Расстояние от точки d до плоскости если. Определение расстояния от точки до плоскости

Инструкция

Для нахождения расстояния от точки до плоскости методами начертательной : выберите на плоскости произвольную точку; проведите через нее две прямые (лежащие в этой плоскости ); восстановите перпендикуляр к плоскости , проходящий через эту точку (постройте прямую, перпендикулярную одновременно обеим пересекающимся прямым); проведите через заданную точку прямую параллельную, построенному перпендикуляру; найдите расстояние между точкой пересечения этой прямой с плоскостью и заданной точкой.

Если положение точки задано ее трехмерными координатами, а положение плоскости линейным уравнением, то, чтобы найти расстояние от плоскости до точки , воспользуйтесь методами аналитической геометрии: обозначьте координаты точки через x, y, z, соответственно (х – абсцисса, y – ордината, z – аппликата); обозначьте через А, В, С, D уравнения плоскости (А – параметр при абсциссе, В – при , С – при аппликате, D – свободный член); вычислите расстояние от точки до плоскости по формуле:s = | (Ax+By+Cz+D)/√(A²+B²+C²) |,где s – оасстояние между точкой и плоскостью,|| - абсолютного значения (или модуля) .

Пример.Найдите расстояние между точкой А с координатами (2, 3, -1) и плоскостью, заданной уравнением: 7х-6у-6z+20=0.Решение.Из условий следует, что:х=2,у=3,z=-1,A=7,B=-6,C=-6,D=20.Подставьте эти значения в вышеприведенную .Получится:s = | (7*2+(-6)*3+(-6)*(-1)+20)/√(7²+(-6)²+(-6)²) | = | (14-18+6+20)/11 | = 2.Ответ:Расстояние от точки до плоскости равно 2 (условным единицам).

Совет 2: Как определить расстояние от точки до плоскости

Определение расстояния от точки до плоскости - одна из распространенных задач школьной планиметрии. Как известно, наименьшим расстоянием от точки до плоскости будет перпендикуляр, проведенный из этой точки к данной плоскости . Поэтому длина этого перпендикуляра и принимается за расстояние от точки до плоскости .

Вам понадобится

  • уравнение плоскости

Инструкция

Пусть первая из параллельных f1 задана уравнением y=kx+b1. Переведя выражение в общий вид, у вас получится kx-y+b1=0, то есть A=k, B=-1. Нормалью к ней будет n={k, -1}.
Теперь следует произвольную абсциссу точки х1 на f1. Тогда ее ордината y1=kx1+b1.
Пусть уравнение второй из параллельных прямых f2 будет иметь вид:
у=kx+b2 (1),
где k одинаково для обеих прямых, в силу их параллельности.

Далее вам необходимо составить каноническое уравнение линии перпендикулярной как f2, так и f1, содержащей точку М (x1, y1). При этом полагают, что х0=х1, y0=y1, S={k, -1}. В результате у вас должно получится следующее равенство:
(x-x1)/k =(y-kx1-b1)/(-1) (2).

Решив систему уравнений, состоящую из выражений (1) и (2), вы найдете вторую точку, определяющую искомое расстояние между параллельными N(x2, y2). Само искомое расстояние будет равно d=|MN|=((x2-x1)^2+(y2-y1)^2)^1/2.

Пример. Пусть уравнения заданных параллельных прямых на плоскости f1 – у=2x +1 (1);
f2 – y=2x+5 (2). Берем произвольную точку х1=1 на f1. Тогда y1=3. Первая точка, таким образом будет иметь координаты M (1,3). Уравнение общего перпендикуляра (3):
(х-1)/2 = -y+3 или y=-(1/2)x+5/2.
Подставив это значение y в (1), получить:
-(1/2)x+5/2=2х+5, (5/2)х=-5/2, х2=-1, y2=-(1/2)(-1) +5/2=3.
Второе основание перпендикуляра в точке с координатами N (-1, 3). Расстояние между параллельными прямыми составит:
d=|MN|=((3-1)^2+(3+1)^2)^1/2=(4+16)^1/2=4,47.

Источники:

Вершина любой плоской или объемной геометрической фигуры однозначно определяется своими координатами в пространстве. Точно так же может быть однозначно определена и любая произвольная точка в той же системе координат, а это дает возможность вычислить расстояние между этой произвольной точкой и вершиной фигуры.

