Решение дробных рациональных уравнений с одз. Дробно-рациональные уравнения

Целое выражение - это математическое выражение, составленное из чисел и буквенных переменных с помощью действий сложения, вычитания и умножения. Также к целым относятся выражения, которые имеют в своем составе деление на какое-либо число, отличное от нуля.

Понятие дробного рационального выражения

Дробное выражение - это математическое выражение, которое помимо действий сложения, вычитания и умножения, выполненных с числами и буквенными переменными, а также деления на число не равное нулю, содержит также деление на выражения с буквенными переменными.

Рациональные выражения - это все целые и дробные выражения. Рациональные уравнения - это уравнения, у которых левая и правые части являются рациональными выражениями. Если в рациональном уравнении левая и правая части будут являться целыми выражениями, то такое рациональное уравнение называется целым.

Если в рациональном уравнении левая или правая части будут являться дробными выражениями, то такое рациональное уравнение называется дробным.

Примеры дробных рациональных выражений

1. x-3/x = -6*x+19

2. (x-4)/(2*x+5) = (x+7)/(x-2)

3. (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5))

Схема решения дробного рационального уравнения

1. Найти общий знаменатель всех дробей, которые входят в уравнение.

2. Умножить обе части уравнения на общий знаменатель.

3. Решить полученное целое уравнение.

4. Произвести проверку корней, и исключить те из них, которые обращают в нуль общий знаменатель.

Так как мы решаем дробные рациональные уравнения, то в знаменателях дробей будут переменные. Значит, будут они и в общем знаменателе. А во втором пункте алгоритма мы умножаем на общий знаменатель, то могут появится посторонние корни. При которых общий знаменатель будет равен нулю, а значит и умножение на него будет бессмысленным. Поэтому в конце обязательно делать проверку полученных корней.

Рассмотрим пример:

Решить дробное рациональное уравнение: (x-3)/(x-5) + 1/x = (x+5)/(x*(x-5)).

Будем придерживаться общей схемы: найдем сначала общий знаменатель всех дробей. Получим x*(x-5).

Умножим каждую дробь на общий знаменатель и запишем полученное целое уравнение.

(x-3)/(x-5) * (x*(x-5))= x*(x+3);
1/x * (x*(x-5)) = (x-5);
(x+5)/(x*(x-5)) * (x*(x-5)) = (x+5);
x*(x+3) + (x-5) = (x+5);

Упростим полученное уравнение. Получим:

x^2+3*x + x-5 - x - 5 =0;
x^2+3*x-10=0;

Получили простое приведенное квадратное уравнение. Решаем его любым из известных способов, получаем корни x=-2 и x=5.

Теперь производим проверку полученных решений:

Подставляем числа -2 и 5 в общий знаменатель. При х=-2 общий знаменатель x*(x-5) не обращается в нуль, -2*(-2-5)=14. Значит число -2 будет являться корнем исходного дробного рационального уравнения.

При х=5 общий знаменатель x*(x-5) становится равным нулю. Следовательно, это число не является корнем исходного дробного рационального уравнения, так как там будет деление на нуль.

Наименьший общий знаменатель используется для упрощения данного уравнения. Этот метод применяется в том случае, когда вы не можете записать данное уравнение с одним рациональным выражением на каждой стороне уравнения (и воспользоваться методом умножения крест-накрест). Этот метод используется, когда вам дано рациональное уравнение с 3 или более дробями (в случае двух дробей лучше применить умножение крест-накрест).

  • Найдите наименьший общий знаменатель дробей (или наименьшее общее кратное). НОЗ – это наименьшее число, которое делится нацело на каждый знаменатель.

    • Иногда НОЗ – очевидное число. Например, если дано уравнение: х/3 + 1/2 = (3x +1)/6, то очевидно, что наименьшим общим кратным для чисел 3, 2 и 6 будет 6.
    • Если НОЗ не очевиден, выпишите кратные самого большого знаменателя и найдите среди них такой, который будет кратным и для других знаменателей. Зачастую НОЗ можно найти, просто перемножив два знаменателя. Например, если дано уравнение x/8 + 2/6 = (x - 3)/9, то НОЗ = 8*9 = 72.
    • Если один или несколько знаменателей содержат переменную, то процесс несколько усложняется (но не становится невозможным). В этом случае НОЗ представляет собой выражение (содержащее переменную), которое делится на каждый знаменатель. Например, в уравнении 5/(х-1) = 1/х + 2/(3x) НОЗ = 3x(х-1), потому что это выражение делится на каждый знаменатель: 3x(х-1)/(х-1) = 3x; 3x(х-1)/3х = (х-1); 3x(х-1)/х = 3(х-1).
  • Умножьте и числитель, и знаменатель каждой дроби на число, равное результату деления НОЗ на соответствующий знаменатель каждой дроби. Так как вы умножаете и числитель, и знаменатель на одно и тоже число, то фактически вы умножаете дробь на 1 (например, 2/2 = 1 или 3/3 = 1).

    • Таким образом, в нашем примере умножьте х/3 на 2/2, чтобы получить 2x/6, и 1/2 умножьте на 3/3, чтобы получить 3/6 (дробь 3x +1/6 умножать не надо, так как ее знаменатель равен 6).
    • Действуйте аналогично в случае, когда переменная находится в знаменателе. В нашем втором примере НОЗ = 3x(x-1), поэтому 5/(x-1) умножьте на (3x)/(3x) и получите 5(3x)/(3x)(x-1); 1/x умножьте на 3(x-1)/3(x-1) и получите 3(x-1)/3x(x-1); 2/(3x) умножьте на (x-1)/(x-1) и получите 2(x-1)/3x(x-1).
  • Найдите х. Теперь, когда вы привели дроби к общему знаменателю, вы можете избавиться от знаменателя. Для этого умножьте каждую сторону уравнения на общий знаменатель. Затем решите полученное уравнение, то есть найдите «х». Для этого обособьте переменную на одной из сторон уравнения.

