Система с 2 неизвестными. Урок "уравнения с двумя неизвестными"

В этой главе содержится вспомогательный материал, относящийся к решению систем линейных уравнений (т. е. уравнений первой степени). Для исследования таких систем вводится важное понятие определителя. Результаты этой главы, - интересные и сами по себе, и в приложениях к аналитической геометрии, необходимы для понимания дальнейших глав книги,

§ 1. Системы уравнений с двумя и тремя неизвестными

При решении одного уравнения первой степени с одним неизвестным

возможны три случая:

1. Если , уравнение имеет единственное решение

2. Если уравнение имеет бесчисленное множество решений; любое число х удовлетворяет уравнению (так как ) и, значит, является его решением.

3. Если но уравнение не имеет решений, так как при подстановке вместо х любого числа в левой части получается нуль, в то время как правая часть отлична от нуля.

Из дальнейшего будет видно, что аналогичные три случая имеют место и при решении произвольной системы линейных уравнений.

Рассмотрим систему двух уравнений с двумя неизвестными:

Решением такой системы называется каждая пара значений подстановка которых вместо х и у обращает оба уравнения в тождества. Чтобы решить эту систему, умножим первое уравнение на второе - на и сложим их; мы получим

Отсюда, если , будем иметь

Аналогично находим, что

Таким образом, в случае, когда система (1) имеет единственное решение.

Выражения, стоящие в числителях и знаменателях правых частей равенств (2) и (3), устроены одинаково. А именно, рассмотрим квадратную таблицу чисел

Такие таблицы называются матрицами. Горизонтальные ряды образующих матрицу чисел называются ее строками, вертикальные - столбцами. Числа составляющие матрицу, называются ее элементами. В нашем примере мы имеем квадратную матрицу второго порядка. Диагональ, идущая из левого верхнего угла матрицы в правый нижний, называется ее главной диагональю. Знаменатели дробей, стоящих в правых частям равенств (2) и (3), устроены следующим образом: из произведения элементов, стоящих по главной диагонали матрицы А, вычитается произведение элементов, стоящих во второй, или побочной, ее диагонали:

Полученное выражение называется определителем матрицы А (определителем второго порядка) и обозначается так:

В этих обозначениях числитель дроби, стоящей в прарой части равенства (2), представляет собой определитель

получающийся из знаменателя заменой первого столбца столбцом свободных членов, а числитель дроби, стоящей в правой части равенства определитель

получающийся из знаменателя заменой второго столбца столбцом свободных членов уравнений системы (1),

Итак, мы нашли, что если то

Это - формулы Крамера для решения системы двух уравнений с двумя неизвестными.

Пример. Пользуясь формулами Крамера, решить систему уравнений

Рассмотрим теперь случай, когда

Равенство (4) можно переписать так:

т. е. в этом случае коэффициенты при неизвестных про порциональны. Если, кроме того, и

то и свободные члены пропорциональны коэффициентам при неизвестных, и мы имеем на самом деле одно уравнение с двумя неизвестными - оно допускает бесчисленное множество решений,

Наконец, если

т. е. если

то уравнения, очевидно, противоречат друг другу и система не имеет ни одного решения.

Рассмотрим теперь систему трех линейных уравнений с тремя неизвестными:

Решением этой системы называется каждая такая тройка чисел при подстановке которых все три уравнения обращаются в тождества. Умножив первое уравнение второе - на третье - на

и сложив их все, мы получим

(коэффициенты при y и z, как легко видеть, будут равны нулю). Отсюда, если коэффициент при х отличен от нуля, получаем

Посмотрим, как устроено выражение, стоящее в знаменателе правой части равенства (6). Для этого рассмотрим квадратную таблицу (матрицу третьего порядка)

Будем снова называть главной диагональю диагональ, идущую из левого верхнего угла этой матрицы в правый нижний, и побочной - диагональ, идущую из левого нижнего угла в правый верхний.

Знаменатель в формуле (6) представляет собой алгебраическую сумму шести членов, каждый из которых является произведением трех элементов, взятых по одному из каждой строки и каждого столбца матрицы А, причем знак плюс имеет произведение элементов,

принадлежащих главной диагонали, и два произведения элементов, образующих в матрице (равнобедренные) треугольники с основаниями, параллельными главной диагонали (рис. 1, а), а знак минус имеет произведение элементов, принадлежащих побочной диагонали, и два произведения элементов, образующих треугольники с основаниями, параллельными побочной диагонали (рис. 1, б).