Вам понадобится

  • - бумага;
  • - ручка или карандаш;
  • - калькулятор.

Инструкция

Сведите задачу к нахождению длины отрезка между двумя точками, если координаты заданной в задачи точки и вершины геометрической фигуры известны. Эту длину можно вычислить, воспользовавшись теоремой Пифагора применительно к проекциям отрезка на оси координат - она будет равна квадратному корню из суммы квадратов длин всех проекций. Например, пусть в трехмерной системе координат заданы точка A(X₁;Y₁;Z₁) и вершина C фигуры любой геометрической с координатами (X₂;Y₂;Z₂). Тогда длины проекций отрезка между ними на координатные оси можно как X₁-X₂, Y₁-Y₂ и Z₁-Z₂, а длину отрезка - как √((X₁-X₂)²+(Y₁-Y₂)²+(Z₁-Z₂)²). Например, если координаты точки A(5;9;1), а вершины C(7;8;10), то расстояние между ними будет равно √((5-7)²+(9-8)²+(1-10)²) = √(-2²+1²+(-9)²) = √(4+1+81) = √86 ≈ 9,274.

Вычислите сначала координаты вершины, если в явном виде в условиях задачи они не представлены. Конкретный способ зависит от типа фигуры и известных дополнительных параметров. Например, если известны трехмерные координаты трех вершин A(X₁;Y₁;Z₁), B(X₂;Y₂;Z₂) и C(X₃;Y₃;Z₃), то координаты четвертой его вершины (противоположной вершине B) будут (X₃+X₂-X₁; Y₃+Y₂-Y₁; Z₃+Z₂-Z₁). После определения координат недостающей вершины вычисление расстояния между ней и произвольной точкой вновь сведется к определению длины отрезка между двумя этими точками в заданной системе координат - сделайте это тем же способом, который был описан в предыдущем шаге. Например, для вершины описанного в этом шаге параллелограмма и точки E с координатами (X₄;Y₄;Z₄) формулу вычисления расстояния из предыдущего шага можно так: √((X₃+X₂-X₁-X₄)²+(Y₃+Y₂-Y₁-Y₄)²+(Z₃+Z₂-Z₁-Z₄)²).

Для практических расчетов можно использовать, например, встроенный в поисковую систему Google . Так, чтобы вычислить значение по формуле, полученной на предыдущем шаге, для точек с координатами A(7;5;2), B(4;11;3), C(15;2;0), E(7;9;2), введите такой поисковый запрос: sqrt((15+4-7-7)^2+(2+11-5-9)^2+(0+3-2-2)^2). Поисковик рассчитает и отобразит результат вычислений (5,19615242).

Видео по теме

Восстановление перпендикуляра к плоскости – одна из важных задач в геометрии, она лежит в основе многих теорем и доказательств. Чтобы построить прямую, перпендикулярную плоскости , нужно последовательно выполнить несколько действий.

Вам понадобится

  • - заданная плоскость;
  • - точка, из которой требуется провести перпендикуляр;
  • - циркуль;
  • - линейка;
  • - карандаш.

Рассмотрим алгоритм решения задачи №3.

1. Из заданной точки P провести перпендикуляр t к плоскости α (плоскость α – плоскость фигуры, построенной в задаче №1); (·)PÎt; t ^ α (см. пример 5.1).

2. Определить точку пересечения (точку T) перпендикуляра с плоскостью α; t ∩ α = (·) T (см. пример 5.2).

3. Определить натуральную величину │PT│ расстояния от точки P до плоскости (см. пример 5.3).

Рассмотрим более подробно каждый пункт приведённого выше алгоритма на следующих примерах.

Пример 5.1. Из точки P провести перпендикуляр t к плоскости α, заданной тремя точками α (ABC), (рис. 5.1).