    • В нашем примере: 2x/6 + 3/6 = (3x +1)/6. Вы можете сложить 2 дроби с одинаковым знаменателем, поэтому запишите уравнение как: (2x+3)/6=(3x+1)/6. Умножьте обе части уравнения на 6 и избавьтесь от знаменателей: 2x+3 = 3x +1. Решите и получите х = 2.
    • В нашем втором примере (с переменной в знаменателе) уравнение имеет вид (после приведения к общему знаменателю): 5(3x)/(3x)(x-1) = 3(x-1)/3x(x-1) + 2(x-1)/3x(x-1). Умножив обе стороны уравнения на НОЗ, вы избавитесь от знаменателя и получите: 5(3x) = 3(х-1) + 2(х-1), или 15x = 3x - 3 + 2x -2, или 15х = х - 5. Решите и получите: х = -5/14.
  • Смирнова Анастасия Юрьевна

    Тип урока: урок изучения нового материала.

    Форма организации учебной деятельности : фронтальная, индивидуальная.

    Цель урока: познакомить с новым видом уравнений - дробными рациональными уравнениями, дать представление об алгоритме решения дробных рациональных уравнений.

    Задачи урока.

    Обучающая:

    • формирование понятия дробно рационального уравнения;
    • рассмотреть алгоритм решения дробных рациональных уравнений, включающий условие равенства дроби нулю;
    • обучить решению дробных рациональных уравнений по алгоритму.

    Развивающая:

    • создать условия для формирования навыков применения полученных знаний;
    • способствовать развитию познавательного интереса учащихся к предмету;
    • развитие у учащихся умения анализировать, сопоставлять и делать выводы;
    • развитие навыков взаимоконтроля и самоконтроля, внимания, памяти, устной и письменной речи, самостоятельности.

    Воспитывающая:

    • воспитание познавательного интереса к предмету;
    • воспитание самостоятельности при решении учебных задач;
    • воспитание воли и упорства для достижения конечных результатов.

    Оборудование: учебник, доска, цветные мелки.

    Учебник «Алгебра 8». Ю.Н.Макарычев, Н.Г.Миндюк, К.И.Нешков, С.Б.Суворова под редакцией С.А.Теляковского. Москва «Просвещение». 2010г.

    На данную тему отводится пять часов. Данный урок является первым. Основное - изучить алгоритм решения дробных рациональных уравнений и отработать этот алгоритм на упражнениях.

    Ход урока

    1. Организационный момент.

    Здравствуйте, ребята! Сегодня мне хотелось бы начать наш урок с четверостишия:
    Что бы легче всем жилось,
    Что б решалось, что б моглось,
    Улыбнись, удачи всем,
    Что бы не было проблем,
    Улыбнулись друг другу, создали хорошее настроение и начали работу.

    На доске написаны уравнения, посмотрите на них внимательно. Все ли из этих уравнений вы сможете решить? Какие нет и почему?

    Уравнения, в которых левая и правя часть, являются дробно-рациональными выражениями, называются дробные рациональные уравнения. Как вы думаете, что мы будем изучать сегодня на уроке? Сформулируйте тему урока. Итак, открываем тетради и записываем тему урока «Решение дробных рациональных уравнений».

    2. Актуализация знаний. Фронтальный опрос, устная работа с классом.

    А сейчас мы повторим основной теоретический материл, который понадобиться нам для изучения новой темы. Ответьте, пожалуйста, на следующие вопросы:

    1. Что такое уравнение? (Равенство с переменной или переменными .)
    2. Как называется уравнение №1? (Линейное .) Способ решения линейных уравнений. (Все с неизвестным перенести в левую часть уравнения, все числа - в правую. Привести подобные слагаемые. Найти неизвестный множитель ).
    3. Как называется уравнение №3? (Квадратное. ) Способы решения квадратных уравнений. (По формулам )
    4. Что такое пропорция? (Равенство двух отношений .) Основное свойство пропорции. (Если пропорция верна, то произведение ее крайних членов равно произведению средних членов .)
    5. Какие свойства используются при решении уравнений? (1. Если в уравнении перенести слагаемое из одной части в другую, изменив его знак, то получится уравнение, равносильное данному. 2. Если обе части уравнения умножить или разделить на одно и то же отличное от нуля число, то получится уравнение, равносильное данному .)
    6. Когда дробь равна нулю? (Дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю .)

    3. Объяснение нового материала.

    Решить в тетрадях и на доске уравнение №2.

    Ответ : 10.

    Какое дробно-рациональное уравнение можно попробовать решить, используя основное свойство пропорции? (№5).

    (х-2)(х-4) = (х+2)(х+3)

    х 2 -4х-2х+8 = х 2 +3х+2х+6

    х 2 -6х-х 2 -5х = 6-8

    Решить в тетрадях и на доске уравнение №4.

    Ответ : 1,5.

    Какое дробно-рациональное уравнение можно попробовать решить, умножая обе части уравнения на знаменатель? (№6).

    х 2 -7х+12 = 0

    D=1›0, х 1 =3, х 2 =4.

    Ответ : 3;4.

    Решение уравнений типа уравнения №7 мы рассмотрим на следующих уроках.

    Объясните, почему так получилось? Почему в одном случае три корня, в другом - два? Какие же числа являются корнями данного дробно-рационального уравнения?

    До сих пор учащиеся с понятием посторонний корень не встречались, им действительно очень трудно понять, почему так получилось. Если в классе никто не может дать четкого объяснения этой ситуации, тогда учитель задает наводящие вопросы.

    • Чем отличаются уравнения № 2 и 4 от уравнений № 5,6? (В уравнениях № 2 и 4 в знаменателе числа, № 5-6 - выражения с переменной .)
    • Что такое корень уравнения? (Значение переменной, при котором уравнение обращается в верное равенство .)
    • Как выяснить является ли число корнем уравнения? (Сделать проверку .)

