинцовых шара массами
=2 кг и
=3 кг подвешены на нитях длинойL=70 см. Первоначально шары соприкасаются между собой, затем меньший шар отклонили на угол
и отпустили. Считая удар центральным и неупругим, определить: 1) высоту h, на которую поднимутся шары после удара; 2) энергию
, израсходованную на деформацию шаров при ударе.

Решение:

Проведем анализ движения тел в данной задаче. Движение шаров можно разбить на три этапа.

На первом этапе шар массой m 1 движется под действием только консервативных сил (сила трения отсутствует). Следовательно, на этом участке движения выполняется закон сохранения механической энергии:

, (1)

где
- начальная высота, на которой находился отклоненный шар,- скорость этого шара непосредственно перед ударом.

Второй этап – неупругое соударение шаров, при котором выполняется только закон сохранения импульса:

где и- скорости шаров до удара,- скорость шаров, движущихся как единое целое, непосредственно после удара.

С учетом того, что
, получим:

. (2)

Из уравнения (2) очевидно, что скорость шаров сразу после удара будет направлена вдоль оси Х, также как и скоростьпервого шара непосредственно перед соударением. Поэтому, уравнение (2) в проекциях на ось Х будет иметь вид:

. (3)

На третьем этапе движения шаров после удара снова выполняется закон сохранения механической энергии:

. (4)

Отсюда искомая высота

Используя уравнения (3) и (1), получим:
,

Тогда
.

Энергия, израсходованная на деформацию шаров при ударе:

. (5)

Проведя подстановку и преобразования, получим:

.

Вычислим: 1) h=5,6 см; 2)
=4,12 Дж.

Пример 5. Кинетическая энергия Е к электрона равна
. Определить скорость электрона, его релятивистские массу и импульс, а также полную энергию.