Из теоремы о перпендикулярности прямой и плоскости известно, что если прямая t ^ α, то на эпюре её горизонтальная проекция t 1 перпендикулярна одноимённой проекции горизонтали плоскости, то есть t 1 ^ h 1 , а её фронтальная проекция t 2 перпендикулярна одноимённой проекции фронтали, то есть t 2 ^ f 2 . Поэтому решение задачи необходимо начать с построения горизонтали и фро-нтали плоскости α, если они не входят в заданную плоскость . При этом необхо-димо помнить, что построение любой горизонтали надо начинать с фронтальной проекции, так как фронтальная проекция h 2 горизонтали h всегда параллельна оси ОХ (h 2 ││OX). А построение любой фронтали начинают с горизонтальной проекции f 1 фронтали f, которая должна быть параллельна оси ОХ (f 1 ││OX). Так, на рис. 5.1 через точку C проведена горизонталь C-1 (С 2 -1 2 ; С 1 -1 1), а через точку A проведена фронталь A-2 (A 1 -2 1 ; A 2 -2 2). Фронтальная проекция t 2 искомого перпендикуляра t проходит через точку P 2 перпендикулярно к A 2 -2 2 , а горизонтальная t 1 – через точку P 1 перпендикулярно к C 1 -1 1 .

Пример 5.2. Определить точку пересечения перпендикуляра t с плоскостью α (то есть определить основание перпендикуляра).

Пусть плоскость α задана двумя пересе-кающимися прямыми α (h ∩ f). Прямая t пер-пендикулярна плоскости α, так как t 1 ^ f 1 , а

t 2 ^ f 2 . Для того чтобы найти основание пер-пендикуляра, необходимо осуществить следующие построения:

1. tÎb (b – вспомогательная проецирую-щая плоскость). Если b – горизонтально-прое-цирующая плоскость, то её вырожденная гори-зонтальная проекция (горизонтальный след b 1) совпадает с горизонтальной проекцией t 1 пря-мой t, то есть b 1 ≡t 1 . Если b – фронтально-прое-цирующая плоскость, то её вырожденная фро-нтальная проекция (фронтальный след b 2) сов-падает с фронтальной проекцией t 2 прямой t, то есть b 2 ≡ t 2 . В данном примере использована фронтально-проецирующая плоскость (см. рис. 5.2).


2. α ∩ b = 1-2 – линия пересечения двух плоскостей;

3. определяем точку T – основание перпендикуляра; (·)T= t ∩ 1-2.

Пример 5.3. Определить расстояние от точки P до плоскости.

Расстояние от точки P до плоскости определяется длиной отрезка перпендикуляра PT. Прямая PT в пространстве занимает общее положение, поэтому порядок определения натуральной величины отрезка см. на стр. 7, 8 (рис. 3.4 и 3.5).

Эпюрное решение задачи №3 по определению расстояния от точки P до плоской фигуры, а именно до плоскости квадрата, построенного по заданным условиям*, приведено на рис. 5.3. Следует напомнить, что проекции точки P должны быть построены по заданным координатам (см. вариант своего задания).

6. ВАРИАНТЫ ЗАДАНИЙ И ПРИМЕР ВЫПОЛНЕНИЯ РАБОТЫ

Условия задач и координаты точек приведены в таблице 6.1.

ВАРИАНТЫ ЗАДАНИЙ 148

Определение расстояния между: 1 - точкой и плоскостью; 2 - прямой и плоскостью; 3 - плоскостями; 4 - скрещивающимися прямыми рассматривается совместно, так как алгоритм решения для всех этих задач по существу одинаков и состоит из геометрических построений, которые нужно выполнить для определения расстояния между заданными точкой А и плоскостью α. Если и есть какое-то различие, то оно состоит лишь в том, что в случаях 2 и 3 прежде чем приступить к решению задачи, следует на прямой m (случай 2) или плоскости β (случай 3) отметить произвольную точку А. При определении расстояния между скрещивающимися прямыми предварительно заключаем их в параллельные плоскости α и β с последующим определением расстояния между этими плоскостями.

Рассмотрим каждый из отмеченных случаев решения задач.

1. Определение расстояния между точкой и плоскостью.

Расстояние от точки до плоскости определяется длиной отрезка перпендикуляра, опущенного из точки на плоскость.

Поэтому решение этой задачи состоит из последовательного выполнения следующих графических операций:

1) из точки А опускаем перпендикуляра на плоскость α (рис. 269);

2) находим точку М пересечения этого перпендикуляра с плоскостью М = а ∩ α;

3) определяем длину отрезка .

Если плоскость α общего положения, то для того чтобы опустить на эту плоскость перпендикуляр, необходимо предварительно определить направление проекций горизонтали и фронтали этой плоскости. Нахождение точки встречи этого перпендикуляра с плоскостью также требует выполнения дополнительных геометрических построений.


