Производная 2х в кубе. Найти производную: алгоритм и примеры решений

В соотношении

может быть поставлена задача отыскания любого из трех чисел по двум другим, заданным. Если даны а и то N находят действием возведения в степень. Если даны N и то а находят извлечением корня степени х (или возведением в степень ). Теперь рассмотрим случай, когда по заданным а и N требуется найти х.

Пусть число N положительно: число а положительно и не равно единице: .

Определение. Логарифмом числа N по основанию а называется показатель степени, в которую нужно возвести а, чтобы получить число N; логарифм обозначается через

Таким образом, в равенстве (26.1) показатель степени находят как логарифм N по основанию а. Записи

имеют одинаковый смысл. Равенство (26.1) иногда называют основным тождеством теории логарифмов; в действительности оно выражает определение понятия логарифма. По данному определению основание логарифма а всегда положительно и отлично от единицы; логарифмируемое число N положительно. Отрицательные числа и нуль логарифмов не имеют. Можно доказать, что всякое число при данном основании имеет вполне определенный логарифм. Поэтому равенство влечет за собой . Заметим, что здесь существенно условие в противном случае вывод был бы не обоснован, так как равенство верно при любых значениях х и у.

Пример 1. Найти

Решение. Для получения числа следует возвести основание 2 в степень Поэтому.

Можно проводить записи при решении таких примеров в следующей форме:

Пример 2. Найти .

Решение. Имеем

В примерах 1 и 2 мы легко находили искомый логарифм, представляя логарифмируемое число как степень основания с рациональным показателем. В общем случае, например для и т. д., этого сделать не удастся, так как логарифм имеет иррациональное значение. Обратим внимание на один связанный с этим утверждением вопрос. В п. 12 мы дали понятие о возможности определения любой действительной степени данного положительного числа. Это было необходимо для введения логарифмов, которые, вообще говоря, могут быть иррациональными числами.

Рассмотрим некоторые свойства логарифмов.

Свойство 1. Если число и основание равны, то логарифм равен единице, и, обратно, если логарифм равен единице, то число и основание равны.

Доказательство. Пусть По определению логарифма имеем а откуда

Обратно, пусть Тогда по определению

Свойство 2. Логарифм единицы по любому основанию равен нулю.

Доказательство. По определению логарифма (нулевая степень любого положительного основания равна единице, см. (10.1)). Отсюда

что и требовалось доказать.

Верно и обратное утверждение: если , то N = 1. Действительно, имеем .

Прежде чем сформулировать следующее свойство логарифмов, условимся говорить, что два числа а и b лежат по одну сторону от третьего числа с, если они оба либо больше с, либо меньше с. Если одно из этих чисел больше с, а другое меньше с, то будем говорить, что они лежат по разные стороны от с.

Свойство 3. Если число и основание лежат по одну сторону от единицы, то логарифм положителен; если число и основание лежат по разные стороны от единицы, то логарифм отрицателен.

Доказательство свойства 3 основано на том, что степень а больше единицы, если основание больше единицы и показатель положителен или основание меньше единицы и показатель отрицателен. Степень меньше единицы, если основание больше единицы и показатель отрицателен или основание меньше единицы и показатель положителен.

Требуется рассмотреть четыре случая:

Ограничимся разбором первого из них, остальные читатель рассмотрит самостоятельно.

Пусть тогда в равенстве показатель степени не может быть ни отрицательным, ни равным нулю, следовательно, он положителен, т. е. что и требовалось доказать.

Пример 3. Выяснить, какие из указанных ниже логарифмов положительны, какие отрицательны:

Решение, а) так как число 15 и основание 12 расположены по одну сторону от единицы;

б) , так как 1000 и 2 расположены по одну сторону от единицы; при этом несущественно, что основание больше логарифмируемого числа;

в) , так как 3,1 и 0,8 лежат по разные стороны от единицы;

г) ; почему?

д) ; почему?

Следующие свойства 4-6 часто называют правилами логарифмирования: они позволяют, зная логарифмы некоторых чисел, найти логарифмы их произведения, частного, степени каждого из них.

Свойство 4 (правило логарифмирования произведения). Логарифм произведения нескольких положительных чисел по данному основанию равен сумме логарифмов этих чисел по тому же основанию.