Такое выражение называется определителем, составленным из матрицы А (определителем третьего порядка), и обозначается так:

Таким образом, по определению,

Выражение, стоящее в числителе правой части формулы (6), получается из знаменателя, если каждую букву а заменить буквой с тем же номером, т. е.

Аналогично можно показать, что при из системы (5) следуют равенства

где - определитель, получающийся из определителя заменой столбца столбцом свободных

членов. Это - формулы Крамера для системы трех уравнений с тремя неизвестными.

Пример. Решить по формулам Крамера систему уравнений

Следовательно,

Для того, чтобы понять, что такое определитель порядка, рассмотрим снова определители второго и третьего порядков:

Мы видим, что определитель есть алгебраическая сумма всевозможных произведений его элементов, взятых по одному из каждой строки и каждого столбца.

Каждое такое произведение называется членом определителя. В каждом члене определителя второго порядка расположим множители в порядке следования столбцов:

и рассмотрим соответствующие расположения (перестановки) нижних индексов (указывающих номера строк):

В первом произведении эти индексы расположены по возрастанию, и соответствующее произведение входит в определитель со знаком плюс; во втором они, как говорят, образуют беспорядок, или инверсию, 2, 1, и соответствующий член входит в определитель со знаком минус.

В определителе третьего порядка шесть членов. Если в каждом из них расположить множители в порядке следования столбцов, то в членах, входящих со знаком плюс, нижние индексы образуют перестановки

Рассмотрим три пары индексов 1, 2; 1, 3 и 2, 3 из первой перестановки 1, 2, 3; числа каждой пары расположены по возрастанию - в этой перестановке нуль инверсий. Во второй перестановке 2, 3, 1 три пары индексов: 2, 3; 2, 1 и 3, 1, две из которых и 3,1, образуют инверсии. В третьей перестановке 3, 1, 2 - три пары индексов 3, 1; 1, 2 и 3, 2, из которых две и 3, 2, образуют инверсии.

Произведениям, входящим со знаком минус, соответствуют три перестановки индексов

причем в первой, как нетрудно видеть, три инверсии:

3, 2; 3, 1 и 2, 1, а во второй и третьей - по одной; соответственно 2, 1 и 3, 2. Таким образом, со знаком плюс входят те члены, у которых в перестановке индексов четное число инверсий, а со знаком минус - те, у которых это число нечетно.

Для дальнейшего нам будет удобно ввести для определителей второго и третьего порядков новые обозначения:

где все элементы определителя обозначены одной и той же буквой а с двумя индексами, первый из которых указывает номер строки, в которой стоит этот элемент, а второй - номер соответствующего столбца. (Элементы,

Например, первого определителя читаются так: а один один, а один два, а два один, а два два.) Тогда

где знак плюс стоит перед теми произведениями, в которых перестановка четная (т. е. имеет четное число инверсий), и знак минус - перед теми, где она нечетна. Это можно записать еще и так:

где а есть число инверсий в перестановке первых индексов, (вторые индексы расположены в порядке возрастания), а суммирование распространяется на все шесть перестановок из трех чисел 1, 2, 3.

Видеоурок 2: Решение систем уравнений

Лекция: Простейшие системы уравнений с двумя неизвестными

Уравнения с двумя неизвестными

В этой теме мы рассмотрим с Вами уравнения, которые содержат две неизвестных. Зачастую, чтобы решить подобного рода уравнения, нам необходимо иметь столько уравнений, сколько содержится неизвестных.

Уравнения с двумя неизвестными имеют следующий вид:

a, b, c, d - это числа, стоящие рядом в переменными (х, у) .

Решить систему уравнения - это означает найти такое значение переменных, которые приведут оба уравнения в верное равенство.

Каждое из уравнений может иметь несколько ответов, однако ответом на систему уравнений будет та пара чисел, которая будет подходить обоим уравнениям.


Трактовать решение системы уравнений можно аналитическим способом, некоторые из которых мы рассмотрим позднее, и графическим способом.


Графический способ решения системы уравнений

Для каждого из заданных уравнений можно построить свой график на плоскости - это может быть любой из известных графиков функции. Решением системы уравнений будет считаться точка, в которой будут пересекаться графики. Данная точка будет иметь свою координату, которой будет соответствовать ордината и абсцисса, которые будут являться решением.