Решение задачи упрощается, если плоскость α занимает частное положение относительно плоскостей проекций. В этом случае и проведение проекций перпендикуляра, и нахождение точки его встречи с плоскостью осуществляется без каких-либо дополнительных вспомогательных построений.

ПРИМЕР 1. Определить расстояние от точки А до фронтально проецирующей плоскости α (рис. 270).

РЕШЕНИЕ. Через А" проводим горизонтальную проекцию перпендикуляра l" ⊥ h 0α , а через А" - его фронтальную проекцию l" ⊥ f 0α . Отмечаем точку M" = l" ∩ f 0α . Так как AM || π 2 , то [А" М"] == |АМ| = d.

Из рассмотренного примера видно, насколько просто решается задача, когда плоскость занимает проецирующее положение. Поэтому, если в исходных данных будет задана плоскость общего положения, то, прежде чем приступить к решению, следует перевести плоскость в положение, перпендикулярное к какой-либо плоскости проекции.

ПРИМЕР 2. Определить расстояние от точки К до плоскости, заданной ΔАВС (рис. 271).

1. Переводим плоскость ΔАВС в проецирующее положение *. Для этого переходим от системы xπ 2 /π 1 к x 1 π 3 /π 1: направление новой оси х 1 выбирается перпендикулярным к горизонтальной проекции горизонтали плоскости треугольника.

2. Проецируем ΔАВС на новую плоскость π 3 (плоскость ΔАВС спроецируется на π 3 , в [ С" 1 В" 1 ]).

3. Проецируем на ту же плоскость точку К (К" → К" 1).

4. Через точку К" 1 проводим (К" 1 М" 1)⊥ отрезку [С" 1 В" 1 ]. Искомое расстояние d = |K" 1 M" 1 | .

Решение задачи упрощается, если плоскость задана следами, так как отпадает необходимость в проведении проекций линий уровня.

ПРИМЕР 3. Определить расстояние от точки К до плоскости α, заданной следами (рис. 272) .

* Наиболее рациональным путем перевода плоскости треугольника в проецирующее положение является способ замены плоскостей проекций, так как в этом случае достаточно построить только одну вспомогательную проекцию.

РЕШЕНИЕ. Заменяем плоскость π 1 плоскостью π 3 , для этого проводим новую ось x 1 ⊥ f 0α . На h 0α отмечаем произвольную точку 1" и определяем ее новую горизонтальную проекцию на плоскости π 3 (1" 1). Через точки X α 1 (Х α 1 = h 0α 1 ∩ x 1) и 1" 1 проводим h 0α 1 . Определяем новую горизонтальную проекцию точки К → К" 1 . Из точки К" 1 опускаем перпендикуляр на h 0α 1 и отмечаем точку его пересечения с h 0α 1 - М" 1 . Длина отрезка K" 1 M" 1 укажет искомое расстояние.

2. Определение расстояния между прямой и плоскостью.

Расстояние между прямой и плоскостью определяется длиной отрезка перпендикуляра, опущенного из произвольной точки прямой на плоскость (см. рис. 248).

Поэтому решение задачи по определению расстояния между прямой m и плоскостью α ничем не отличается от рассмотренных в п. 1 примеров на определение расстояния между точкой и плоскостью (см. рис. 270 ... 272). В качестве точки можно брать любую точку, принадлежащую прямой m.

3.Определение расстояния между плоскостями.

Расстояние между плоскостями определяется величиной отрезка перпендикуляра, опущенного из точки, взятой на одной плоскости, на другую плоскость.

Из этого определения вытекает, что алгоритм решения задачи по нахождению расстояния между плоскостями α и β отличается от аналогичного алгоритма решения задачи по определению расстояния между прямой m и плоскостью α лишь тем, что прямая m должна принадлежать плоскости α, т. е., чтобы определить расстояние между плоскостями α и β, следует:

1) взять в плоскости α прямую m;

2) выделить на прямой m произвольную точку А;

3) из точки А опустить перпендикуляр l на плоскость β;

4) определить точку М - точку встречи перпендикуляра l с плоскостью β;

5) определить величину отрезка .

На практике целесообразно пользоваться другим алгоритмом решения, который будет отличаться от приведенного лишь тем, что, прежде чем приступить к выполнению первого пункта, следует перевести плоскости в проецирующее положение.

Включение в алгоритм этой дополнительной операции упрощает выполнение всех без исключения остальных пунктов, что, в конечном счете, приводит к более простому решению.