Доказательство. Пусть даны положительные числа .

Для логарифма их произведения напишем определяющее логарифм равенство (26.1):

Отсюда найдем

Сравнив показатели степени первого и последнего выражений, получим требуемое равенство:

Заметим, что условие существенно; логарифм произведения двух отрицательных чисел имеет смысл, но в этом случае получим

В общем случае, если произведение нескольких сомножителей положительно, то его логарифм равен сумме логарифмов модулей этих сомножителей.

Свойство 5 (правило логарифмирования частного). Логарифм частного положительных чисел равен разности логарифмов делимого и делителя, взятых по тому же основанию. Доказательство. Последовательно находим

что и требовалось доказать.

Свойство 6 (правило логарифмирования степени). Логарифм степени какого-либо положительного числа равен логарифму этого числа, умноженному на показатель степени.

Доказательство. Запишем снова основное тождество (26.1) для числа :

что и требовалось доказать.

Следствие. Логарифм корня из положительного числа равен логарифму подкоренного числа, деленному на показатель корня:

Доказать справедливость этого следствия можно, представив как и воспользовавшись свойством 6.

Пример 4. Прологарифмировать по основанию а:

а) (предполагается, что все величины b, с, d, е положительны);

б) (преполагается, что ).

Решение, а) Удобно перейти в данном выражении к дробным степеням:

На основании равенств (26.5)-(26.7) теперь можно записать:

Мы замечаем, что над логарифмами чисел производятся действия более простые, чем над самими числами: при умножении чисел их логарифмы складываются, при делении - вычитаются и т.д.

Именно поэтому логарифмы получили применение в вычислительной практике (см. п. 29).

Действие, обратное логарифмированию, называется потенцированием, а именно: потенцированием называется действие, с помощью которого по данному логарифму числа находится само это число. По существу потенцирование не является каким-либо особым действием: оно сводится к возведению основания в степень (равную логарифму числа). Термин «потенцирование» можно считать синонимом термина «возведенение в степень».

При потенцировании надо пользоваться правилами, обратными по отношению к правилам логарифмирования: сумму логарифмов заменить логарифмом произведения, разность логарифмов - логарифмом частного и т. д. В частности, если перед знаком логарифма находится какой-либо множитель, то его при потенцировании нужно переносить в показатель степени под знак логарифма.

Пример 5. Найти N, если известно, что

Решение. В связи с только что высказанным правилом потенцирования множители 2/3 и 1/3, стоящие перед знаками логарифмов в правой части данного равенства, перенесем в показатели степени под знаками этих логарифмов; получим

Теперь разность логарифмов заменим логарифмом частного:

для получения последней дроби в этой цепочке равенств мы предыдущую дробь освободили от иррациональности в знаменателе (п. 25).

Свойство 7. Если основание больше единицы, то большее число имеет больший логарифм (а меньшее - меньший), если основание меньше единицы, то большее число имеет меньший логарифм {а меньшее - больший).

Это свойство формулируют также и как правило логарифмирования неравенств, обе части которых положительны:

При логарифмировании неравенств по основанию, большему единицы, знак неравенства сохраняется, а при логарифмировании по основанию, меньшему единицы, знак неравенства меняется на противоположный (см. также п. 80).

Доказательство основано на свойствах 5 и 3. Рассмотрим случай, когда Если , то и, логарифмируя, получим

(а и N/М лежат по одну сторону от единицы). Отсюда

Случай а следует , читатель разберет самостоятельно.

Вытекают из его определения. И так логарифм числа b по основанию а определяется как показатель степени, в которую надо возвести число a , чтобы получить число b (логарифм существует только у положительных чисел).

Из данной формулировки следует, что вычисление x=log a b , равнозначно решению уравнения a x =b. Например, log 2 8 = 3 потому, что 8 = 2 3 . Формулировка логарифма дает возможность обосновать, что если b=a с , то логарифм числа b по основанию a равен с . Также ясно, что тема логарифмирования тесно взаимосвязана с темой степени числа .

С логарифмами, как и с любыми числами, можно выполнять операции сложения , вычитания и всячески трансформировать. Но ввиду того, что логарифмы - это не совсем ординарные числа, здесь применимы свои особенные правила, которые называются основными свойствами .