На графике можно получить несколько видов решений:

1. Множество решений. Например, если одно уравнение будет представлять тригонометрическую функцию, а вторая - это прямая, например, параллельная оси ОХ, то данная прямая будет пересекать график второй функции во множестве точек с некой периодичностью.

2. Одно решение. В таком случае графики функций будут пересекаться в одной точке. Обычно такая картина наблюдается, если графиками уравнений являются прямые.

3. Два решения. То есть графики уравнений будут пересекаться в двух точках. Обычно такое наблюдается в том случае, если графиком одной из функций является парабола.

4. Не иметь решений. Некоторые графики функций и вовсе могут не пересекаться, в таком случае решений система иметь не будет.

Основные способы аналитического решения

Решать с помощью графика не всегда удобно, поскольку точка пересечения функций может находиться достаточно далеко от начала координат, или же она будет иметь дробные координаты. Чтобы наиболее точно найти решение системы, лучше воспользоваться аналитическими способами решения.

1. Подстановка


Чтобы решить систему методом подстановки, необходимо в одном из уравнений выразить одну из неизвестных и подставить её во второе уравнение.

x = (c – by) / a

d (c – by) / a + ey = f

После данной подстановки одно из уравнений будет иметь одну неизвестную, после чего уравнение решается известным способом. Когда одна из переменных найдена, её значение подставляется в первое уравнение и, таким образом, находится и вторая переменная.

2. Метод сложения или вычитание уравнений

Данный метод позволяет избавиться от одной из неизвестных. Итак, давайте представим, что вы желаете избавиться от переменной "х". Чтобы данный способ имел место, Вам необходимо первое уравнение почленно домножить на d, а второе почленно домножить на a. После этого Вы получите одинаковые коэффициенты при переменной "х". Если вычтите одно уравнение из другого, у Вас получится избавиться от одной неизвестной. Дальше уравнение известными способами.




Глава 8. Системы уравнений

8.2. Система двух линейных уравнений с двумя неизвестными

Определение

Несколько уравнений, в которых одноименные неизвестные обозначают одну и ту же величину, называются системой уравнений .
Система вида называется нормальной формой системы двух линейных уравнений с двумя неизвестными.
Решить такую систему - значит найти множество всех общих для обоих уравнений решений.

А как же решать такую систему?

Решать такую систему можно, например, графически. Обычно такая система графически представляется двумя прямыми линиями, и общим решением этих уравнений (решением системы) будут координаты общей точки двух прямых. Здесь возожны три случая:
1) Прямые (графики) имеют только одну общую точку (пересекаются) - система уравнений имеет единственное решение и она называетсяопределенной .
2) Прямые (графики) не имеют общих точек (параллельны) - система не имеет решения и она называется несовместной .
3) Прямые (графики) имеют бесконечно много общих точек (совпадают) - система имеет бесконечное множество решений и называется неопределенной.

Что-то я пока не понимаю. Может с примерами понятнее будет?

Конечно, сейчас приведем по примеру на каждый случай и все сразу станет понятнее.

Начнем с примера, когда система определенная (имеет единственное решение). Возьмем систему . Построим графики этих функций.

Они пересекаются только в одной точке, следовательно решением этой системы являются только координаты точки: , .

Теперь приведем пример несовместной системы (той, которая не имеет решения). Рассмотрим такую систему .

В этом случае система противоречива: левые части равные, а правые части при этом различны. Графики не имеют общих точек (параллельны), следовательно система не имеет решения.

Ну теперь остался последний случай, когда система неопределенная (имеет бесконечное множество решений). Вот пример такой системы: . Построим графики этих уравнений.

Прямые (графики) имеют бесконечно много общих точек (совпадают), значит система имеет бесконечное множество решений. В этом случае уравнения системы равносильны (умножив второе уравнение на 2 , получим первое уравнение).

Наиболее важным является первый случай. Единственное решение такой системы всегда можно найти графически - иногда точно, а чаще всего приближенно с необходимой степенью точности.

Определение

Две системы уравнений называются равносильными (эквивалентными) , если все решения каждой из них являются и решениями другой (множества решений совпадают) или если обе не имеют решений.