    При выполнении проверки некоторые ученики замечают, что приходится делить на нуль. Они делают вывод, что числа 0 и 5 не являются корнями данного уравнения. Возникает вопрос: существует ли способ решения дробных рациональных уравнений, позволяющий исключить данную ошибку? Да, это способ основан на условие равенства дроби нулю.

    Давайте попробуем сформулировать алгоритм решения дробных рациональных уравнений данным способом. Дети сами формулируют алгоритм.

    Алгоритм решения дробных рациональных уравнений:

    1. Перенести все в левую часть.
    2. Привести дроби к общему знаменателю.
    3. Составить систему: дробь равна нулю, когда числитель равен нулю, а знаменатель не равен нулю.
    4. Решить уравнение.
    5. Проверить неравенство, чтобы исключить посторонние корни.
    6. Записать ответ.

    4. Первичное осмысление нового материала.

    Работа в парах. Учащиеся выбирают способ решения уравнения самостоятельно в зависимости от вида уравнения. Задания из учебника «Алгебра 8», Ю.Н. Макарычев,2007: № 600(б,в); № 601(а,д). Учитель контролирует выполнение задания, отвечает на возникшие вопросы, оказывает помощь слабоуспевающим ученикам. Самопроверка: ответы записаны на доске.

    б) 2 - посторонний корень. Ответ:3.

    в) 2 - посторонний корень. Ответ: 1,5.

    а) Ответ: -12,5.

    5. Постановка домашнего задания.

    1. Прочитать п.25 из учебника, разобрать примеры 1-3.
    2. Выучить алгоритм решения дробных рациональных уравнений.
    3. Решить в тетрадях № 600(г,д); №601(г,з).

    6. Подведение итогов урока.

    Итак, сегодня на уроке мы с вами познакомились с дробными рациональными уравнениями, научились решать эти уравнения различными способами. Независимо от способа решения дробных рациональных уравнений, о чем необходимо не забывать? В чем «коварство» дробных рациональных уравнений?

    Всем спасибо, урок окончен.

    \(\bullet\) Рациональное уравнение - это уравнение, представимое в виде \[\dfrac{P(x)}{Q(x)}=0\] где \(P(x), \ Q(x)\) - многочлены (сумма “иксов” в различных степенях, умноженных на различные числа).
    Выражение в левой части уравнения называется рациональным выражением.
    ОДЗ (область допустимых значений) рационального уравнения – это все значения \(x\) , при которых знаменатель НЕ обращается в нуль, то есть \(Q(x)\ne 0\) .
    \(\bullet\) Например, уравнения \[\dfrac{x+2}{x-3}=0,\qquad \dfrac 2{x^2-1}=3, \qquad x^5-3x=2\] являются рациональными уравнениями.
    В первом уравнении ОДЗ – это все \(x\) , такие что \(x\ne 3\) (пишут \(x\in (-\infty;3)\cup(3;+\infty)\) ); во втором уравнении – это все \(x\) , такие что \(x\ne -1; x\ne 1\) (пишут \(x\in (-\infty;-1)\cup(-1;1)\cup(1;+\infty)\) ); а в третьем уравнении никаких ограничений на ОДЗ нет, то есть ОДЗ – это все \(x\) (пишут \(x\in\mathbb{R}\) ). \(\bullet\) Теоремы:
    1) Произведение двух множителей равно нулю тогда и только тогда, когда один из них равен нулю, а другой при этом не теряет смысла, следовательно, уравнение \(f(x)\cdot g(x)=0\) равносильно системе \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &f(x)=0\\ &g(x)=0 \end{aligned} \end{gathered} \right.\\ \text{ОДЗ уравнения} \end{cases}\] 2) Дробь равна нулю тогда и только тогда, когда числитель равен нулю, а знаменатель не равен нулю, следовательно, уравнение \(\dfrac{f(x)}{g(x)}=0\) равносильно системе уравнений \[\begin{cases} f(x)=0\\ g(x)\ne 0 \end{cases}\] \(\bullet\) Рассмотрим несколько примеров.

    1) Решите уравнение \(x+1=\dfrac 2x\) . Найдем ОДЗ данного уравнения – это \(x\ne 0\) (так как \(x\) находится в знаменателе).
    Значит, ОДЗ можно записать так: .
    Перенесем все слагаемые в одну часть и приведем к общему знаменателю: \[\dfrac{(x+1)\cdot x}x-\dfrac 2x=0\quad\Leftrightarrow\quad \dfrac{x^2+x-2}x=0\quad\Leftrightarrow\quad \begin{cases} x^2+x-2=0\\x\ne 0\end{cases}\] Решением первого уравнения системы будут \(x=-2, x=1\) . Видим, что оба корня ненулевые. Следовательно, ответ: \(x\in \{-2;1\}\) .

    2) Решите уравнение \(\left(\dfrac4x - 2\right)\cdot (x^2-x)=0\) . Найдем ОДЗ данного уравнения. Видим, что единственное значение \(x\) , при котором левая часть не имеет смысла – это \(x=0\) . Значит, ОДЗ можно записать так: \(x\in (-\infty;0)\cup(0;+\infty)\) .
    Таким образом, данное уравнение равносильно системе:

    \[\begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x-2=0\\ &x^2-x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &\dfrac 4x=2\\ &x(x-1)=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1\\ &x=0 \end{aligned} \end{gathered} \right.\\ x\ne 0 \end{cases} \quad \Leftrightarrow \quad \left[ \begin{gathered}\begin{aligned} &x=2\\ &x=1 \end{aligned} \end{gathered} \right.\] Действительно, несмотря на то, что \(x=0\) - корень второго множителя, если подставить \(x=0\) в изначальное уравнение, то оно не будет иметь смысла, т.к. не определено выражение \(\dfrac 40\) .
    Таким образом, решением данного уравнения являются \(x\in \{1;2\}\) .