Сложение и вычитание логарифмов.

Возьмем два логарифма с одинаковыми основаниями: log a x и log a y . Тогда сними возможно выполнять операции сложения и вычитания:

log a x+ log a y= log a (x·y);

log a x - log a y = log a (x:y).

log a (x 1 . x 2 . x 3 ... x k ) = log a x 1 + log a x 2 + log a x 3 + ... + log a x k .

Из теоремы логарифма частного можно получить еще одно свойство логарифма. Общеизвестно, что log a 1= 0, следовательно,

log a 1 / b = log a 1 - log a b = - log a b .

А значит имеет место равенство:

log a 1 / b = - log a b.

Логарифмы двух взаимно обратных чисел по одному и тому же основанию будут различны друг от друга исключительно знаком. Так:

Log 3 9= - log 3 1 / 9 ; log 5 1 / 125 = -log 5 125.

Что такое логарифм?

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое логарифм? Как решать логарифмы? Эти вопросы многих выпускников вводят в ступор. Традиционно тема логарифмов считается сложной, непонятной и страшной. Особенно - уравнения с логарифмами.

Это абсолютно не так. Абсолютно! Не верите? Хорошо. Сейчас, за какие-то 10 - 20 минут вы:

1. Поймете, что такое логарифм .

2. Научитесь решать целый класс показательных уравнений. Даже если ничего о них не слышали.

3. Научитесь вычислять простые логарифмы.

Причём для этого вам нужно будет знать только таблицу умножения, да как возводится число в степень...

Чувствую, сомневаетесь вы... Ну ладно, засекайте время! Поехали!

Для начала решите в уме вот такое уравнение:

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Инструкция

Запишите заданное логарифмическое выражение. Если в выражении используется логарифм 10, то его запись укорачивается и выглядит так: lg b - это десятичный логарифм. Если же логарифм имеет в виде основания число е, то записывают выражение: ln b – натуральный логарифм. Подразумевается, что результатом любого является степень, в которую надо возвести число основания, чтобы получилось число b.

При нахождении от суммы двух функций, необходимо просто их по очереди продифференцировать, а результаты сложить: (u+v)" = u"+v";

При нахождении производной от произведения двух функций, необходимо производную от первой функции умножить на вторую и прибавить производную второй функции, умноженную на первую функцию: (u*v)" = u"*v+v"*u;

Для того, чтобы найти производную от частного двух функций необходимо, из произведения производной делимого, умноженной на функцию делителя, вычесть произведение производной делителя, умноженной на функцию делимого, и все это разделить на функцию делителя возведенную в квадрат. (u/v)" = (u"*v-v"*u)/v^2;

Если дана сложная функция, то необходимо перемножить производную от внутренней функции и производную от внешней. Пусть y=u(v(x)), тогда y"(x)=y"(u)*v"(x).

Используя полученные выше , можно продифференцировать практически любую функцию. Итак, рассмотрим несколько примеров:

y=x^4, y"=4*x^(4-1)=4*x^3;

y=2*x^3*(e^x-x^2+6), y"=2*(3*x^2*(e^x-x^2+6)+x^3*(e^x-2*x));
Также встречаются задачи на вычисление производной в точке. Пусть задана функция y=e^(x^2+6x+5), нужно найти значение функции в точке х=1.
1) Найдите производную функции: y"=e^(x^2-6x+5)*(2*x +6).

2) Вычислите значение функции в заданной точке y"(1)=8*e^0=8

Видео по теме

Полезный совет

Выучите таблицу элементарных производных. Это заметно сэкономит время.

Источники:

  • производная константы

Итак, чем же отличается иррациональное уравнение от рационального? Если неизвестная переменная находиться под знаком квадратного корня, то уравнение считается иррациональным.

Инструкция

Основной метод решения таких уравнений - метод возведения обоих частей уравнения в квадрат. Впрочем. это естественно, первым делом необходимо избавиться от знака . Технически этот метод не сложен, но иногда это может привести к неприятностям. Например, уравнение v(2х-5)=v(4х-7). Возведя обе его стороны в квадрат, вы получите 2х-5=4х-7. Такое уравнение решить не составит труда; х=1. Но число 1 не будет являться данного уравнения . Почему? Подставьте единицу в уравнение вместо значения х.И в правой и в левой части будут содержаться выражения, не имеющие смысла, то есть . Такое значение не допустимо для квадратного корня. Поэтому 1 - посторонний корень, и следовательно данное уравнение не имеет корней.