Системы уравнений получили широкое применение в экономической отрасли при математическом моделировании различных процессов. Например, при решении задач управления и планирования производства, логистических маршрутов (транспортная задача) или размещения оборудования.

Системы уравнения используются не только в области математики, но и физики, химии и биологии, при решении задач по нахождению численности популяции.

Системой линейных уравнений называют два и более уравнения с несколькими переменными, для которых необходимо найти общее решение. Такую последовательность чисел, при которых все уравнения станут верными равенствами или доказать, что последовательности не существует.

Линейное уравнение

Уравнения вида ax+by=c называют линейными. Обозначения x, y - это неизвестные, значение которых надо найти, b, a - коэффициенты при переменных, c - свободный член уравнения.
Решение уравнение путем построение его графика будет иметь вид прямой, все точки которой являются решением многочлена.

Виды систем линейных уравнений

Наиболее простыми считаются примеры систем линейных уравнений с двумя переменными X и Y.

F1(x, y) = 0 и F2(x, y) = 0, где F1,2 - функции, а (x, y) - переменные функций.

Решить систему уравнений - это значит найти такие значения (x, y), при которых система превращается в верное равенство или установить, что подходящих значений x и y не существует.

Пара значений (x, y), записанная в виде координат точки, называется решением системы линейных уравнений.

Если системы имеют одно общее решение или решения не существует их называют равносильными.

Однородными системами линейных уравнений являются системы правая часть которых равна нулю. Если правая после знака "равенство" часть имеет значение или выражена функцией, такая система неоднородна.

Количество переменных может быть гораздо больше двух, тогда следует говорить о примере системы линейных уравнений с тремя переменными или более.

Сталкиваясь с системами школьники предполагают, что количество уравнений обязательно должно совпадать с количеством неизвестных, но это не так. Количество уравнений в системе не зависит от переменных, их может быть сколь угодно много.

Простые и сложные методы решения систем уравнений

Не существует общего аналитического способа решения подобных систем, все методы основаны на численных решениях. В школьном курсе математики подробно описаны такие методы как перестановка, алгебраическое сложение, подстановка, а так же графический и матричный способ, решение методом Гаусса.

Основная задача при обучении способам решения - это научить правильно анализировать систему и находить оптимальный алгоритм решения для каждого примера. Главное не вызубрить систему правил и действий для каждого способа, а понять принципы применения того или иного метода

Решение примеров систем линейных уравнений 7 класса программы общеобразовательной школы довольно простое и объяснено очень подробно. В любом учебнике математике этому разделу отводится достаточно внимания. Решение примеров систем линейных уравнений методом Гаусса и Крамера более подробно изучают на первых курсах высших учебных заведений.

Решение систем методом подстановки

Действия метода подстановки направлены на выражение значения одной переменной через вторую. Выражение подставляется в оставшееся уравнение, затем его приводят к виду с одной переменной. Действие повторяется в зависимости от количества неизвестных в системе

Приведем решение примера системы линейных уравнений 7 класса методом подстановки:

Как видно из примера, переменная x была выражена через F(X) = 7 + Y. Полученное выражение, подставленное во 2-е уравнение системы на место X, помогло получить одну переменную Y во 2-е уравнении. Решение данного примера не вызывает трудностей и позволяет получить значение Y. Последний шаг это проверка полученных значений.

Решить пример системы линейных уравнений подстановкой не всегда возможно. Уравнения могут быть сложными и выражение переменной через вторую неизвестную окажется слишком громоздким для дальнейших вычислений. Когда неизвестных в системе больше 3-х решение подстановкой также нецелесообразно.

Решение примера системы линейных неоднородных уравнений:

Решение с помощью алгебраического сложения

При поиске решении систем методом сложения производят почленное сложение и умножение уравнений на различные числа. Конечной целью математических действий является уравнение с одной переменной.

Для применений данного метода необходима практика и наблюдательность. Решить систему линейных уравнений методом сложения при количестве переменных 3 и более непросто. Алгебраическое сложение удобно применять когда в уравнениях присутствуют дроби и десятичные числа.

Алгоритм действий решения:

  1. Умножить обе части уравнения на некое число. В результате арифметического действия один из коэффициентов при переменной должен стать равным 1.
  2. Почленно сложить полученное выражение и найти одно из неизвестных.
  3. Подставить полученное значение во 2-е уравнение системы для поиска оставшейся переменной.