    3) Решите уравнение \[\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1}\] В нашем уравнении \(4x^2-1\ne 0\) , откуда \((2x-1)(2x+1)\ne 0\) , то есть \(x\ne -\frac12; \frac12\) .
    Перенесем все слагаемые в левую часть и приведем к общему знаменателю:

    \(\dfrac{x^2+4x}{4x^2-1}=\dfrac{3-x-x^2}{4x^2-1} \quad \Leftrightarrow \quad \dfrac{x^2+4x-3+x+x^2}{4x^2-1}=0\quad \Leftrightarrow \quad \dfrac{2x^2+5x-3}{4x^2-1}=0 \quad \Leftrightarrow\)

    \(\Leftrightarrow \quad \begin{cases} 2x^2+5x-3=0\\ 4x^2-1\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} (2x-1)(x+3)=0\\ (2x-1)(2x+1)\ne 0 \end{cases} \quad \Leftrightarrow \quad \begin{cases} \left[ \begin{gathered} \begin{aligned} &x=\dfrac12\\ &x=-3 \end{aligned}\end{gathered} \right.\\ x\ne \dfrac 12\\ x\ne -\dfrac 12 \end{cases} \quad \Leftrightarrow \quad x=-3\)

    Ответ: \(x\in \{-3\}\) .

    Замечание. Если ответ состоит из конечного набора чисел, то их можно записывать через точку с запятой в фигурных скобках, как показано в предыдущих примерах.

    Задачи, в которых требуется решить рациональные уравнения, в ЕГЭ по математике встречаются каждый год, поэтому при подготовке к прохождению аттестационного испытания выпускникам непременно стоит самостоятельно повторить теорию по данной теме. Уметь справляться с такими заданиями обязательно должны выпускники, сдающие как базовый, так и профильный уровень экзамена. Усвоив теорию и разобравшись с практическими упражнениями по теме «Рациональные уравнения», учащиеся смогут решать задачи с любым количеством действий и рассчитывать на получение конкурентных баллов по итогам сдачи ЕГЭ.

    Как подготовиться к экзамену вместе с образовательным порталом «Школково»?

    Иногда найти источник, в котором полноценно представлена базовая теория для решения математических задач, оказывается достаточно сложно. Учебника может просто не оказаться под рукой. А найти необходимые формулы иногда бывает достаточно сложно даже в Интернете.

    Образовательный портал «Школково» избавит вас от необходимости поиска нужного материала и поможет качественного подготовиться к прохождению аттестационного испытания.

    Всю необходимую теорию по теме «Рациональные уравнения» наши специалисты подготовили и изложили в максимально доступной форме. Изучив представленную информацию, учащиеся смогут восполнить пробелы в знаниях.

    Для успешной подготовки к ЕГЭ выпускникам необходимо не только освежить в памяти базовый теоретический материал по теме «Рациональные уравнения», но попрактиковаться в выполнении заданий на конкретных примерах. Большая подборка задач представлена в разделе «Каталог».

    Для каждого упражнения на сайте наши специалисты прописали алгоритм решения и указали правильный ответ. Учащиеся могут практиковаться в решении задач различной степени сложности в зависимости от уровня подготовки. Перечень заданий в соответствующем разделе постоянно дополняется и обновляется.

    Изучить теоретический материал и отточить навыки решения задач по теме «Рациональные уравнения», подобных тем, которые включены в тесты ЕГЭ, можно в режиме онлайн. В случае необходимости любое из представленных заданий можно добавить в раздел «Избранное». Еще раз повторив базовую теорию по теме «Рациональные уравнения», старшеклассник сможет в дальнейшем вернуться к задаче, чтобы обсудить ход ее решения с преподавателем на уроке алгебры.

    Давайте познакомимся с рациональными и дробными рациональными уравнениями, дадим их определение, приведем примеры, а также разберем наиболее распространенные типы задач.

    Yandex.RTB R-A-339285-1

    Рациональное уравнение: определение и примеры

    Знакомство с рациональными выражениями начинается в 8 классе школы. В это время на уроках алгебры учащиеся все чаще начинают встречать задания с уравнениями, которые содержат рациональные выражения в своих записях. Давайте освежим в памяти, что это такое.

    Определение 1

    Рациональное уравнение – это такое уравнение, в обеих частях которого содержатся рациональные выражения.

    В различных пособиях можно встретить еще одну формулировку.

    Определение 2

    Рациональное уравнение – это такое уравнение, запись левой части которого содержит рациональное выражение, а правая – нуль.

    Определения, которые мы привели для рациональных уравнений, являются равнозначными, так как говорят об одно и том же. Подтверждает правильность наших слов тот факт, что для любых рациональных выражений P и Q уравнения P = Q и P − Q = 0 будут равносильными выражениями.

    А теперь обратимся к примерам.

    Пример 1

    Рациональные уравнения:

    x = 1 , 2 · x − 12 · x 2 · y · z 3 = 0 , x x 2 + 3 · x - 1 = 2 + 2 7 · x - a · (x + 2) , 1 2 + 3 4 - 12 x - 1 = 3 .

    Рациональные уравнения точно также, как и уравнения других видов, могут содержать любое количество переменных от 1 до нескольких. Для начала мы рассмотрим простые примеры, в которых уравнения будут содержать только одну переменную. А затем начнем постепенно усложнять задачу.

    Рациональные уравнения делятся на две большие группы: целые и дробные. Посмотрим, какие уравнения будут относиться к каждой из групп.

    Определение 3

    Рациональное уравнение будет являться целым в том случае, если в записи левой и правой его частей содержатся целые рациональные выражения.