ПРИМЕР 1. Определить расстояние между плоскостями α и β (рис. 273).

РЕШЕНИЕ. Переходим от системы xπ 2 /π 1 к x 1 π 1 /π 3 . По отношению к новой плоскости π 3 плоскости α и β занимают проецирующее положение, поэтому расстояние между новыми фронтальными,следами f 0α 1 и f 0β 1 является искомым.

В инженерной практике часто приходится решать задачу на построение плоскости, параллельной данной и удаленной от нее на заданное расстояние. Приведенный ниже пример 2 иллюстрирует решение такой задачи.

ПРИМЕР 2. Требуется построить проекции плоскости β, параллельной данной плоскости α (m || n), если известно, что расстояние между ними равно d (рис. 274).

1. В плоскости α проводим произвольные горизонталь h (1, 3) и фронталь f (1,2).

2. Из точки 1 восставляем перпендикуляр l к плоскости α(l" ⊥ h", l" ⊥ f").

3. На перпендикуляре l отмечаем произвольную точку А.

4. Определяем длину отрезка - (положение указывает на эпюре метрически неискаженное направление прямой l).


5. Откладываем на прямой (1"А 0) от точки 1" отрезок = d.

6. Отмечаем на проекциях l" и l" точки В" и В", соответствующие точке В 0 .

7. Через точку В проводим плоскость β (h 1 ∩ f 1). Чтобы β || α, необходимо coблюдать условие h 1 || h и f 1 || f.

4. Определение расстояния между скрещивающимися прямыми.

Расстояние между скрещивающимися прямыми определяется длиной перпендикуляра, заключенного между параллельными плоскостями, которым принадлежат скрещивающиеся прямые.

Для того чтобы через скрещивающиеся прямые m и f провести взаимно параллельные плоскости α и β, достаточно через точку А (А ∈ m) провести прямую р, параллельную прямой f, а через точку В (В ∈ f) - прямую k, параллельную прямой m. Пересекающиеся прямые m и р, f и k определяют взаимно параллельные плоскости α и β (см. рис. 248, е). Расстояние между плоскостями α и β равно искомому расстоянию между скрещивающимися прямыми m и f.

Можно предложить и другой путь для определения расстояния между скрещивающимися прямыми, который состоит в том, что с помощью какого-либо способа преобразования ортогональных проекций одна из скрещивающихся прямых переводится в проецирующее положение. В этом случае одна проекция прямой вырождается в точку. Расстояние между новыми проекциями скрещивающихся прямых (точкой A" 2 и отрезком C" 2 D" 2) является искомым.

На рис. 275 приведено решение задачи на определение расстояния между скрещивающимися прямыми а и b, заданными отрезками [АВ] и [ CD]. Решение выполняют в следующей последовательности:

1. Переводят одну из скрещивающихся прямых (а) в положение, параллельное плоскости π 3 ; для этого переходят от системы плоскостей проекции xπ 2 /π 1 к новой x 1 π 1 /π 3 , ось x 1 проводят параллельно горизонтальной проекции прямой а. Определяют а" 1 [А" 1 В" 1 ] и b" 1 .

2. Путем замены плоскости π 1 плоскостью π 4 переводят прямую


а в положение а" 2 , перпендикулярное плоскости π 4 (новую ось х 2 проводят перпендикулярно а" 1).

3. Строят новую горизонтальную проекцию прямой b" 2 - [ C" 2 D" 2 ].

4. Расстояние от точки А" 2 до прямой C" 2 D" 2 (отрезок (А" 2 М" 2 ] (является искомым.

Следует иметь в виду, что перевод одной из скрещивающихся прямых в проецирующее положение является ничем иным, как переводом плоскостей параллелизма, в которые можно заключить прямые а и b, также в проецирующее положение.

В самом деле, переведя прямую а в положение, перпендикулярное плоскости π 4 , мы обеспечиваем перпендикулярность любой плоскости, содержащей прямую а, плоскости π 4 , в том числе и плоскости α, определяемой прямыми а и m (а ∩ m, m || b). Если мы теперь проведем прямую n, параллельную а и пересекающую прямую b, то мы получим плоскость β, являющуюся второй плоскостью параллелизма, в которую заключены скрещивающиеся прямые а и b. Так как β || α, то и β ⊥ π 4 .