Способ решения введением новой переменной

Новую переменную можно вводить, если в системе требуется найти решение не более чем для двух уравнений, количество неизвестных тоже должно быть не больше двух.

Способ используется, чтобы упростить одно из уравнений, вводом новой переменной. Новое уравнение решается относительно введенной неизвестной, а полученное значение используется для определения первоначальной переменной.

Из примера видно, что введя новую переменную t удалось свести 1-е уравнение системы к стандартному квадратному трехчлену. Решить многочлен можно отыскав дискриминант.

Необходимо найти значение дискриминанта по известной формуле: D = b2 - 4*a*c, где D - искомый дискриминант, b, a, c - множители многочлена. В заданном примере a=1, b=16, c=39, следовательно, D=100. Если дискриминант больше нуля, то решений два: t = -b±√D / 2*a, если дискриминант меньше нуля, то решение одно: x= -b / 2*a.

Решение для полученных в итоге системы находят методом сложения.

Наглядный метод решения систем

Подходит для систем с 3-мя уравнениями. Метод заключается в построении на координатной оси графиков каждого уравнения, входящего в систему. Координаты точек пересечения кривых и будут общим решением системы.

Графический способ имеет ряд нюансов. Рассмотрим несколько примеров решения систем линейных уравнений наглядным способом.

Как видно из примера, для каждой прямой было построено две точки, значения переменной x были выбраны произвольно: 0 и 3. Исходя из значений x, найдены значения для y: 3 и 0. Точки с координатами (0, 3) и (3, 0) были отмечены на графике и соединены линией.

Действия необходимо повторить для второго уравнения. Точка пересечения прямых является решением системы.

В следующем примере требуется найти графическое решение системы линейных уравнений: 0,5x-y+2=0 и 0,5x-y-1=0.

Как видно из примера, система не имеет решения, потому что графики параллельны и не пересекаются на всем своем протяжении.

Системы из примеров 2 и 3 похожи, но при построении становится очевидно, что их решения разные. Следует помнить, что не всегда можно сказать имеет ли система решение или нет, всегда необходимо построить график.

Матрица и ее разновидности

Матрицы используются для краткой записи системы линейных уравнений. Матрицей называют таблицу специального вида, заполненную числами. n*m имеет n - строк и m - столбцов.

Матрица является квадратной, когда количество столбцов и строк равно между собой. Матрицей - вектором называется матрица из одного столбца с бесконечно возможным количеством строк. Матрица с единицами по одной из диагоналей и прочими нулевыми элементами называется единичной.

Обратная матрица - это такая матрица при умножении на которую исходная превращается в единичную, такая матрица существует только для исходной квадратной.

Правила преобразования системы уравнений в матрицу

Применительно к системам уравнений в качестве чисел матрицы записывают коэффициенты и свободные члены уравнений, одно уравнение - одна строка матрицы.

Строка матрицы называется ненулевой, если хотя бы один элемент строки не равен нулю. Поэтому если в каком-либо из уравнений количество переменных разнится, то необходимо на месте отсутствующей неизвестной вписать нуль.

Столбцы матрицы должны строго соответствовать переменным. Это означает что коэффициенты переменной x могут быть записаны только в один столбец, например первый, коэффициент неизвестной y - только во второй.

При умножении матрицы все элементы матрицы последовательно умножаются на число.

Варианты нахождения обратной матрицы

Формула нахождения обратной матрицы довольно проста: K -1 = 1 / |K|, где K -1 - обратная матрица, а |K| - определитель матрицы. |K| не должен быть равен нулю, тогда система имеет решение.

Определитель легко вычисляется для матрицы "два на два", необходимо лишь помножить друг на друга элементы по диагонали. Для варианта "три на три" существует формула |K|=a 1 b 2 c 3 + a 1 b 3 c 2 + a 3 b 1 c 2 + a 2 b 3 c 1 + a 2 b 1 c 3 + a 3 b 2 c 1 . Можно воспользоваться формулой, а можно запомнить что необходимо взять по одному элементу из каждой строки и каждого столбца так, чтобы в произведении не повторялись номера столбцов и строк элементов.

Решение примеров систем линейных уравнений матричным методом

Матричный способ поиска решения позволяет сократить громоздкие записи при решении систем с большим количеством переменных и уравнений.