    Определение 4

    Рациональное уравнение будет являться дробным в том случае, если одна или обе его части содержат дробь.

    Дробно рациональные уравнения в обязательном порядке содержат деление на переменную или же переменная имеется в знаменателе. В записи целых уравнений такого деления нет.

    Пример 2

    3 · x + 2 = 0 и (x + y) · (3 · x 2 − 1) + x = − y + 0 , 5 – целые рациональные уравнения. Здесь обе части уравнения представлены целыми выражениями.

    1 x - 1 = x 3 и x: (5 · x 3 + y 2) = 3: (x − 1) : 5 – это дробно рациональные уравнения.

    К числу целых рациональных уравнений можно отнести линейные и квадратные уравнения.

    Решение целых уравнений

    Решение таких уравнений обычно сводится к преобразованию их в равносильные алгебраические уравнения. Достичь этого можно путем проведения равносильных преобразований уравнений в соответствии со следующим алгоритмом:

    • сначала получим ноль в правой части уравнения, для этого на необходимо перенести выражение, которое находится в правой части уравнения, в его левую часть и поменять знак;
    • затем преобразуем выражение в левой части уравнения в многочлен стандартного вида.

    Мы должны получить алгебраическое уравнение. Это уравнение будет равносильным по отношению к исходному уравнению. Легкие случаи позволяют нам для решения задачи свести целое уравнение с линейному или квадратному. В общем случае мы решаем алгебраическое уравнение степени n .

    Пример 3

    Необходимо найти корни целого уравнения 3 · (x + 1) · (x − 3) = x · (2 · x − 1) − 3 .

    Решение

    Проведем преобразование исходного выражения с целью получить равносильное ему алгебраическое уравнение. Для этого произведем перенос выражения, содержащегося в правой части уравнения, в левую часть и заменим знак на противоположный. В итоге получим: 3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = 0 .

    Теперь проведем преобразование выражения, которое находится в левой части в многочлен стандартного вида и произведем необходимые действия с этим многочленом:

    3 · (x + 1) · (x − 3) − x · (2 · x − 1) + 3 = (3 · x + 3) · (x − 3) − 2 · x 2 + x + 3 = = 3 · x 2 − 9 · x + 3 · x − 9 − 2 · x 2 + x + 3 = x 2 − 5 · x − 6

    У нас получилось свести решение исходного уравнения к решению квадратного уравнения вида x 2 − 5 · x − 6 = 0 . Дискриминант этого уравнения положительный: D = (− 5) 2 − 4 · 1 · (− 6) = 25 + 24 = 49 . Это значит, действительных корней будет два. Найдем их, воспользовавшись формулой корней квадратного уравнения:

    x = - - 5 ± 49 2 · 1 ,

    x 1 = 5 + 7 2 или x 2 = 5 - 7 2 ,

    x 1 = 6 или x 2 = - 1

    Проверим верность корней уравнения, которые мы нашли в ходе решения. Для этого числа, которые мы получили, подставим в исходное уравнение: 3 · (6 + 1) · (6 − 3) = 6 · (2 · 6 − 1) − 3 и 3 · (− 1 + 1) · (− 1 − 3) = (− 1) · (2 · (− 1) − 1) − 3 . В первом случае 63 = 63 , во втором 0 = 0 . Корни x = 6 и x = − 1 действительно являются корнями уравнения, данного в условии примера.

    Ответ: 6 , − 1 .

    Давайте разберем, что значит «степень целого уравнения». С этим термином мы будем часто встречаться в тех случаях, когда нам надо будет представить целое уравнение в виде алгебраического. Дадим определение понятию.

    Определение 5

    Степень целого уравнения – это степень алгебраического уравнения, равносильного исходному целому уравнению.

    Если посмотреть на уравнения из примера, приведенного выше, можно установить: степень данного целого уравнения вторая.

    Если бы наш курс ограничивался решением уравнений второй степени, то рассмотрение темы на этом можно было бы закончить. Но все не так просто. Решение уравнений третьей степени сопряжено с трудностями. А для уравнений выше четвертой степени и вовсе не существует общих формул корней. В связи с этим решение целых уравнений третьей, четвертой и других степеней требует от нас применения целого ряда других приемов и методов.

    Чаще прочих используется подход к решению целых рациональных уравнений, который основан на методе разложения на множители. Алгоритм действий в этом случае следующий:

    • переносим выражение из правой части в левую с тем, чтобы в правой части записи остался нуль;
    • представляем выражение в левой части как произведение множителей, а затем переходим к совокупности нескольких более простых уравнений.
    Пример 4

    Найдите решение уравнения (x 2 − 1) · (x 2 − 10 · x + 13) = 2 · x · (x 2 − 10 · x + 13) .

    Решение

    Переносим выражение из правой части записи в левую с противоположным знаком: (x 2 − 1) · (x 2 − 10 · x + 13) − 2 · x · (x 2 − 10 · x + 13) = 0 . Преобразование левой части в многочлен стандартного вида нецелесообразно в связи с тем, что это даст нам алгебраическое уравнение четвертой степени: x 4 − 12 · x 3 + 32 · x 2 − 16 · x − 13 = 0 . Легкость преобразования не оправдывает всех сложностей с решением такого уравнения.

    Намного проще пойти другим путем: вынесем за скобки общий множитель x 2 − 10 · x + 13 . Так мы придем к уравнению вида (x 2 − 10 · x + 13) · (x 2 − 2 · x − 1) = 0 . Теперь заменим полученное уравнение совокупностью двух квадратных уравнений x 2 − 10 · x + 13 = 0 и x 2 − 2 · x − 1 = 0 и найдем их корни через дискриминант: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

    Ответ: 5 + 2 · 3 , 5 - 2 · 3 , 1 + 2 , 1 - 2 .