Санкт-Петербургский государственный морской технический университет

Кафедра компьютерной графики и информационного обеспечения

ЗАНЯТИЕ 4

ПРАКТИЧЕСКОЕ ЗАДАНИЕ №4

Плоскость.

Определение расстояния от точки до плоскости.

1. Определение расстояния от точки до проецирующей плоскости.

Для того, чтобы найти действительную величину расстояния от точки до плоскости, необходимо:

· из точки опустить перпендикуляр на плоскость;

· найти точку пересечения проведенного перпендикуляра с плоскостью;

· определить действительную величину отрезка, началом которого является заданная точка, а концом – найденная точка пересечения.

Плоскость может занимать в пространстве общее и частное положение. Под частным понимается положение, при котором плоскость перпендикулярна к плоскости проекций – такую плоскость называют проецирующей. Основной признак проецирующего положения: плоскость перпендикулярна к плоскости проекций, если она проходит через проецирующую прямую. В этом случае одна из проекций плоскости прямая линия – ее называют следом плоскости .

Если плоскость проецирующая, то легко определить действительную величину расстояния от точки до плоскости. Покажем это на примере определения расстояния от точки В до фронтально-проецирующей плоскости, заданной следом Q 2 на плоскости П2 (рис.1).

Плоскость Q перпендикулярна к фронтальной плоскости проекций, следовательно, любая к ней перпендикулярная линия будет параллельна к плоскости П2. А тогда прямой угол на плоскость П2 будет проецироваться без искажения, и можно из точки В2 провести перпендикуляр к следу Q 2 . Отрезок ВК находится в частном положении, при котором фронтальная проекция В2К2 равна истинной величине искомого расстояния.

Рис.1. Определение расстояния от точки до проецирующей плоскости.

2. Определение расстояния от точки до плоскости общего положения.

Если плоскость занимает общее положение, то необходимо перевести ее в проецирующее положение. Для этого в ней проводится прямая частного положения (параллельная к одной из плоскостей проекций), которую можно перевести в проецирующее положение, используя одно преобразование чертежа.

Прямая, параллельная плоскости П1, называется горизонталью плоскости и обозначается буквой h . Прямая, параллельная фронтальной плоскости проекций П2 , называется фронталью плоскости и обозначается буквой f .Линии h иf называются главными линиями плоскости . Решение задачи показано на следующем примере (рис.2).

Начальное условие: треугольник АВС задает плоскость. М - точка вне плоскости. Заданная плоскость занимает общее положение. Для перевода ее в проецирующее положение выполним следующие действия. Включить режим ОРТО (ORTHO ), использовать команду Отрезок (Line ) – провести любую горизонтальную линию, пересекающую фронтальную проекцию треугольника А2В2С2 в двух точках. Проекция горизонтали, проходящей через эти точки, обозначена h 2 . Далее строится горизонтальная проекция h 1 .

Главная линия h может быть преобразована в проецирующее положение, при котором заданная плоскость также станет проецирующей. Для этого необходимо повернуть горизонтальные проекции всех точек (вспомогательный четырехугольник АВСМ ) в новое положение, при котором линия h 1 будет занимать вертикальное положение, перпендикулярное к оси Х . Удобно выполнить эти построения, используя плоскопараллельный перенос (копия проекции помещается на свободное место экрана).

В результате новая фронтальная проекция плоскости будет выглядеть в виде прямой линии (следа плоскости) А2*В2*. Теперь из точки М2* можно провести перпендикуляр к следу плоскости. Новая фронтальная проекция М2*К2* = МК т.е. является искомым расстоянием от точки М до заданной плоскости АВС .

Далее необходимо построить проекции расстояния в начальном условии. Для этого из точки М1 проводится отрезок, перпендикулярный к линии h 1 , и на нем следует отложить от точки М1 отрезок, равный по величине М1*К1*. Чтобы построить фронтальную проекцию точки К2 из точки К1 проводится вертикальная линия связи, а из точки К2* горизонтальная. Результат построений показан на рис.2.

ЗАДАНИЕ №4. Найти истинную величину расстояния от точки М до плоскости, заданной треугольником АВС . Ответ дать в мм.(таблица 1)

Таблица 1

Вариант

Точка А

Точка В

Вариант

Точка С

Точка М

Проверка и зачет выполненного ЗАДАНИЯ №4.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.