В примере a nm - коэффициенты уравнений, матрица - вектор x n - переменные, а b n - свободные члены.

Решение систем методом Гаусса

В высшей математике способ Гаусса изучают совместно с методом Крамера, а процесс поиска решения систем так и называется метод решения Гаусса - Крамера. Данные способы используют при нахождении переменных систем с большим количеством линейных уравнений.

Метод Гаусса очень похож на решения с помощью подстановок и алгебраического сложения, но более систематичен. В школьном курсе решение способом Гаусса применяется для систем из 3 и 4 уравнений. Цель метода состоит в приведении системы к виду перевернутой трапеции. Путем алгебраических преобразований и подстановок находится значение одной переменной в одном из уравнении системы. Второе уравнение представляет собой выражение с 2-мя неизвестными, ну а 3 и 4 - соответственно с 3-мя и 4-мя переменными.

После приведения системы к описанному виду, дальнейшее решение сводится к последовательной подстановке известных переменных в уравнения системы.

В школьных учебниках для 7 класса пример решения методом Гаусса описан следующим образом:

Как видно из примера, на шаге (3) было получено два уравнения 3x 3 -2x 4 =11 и 3x 3 +2x 4 =7. Решение любого из уравнений позволит узнать одну из переменных x n .

Теорема 5, о которой упоминается в тексте, гласит что если одно из уравнений системы заменить равносильным, то полученная система будет также равносильна исходной.

Метод Гаусса труден для восприятия учеников средней школы, но является одним из наиболее интересных способов для развития смекалки детей, обучающихся по программе углубленного изучения в математических и физических классах.

Для простоты записи вычислений принято делать следующим образом:

Коэффициенты уравнений и свободные члены записываются в виде матрицы, где каждая строка матрицы соотносится с одним из уравнений системы. отделяет левую часть уравнения от правой. Римскими цифрами обозначаются номера уравнений в системе.

Сначала записывают матрицу, с которой предстоит работать, затем все действия проводимые с одной из строк. Полученную матрицу записывают после знака "стрелка" и продолжают выполнять необходимые алгебраические действия до достижения результата.

В итоге должна получиться матрица в которой по одной из диагоналей стоят 1, а все другие коэффициенты равны нулю, то есть матрицу приводят к единичному виду. Нельзя забывать производить вычисления с цифрами обеих частей уравнения.

Данный способ записи менее громоздкий и позволяет не отвлекаться на перечисление многочисленных неизвестных.

Свободное применение любого способа решения потребует внимательности и определенного опыта. Не все методы имеют прикладной характер. Какие-то способы поиска решений более предпочтительны в той иной области деятельности людей, а другие существуют в целях обучения.

Применение уравнений широко распространено в нашей жизни. Они используются во многих расчетах, строительстве сооружений и даже спорте. Уравнения человек использовал еще в древности и с тех пор их применение только возрастает. Наверняка многие знают, что уравнение представляет собой некое тождество с неизвестной, которую необходимо определить, чтобы решить уравнение и получить равные значения левой и правой частей. Чтобы решить данного рода уравнения необходимо перенести в левую сторону все известные значения, а в правую все неизвестные. Решить данные уравнения можно с помощью 3 методов:

1) подстановки;

2) сложения;

3) построения графиков.

Выбор метода зависит от целевого уравнения. Решить онлайн уравнение с двумя неизвестными можно на многих сайтах, однако слепо доверять полученному результату не стоит.

Ниже приведен пример решения уравнения с 2 неизвестными методом сложения.

\[-9x + 5y = -40\]

Первое, с чего стоит начать решение - сложить каждое слагаемое с учетом их знаков:

\[-5y + 5y = 0\]

В большинстве случаев, одна из сумм, включающая в себя неизвестную будет содержать величину, равную нулю. На следующем этапе решения уравнения нам необходимо составить уравнение из полученных данных:

\[-7x + 0 = 21\]

Найти неизвестное:

\[-7x = 21, x = 21 \div (-7) = -3\]

Вставить полученное значение в любое из исходных уравнений и получить 2 неизвестное с помощью решения уравнения линейного типа:

\[-6 - 5y = 61\]

\[-5y = 61 + 6\]

Конечный результат:

Где можно решить уравнение с 2 неизвестными онлайн?

Решить уравнение с двумя неизвестными онлайн решателем можно на сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.