    Точно также мы можем использовать метод введения новой переменной. Этот метод позволяет нам переходить к равносильным уравнениям со степенями ниже, чем были степени в исходном целом уравнении.

    Пример 5

    Есть ли корни у уравнения (x 2 + 3 · x + 1) 2 + 10 = − 2 · (x 2 + 3 · x − 4) ?

    Решение

    Если мы сейчас попробуем свести целое рациональное уравнение к алгебраическому, то получим уравнение 4 степени, которое не имеет рациональных корней. Потому нам будет проще пойти другим путем: ввести новую переменную у, которая заменит в уравнении выражение x 2 + 3 · x .

    Теперь мы будем работать с целым уравнением (y + 1) 2 + 10 = − 2 · (y − 4) . Перенесем правую часть уравнения в левую с противоположным знаком и проведем необходимые преобразования. Получим: y 2 + 4 · y + 3 = 0 . Найдем корни квадратного уравнения: y = − 1 и y = − 3 .

    Теперь проведем обратную замену. Получим два уравнения x 2 + 3 · x = − 1 и x 2 + 3 · x = − 3 . Перепишем их как x 2 + 3 · x + 1 = 0 и x 2 + 3 · x + 3 = 0 . Используем формулу корней квадратного уравнения для того, чтобы найти корни первого уравнения из полученных: - 3 ± 5 2 . Дискриминант второго уравнения отрицательный. Это значит, что действительных корней у второго уравнения нет.

    Ответ: - 3 ± 5 2

    Целые уравнения высоких степеней попадаются в задачах достаточно часто. Пугаться их не нужно. Нужно быть готовым применить нестандартный метод их решения, в том числе и ряд искусственных преобразований.

    Решение дробно рациональных уравнений

    Начнем рассмотрение этой подтемы мы с алгоритма решения дробно рациональных уравнений вида p (x) q (x) = 0 , где p (x) и q (x) – целые рациональные выражения. Решение остальных дробно рациональных уравнений всегда можно свести к решению уравнений указанного вида.

    В основу наиболее употребимого метода решения уравнений p (x) q (x) = 0 положено следующее утверждение: числовая дробь u v , где v – это число, которое отлично от нуля, равна нулю только в тех случаях, когда числитель дроби равен нулю. Следуя логике приведенного утверждения мы можем утверждать, что решение уравнения p (x) q (x) = 0 может быть сведено в выполнению двух условий: p (x) = 0 и q (x) ≠ 0 . На этом построен алгоритм решения дробных рациональных уравнений вида p (x) q (x) = 0:

    • находим решение целого рационального уравнения p (x) = 0 ;
    • проверяем, выполняется ли для корней, найденных в ходе решения, условие q (x) ≠ 0 .

    Если это условие выполняется, то найденный корень Если нет, то корень не является решением задачи.

    Пример 6

    Найдем корни уравнения 3 · x - 2 5 · x 2 - 2 = 0 .

    Решение

    Мы имеем дело с дробным рациональным уравнением вида p (x) q (x) = 0 , в котором p (x) = 3 · x − 2 , q (x) = 5 · x 2 − 2 = 0 . Приступим к решению линейного уравнения 3 · x − 2 = 0 . Корнем этого уравнения будет x = 2 3 .

    Проведем проверку найденного корня, удовлетворяет ли он условию 5 · x 2 − 2 ≠ 0 . Для этого подставим числовое значение в выражение. Получим: 5 · 2 3 2 - 2 = 5 · 4 9 - 2 = 20 9 - 2 = 2 9 ≠ 0 .

    Условие выполняется. Это значит, что x = 2 3 является корнем исходного уравнения.

    Ответ: 2 3 .

    Есть еще один вариант решения дробных рациональных уравнений p (x) q (x) = 0 . Вспомним, что это уравнение равносильно целому уравнению p (x) = 0 на области допустимых значений переменной x исходного уравнения. Это позволяет нам использовать следующий алгоритм в решении уравнений p (x) q (x) = 0:

    • решаем уравнение p (x) = 0 ;
    • находим область допустимых значений переменной x ;
    • берем корни, которые лежат в области допустимых значений переменной x , в качестве искомых корней исходного дробного рационального уравнения.
    Пример 7

    Решите уравнение x 2 - 2 · x - 11 x 2 + 3 · x = 0 .

    Решение

    Для начала решим квадратное уравнение x 2 − 2 · x − 11 = 0 . Для вычисления его корней мы используем формулу корней для четного второго коэффициента. Получаем D 1 = (− 1) 2 − 1 · (− 11) = 12 , и x = 1 ± 2 3 .

    Теперь мы можем найти ОДЗ переменной x для исходного уравнения. Это все числа, для которых x 2 + 3 · x ≠ 0 . Это то же самое, что x · (x + 3) ≠ 0 , откуда x ≠ 0 , x ≠ − 3 .

    Теперь проверим, входят ли полученные на первом этапе решения корни x = 1 ± 2 3 в область допустимых значений переменной x . Мы видим, что входят. Это значит, что исходное дробное рациональное уравнение имеет два корня x = 1 ± 2 3 .

    Ответ​​: x = 1 ± 2 3

    Второй описанный метод решения проще первого в случаях, когда легко находится область допустимых значений переменной x , а корни уравнения p (x) = 0 иррациональные. Например, 7 ± 4 · 26 9 . Корни могут быть и рациональными, но с большим числителем или знаменателем. Например, 127 1101 и − 31 59 . Это позволяет сэкономить время на проведении проверки условия q (x) ≠ 0 : намного проще исключить корни, которые не подходят, по ОДЗ.

    В тех случаях, когда корни уравнения p (x) = 0 целые, целесообразнее использовать первый из описанных алгоритмов решения уравнений вида p (x) q (x) = 0 . Быстрее сразу находить корни целого уравнения p (x) = 0 , после чего проверять, выполняется ли для них условие q (x) ≠ 0 , а не находить ОДЗ, после чего решать уравнение p (x) = 0 на этой ОДЗ. Это связано с тем, что в таких случаях сделать проверку обычно проще, чем найти ОДЗ.