Итак, иррациональное уравнение решается с помощью метода возведения в квадрат обоих его частей. И решив уравнение, необходимо обязательно , чтобы отсечь посторонние корни. Для этого подставьте найденные корни в оригинальное уравнение.

Рассмотрите еще один .
2х+vх-3=0
Конечно же, это уравнение можно решить по той же , что и предыдущее. Перенести составные уравнения , не имеющие квадратного корня, в правую часть и далее использовать метод возведения в квадрат. решить полученное рациональное уравнение и корни. Но и другой , более изящный. Введите новую переменную; vх=y. Соответственно, вы получите уравнение вида 2y2+y-3=0. То есть обычное квадратное уравнение. Найдите его корни; y1=1 и y2=-3/2. Далее решите два уравнения vх=1; vх=-3/2. Второе уравнение корней не имеет, из первого находим, что х=1. Не забудьте, о необходимости проверки корней.

Решать тождества достаточно просто. Для этого требуется совершать тождественные преобразования, пока поставленная цель не будет достигнута. Таким образом, при помощи простейших арифметических действий поставленная задача будет решена.

Вам понадобится

  • - бумага;
  • - ручка.

Инструкция

Простейший таких преобразований – алгебраические сокращенного умножения (такие как квадрат суммы (разности), разность квадратов, сумма (разность) , куб суммы (разности)). Кроме того существует множество и тригонометрических формул, которые по своей сути теми же тождествами.

Действительно, квадрат суммы двух слагаемых равен квадрату первого плюс удвоенное произведение первого на второе и плюс квадрат второго, то есть (a+b)^2= (a+b)(a+b)=a^2+ab +ba+b^2=a^2+2ab+b^2.

Упростите обеих

Общие принципы решения

Повторите по учебнику по математическому анализу или высшей математике, что собой представляет определённый интеграл. Как известно, решение определенного интеграла есть функция, производная которой даст подынтегральное выражение. Данная функция называется первообразной. По данному принципу и строится основных интегралов.
Определите по виду подынтегральной функции, какой из табличных интегралов подходит в данном случае. Не всегда удается это определить сразу же. Зачастую, табличный вид становится заметен только после нескольких преобразований по упрощению подынтегральной функции.

Метод замены переменных

Если подынтегральной функцией является тригонометрическая функция, в аргументе которой некоторый многочлен, то попробуйте использовать метод замены переменных. Для того чтобы это сделать, замените многочлен, стоящий в аргументе подынтегральной функции, на некоторую новую переменную. По соотношению между новой и старой переменной определите новые пределы интегрирования. Дифференцированием данного выражения найдите новый дифференциал в . Таким образом, вы получите новый вид прежнего интеграла, близкий или даже соответствующий какому-либо табличному.

Решение интегралов второго рода

Если интеграл является интегралом второго рода, векторный вид подынтегральной функции, то вам будет необходимо пользоваться правилами перехода от данных интегралов к скалярным. Одним из таких правил является соотношение Остроградского-Гаусса. Данный закон позволяет перейти от потока ротора некоторой векторной функции к тройному интегралу по дивергенции данного векторного поля.

Подстановка пределов интегрирования

После нахождения первообразной необходимо подставить пределы интегрирования. Сначала подставьте значение верхнего предела в выражение для первообразной. Вы получите некоторое число. Далее вычтите из полученного числа другое число, полученное нижнего предела в первообразную. Если один из пределов интегрирования является бесконечностью, то при подстановке ее в первообразную функцию необходимо перейти к пределу и найти, к чему стремится выражение.
Если интеграл является двумерным или трехмерным, то вам придется изображать геометрически пределы интегрирования, чтобы понимать, как рассчитывать интеграл. Ведь в случае, скажем, трехмерного интеграла пределами интегрирования могут быть целые плоскости, ограничивающие интегрируемый объем.