    Пример 8

    Найдите корни уравнения (2 · x - 1) · (x - 6) · (x 2 - 5 · x + 14) · (x + 1) x 5 - 15 · x 4 + 57 · x 3 - 13 · x 2 + 26 · x + 112 = 0 .

    Решение

    Начнем с рассмотрения целого уравнения (2 · x − 1) · (x − 6) · (x 2 − 5 · x + 14) · (x + 1) = 0 и нахождения его корней. Для этого применим метод решения уравнений через разложение на множители. Получается, что исходное уравнение равносильно совокупности четырех уравнений 2 · x − 1 = 0 , x − 6 = 0 , x 2 − 5 · x + 14 = 0 , x + 1 = 0 , из которых три линейных и одно квадратное. Находим корни: из первого уравнения x = 1 2 , из второго – x = 6 , из третьего – x = 7 , x = − 2 , из четвертого – x = − 1 .

    Проведем проверку полученных корней. Определить ОДЗ в данном случае нам сложно, так как для этого придется провести решение алгебраического уравнения пятой степени. Проще будет проверить условие, по которому знаменатель дроби, которая находится в левой части уравнения, не должен обращаться в нуль.

    По очереди подставим корни на место переменной х в выражение x 5 − 15 · x 4 + 57 · x 3 − 13 · x 2 + 26 · x + 112 и вычислим его значение:

    1 2 5 − 15 · 1 2 4 + 57 · 1 2 3 − 13 · 1 2 2 + 26 · 1 2 + 112 = = 1 32 − 15 16 + 57 8 − 13 4 + 13 + 112 = 122 + 1 32 ≠ 0 ;

    6 5 − 15 · 6 4 + 57 · 6 3 − 13 · 6 2 + 26 · 6 + 112 = 448 ≠ 0 ;

    7 5 − 15 · 7 4 + 57 · 7 3 − 13 · 7 2 + 26 · 7 + 112 = 0 ;

    (− 2) 5 − 15 · (− 2) 4 + 57 · (− 2) 3 − 13 · (− 2) 2 + 26 · (− 2) + 112 = − 720 ≠ 0 ;

    (− 1) 5 − 15 · (− 1) 4 + 57 · (− 1) 3 − 13 · (− 1) 2 + 26 · (− 1) + 112 = 0 .

    Проведенная проверка позволяет нам установить, что корнями исходного дробного рацинального уравнения являются 1 2 , 6 и − 2 .

    Ответ: 1 2 , 6 , - 2

    Пример 9

    Найдите корни дробного рационального уравнения 5 · x 2 - 7 · x - 1 · x - 2 x 2 + 5 · x - 14 = 0 .

    Решение

    Начнем работу с уравнением (5 · x 2 − 7 · x − 1) · (x − 2) = 0 . Найдем его корни. Нам проще представить это уравнение как совокупность квадратного и линейного уравнений 5 · x 2 − 7 · x − 1 = 0 и x − 2 = 0 .

    Используем формулу корней квадратного уравнения для поиска корней. Получаем из первого уравнения два корня x = 7 ± 69 10 , а из второго x = 2 .

    Подставлять значение корней в исходное уравнение для проверки условий нам будет достаточно сложно. Проще будет определить ОДЗ переменной x . В данном случае ОДЗ переменной x – это все числа, кроме тех, для которых выполняется условие x 2 + 5 · x − 14 = 0 . Получаем: x ∈ - ∞ , - 7 ∪ - 7 , 2 ∪ 2 , + ∞ .

    Теперь проверим, принадлежат ли найденные нами корни к области допустимых значений переменной x .

    Корни x = 7 ± 69 10 - принадлежат, поэтому, они являются корнями исходного уравнения, а x = 2 – не принадлежит, поэтому, это посторонний корень.

    Ответ: x = 7 ± 69 10 .

    Разберем отдельно случаи, когда в числителе дробного рационального уравнения вида p (x) q (x) = 0 находится число. В таких случаях, если в числителе находится число, отличное от нуля, то уравнение не будет иметь корней. Если это число будет равно нулю, то корнем уравнения будет любое число из ОДЗ.

    Пример 10

    Решите дробное рациональное уравнение - 3 , 2 x 3 + 27 = 0 .

    Решение

    Данное уравнение не будет иметь корней, так как в числителе дроби из левой части уравнения находится отличное от нуля число. Это значит, что ни при каких значениях x значение приведенной в условии задачи дроби не будет равняться нулю.

    Ответ: нет корней.

    Пример 11

    Решите уравнение 0 x 4 + 5 · x 3 = 0 .

    Решение

    Так как в числителе дроби находится нуль, решением уравнения будет любое значение x из ОДЗ переменной x .

    Теперь определим ОДЗ. Оно будет включать все значения x , при которых x 4 + 5 · x 3 ≠ 0 . Решениями уравнения x 4 + 5 · x 3 = 0 являются 0 и − 5 , так как, это уравнение равносильно уравнению x 3 · (x + 5) = 0 , а оно в свою очередь равносильно совокупности двух уравнений x 3 = 0 и x + 5 = 0 , откуда и видны эти корни. Мы приходим к тому, что искомой областью допустимых значений являются любые x , кроме x = 0 и x = − 5 .

    Получается, что дробное рациональное уравнение 0 x 4 + 5 · x 3 = 0 имеет бесконечное множество решений, которыми являются любые числа кроме нуля и - 5 .

    Ответ: - ∞ , - 5 ∪ (- 5 , 0 ∪ 0 , + ∞

    Теперь поговорим о дробных рациональных уравнениях произвольного вида и методах их решения. Их можно записать как r (x) = s (x) , где r (x) и s (x) – рациональные выражения, причем хотя бы одно из них дробное. Решение таких уравнений сводится к решению уравнений вида p (x) q (x) = 0 .

    Мы уже знаем, что мы можем получить равносильное уравнение при переносе выражения из правой части уравнения в левое с противоположным знаком. Это значит, что уравнение r (x) = s (x) равносильно уравнение r (x) − s (x) = 0 . Также мы уже разобрали способы преобразования рационального выражения в рациональную дробь. Благодаря этому мы без труда можем преобразовать уравнение r (x) − s (x) = 0 в тождественную ему рациональную дробь вида p (x) q (x) .

    Так мы переходим от исходного дробного рационального уравнения r (x) = s (x) к уравнению вида p (x) q (x) = 0 , решать которые мы уже научились.

    Следует учитывать, что при проведении переходов от r (x) − s (x) = 0 к p (x) q (x) = 0 , а затем к p (x) = 0 мы можем не учесть расширения области допустимых значений переменной x .

    Вполне реальна ситуация, когда исходное уравнение r (x) = s (x) и уравнение p (x) = 0 в результате преобразований перестанут быть равносильными. Тогда решение уравнения p (x) = 0 может дать нам корни, которые будут посторонними для r (x) = s (x) . В связи с этим в каждом случае необходимо проводить проверку любым из описанных выше способов.

    Чтобы облегчить вам работу по изучению темы, мы обобщили всю информацию в алгритм решения дробного рационального уравнения вида r (x) = s (x) :

    • переносим выражение из правой части с противоположным знаком и получаем справа нуль;
    • преобразуем исходное выражение в рациональную дробь p (x) q (x) , последовательно выполняя действия с дробями и многочленами;
    • решаем уравнение p (x) = 0 ;
    • выявляем посторонние корни путем проверки их принадлежности ОДЗ или методом подстановки в исходное уравнение.

    Визуально цепочка действий будет выглядеть следующим образом:

    r (x) = s (x) → r (x) - s (x) = 0 → p (x) q (x) = 0 → p (x) = 0 → о т с е и в а н и е п о с т о р о н н и х к о р н е й

    Пример 12

    Решите дробное рациональное уравнение x x + 1 = 1 x + 1 .

    Решение

    Перейдем к уравнению x x + 1 - 1 x + 1 = 0 . Преобразуем дробное рациональное выражение в левой части уравнения к виду p (x) q (x) .

    Для этого нам придется привести рациональные дроби к общему знаменателю и упростить выражение:

    x x + 1 - 1 x - 1 = x · x - 1 · (x + 1) - 1 · x · (x + 1) x · (x + 1) = = x 2 - x - 1 - x 2 - x x · (x + 1) = - 2 · x - 1 x · (x + 1)

    Для того, чтобы найти корни уравнения - 2 · x - 1 x · (x + 1) = 0 , нам необходимо решить уравнение − 2 · x − 1 = 0 . Получаем один корень x = - 1 2 .

    Нам осталось выполнить проверку любым из методов. Рассмотрим их оба.

    Подставим полученное значение в исходное уравнение. Получим - 1 2 - 1 2 + 1 = 1 - 1 2 + 1 . Мы пришли к верному числовому равенству − 1 = − 1 . Это значит, что x = − 1 2 является корнем исходного уравнения.

    Теперь проведем проверку через ОДЗ. Определим область допустимых значений переменной x . Это будет все множество чисел, за исключением − 1 и 0 (при x = − 1 и x = 0 обращаются в нуль знаменатели дробей). Полученный нами корень x = − 1 2 принадлежит ОДЗ. Это значит, что он является корнем исходного уравнения.

    Ответ: − 1 2 .

    Пример 13

    Найдите корни уравнения x 1 x + 3 - 1 x = - 2 3 · x .

    Решение

    Мы имеем дело с дробным рациональным уравнением. Следовательно, будем действовать по алгоритму.

    Перенесем выражение из правой части в левую с противоположным знаком: x 1 x + 3 - 1 x + 2 3 · x = 0

    Проведем необходимые преобразования: x 1 x + 3 - 1 x + 2 3 · x = x 3 + 2 · x 3 = 3 · x 3 = x .

    Приходим к уравнению x = 0 . Корень этого уравнения – нуль.

    Проверим, не является ли этот корень посторонним для исходного уравнения. Подставим значение в исходное уравнение: 0 1 0 + 3 - 1 0 = - 2 3 · 0 . Как видите, полученное уравнение не имеет смысла. Это значит, что 0 – это посторонний корень, а исходное дробное рациональное уравнение корней не имеет.

    Ответ: нет корней.

    Если мы не включили в алгоритм другие равносильные преобразования, то это вовсе не значит, что ими нельзя пользоваться. Алгоритм универсален, но он создан для того, чтобы помогать, а не ограничивать.

    Пример 14

    Решите уравнение 7 + 1 3 + 1 2 + 1 5 - x 2 = 7 7 24

    Решение

    Проще всего будет решить приведенное дробное рациональное уравнение согласно алгоритму. Но есть и другой путь. Рассмотрим его.

    Отнимем от правой и левой частей 7 , получаем: 1 3 + 1 2 + 1 5 - x 2 = 7 24 .

    Отсюда можно заключить, что выражение в знаменателе левой части должно быть равно числу, обратному числу из правой части, то есть, 3 + 1 2 + 1 5 - x 2 = 24 7 .

    Вычтем из обеих частей 3: 1 2 + 1 5 - x 2 = 3 7 . По аналогии 2 + 1 5 - x 2 = 7 3 , откуда 1 5 - x 2 = 1 3 , и дальше 5 - x 2 = 3 , x 2 = 2 , x = ± 2

    Проведем проверку для того, чтобы установить, являются ли найденные корни корнями исходного уравнения.

    Ответ: x = ± 2

    Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter