Отрицательный хемотаксис примеры. Смотреть что такое "Хемотаксис" в других словарях

Подвижные бактерии активно перемещаются в направлении, определяемом теми или иными внешними факторами. Такие направленные перемещения бактерий называют таксисами. В зависимости от фактора различают хемотаксис (частный случай - аэротаксис), фототаксис, магнитотаксис, термотаксис и вискозитаксис. Наибольшее внимание привлекает изучение хемотаксиса, т.е. движения в определенном направлении относительно источника химического вещества. Для каждого организма все химические вещества в этом плане могут быть разделены на две группы: инертные и вызывающие таксисы (эффекторы). Среди последних выделяют аттрактанты (вещества, привлекающие бактерий) и репелленты (вещества, отпугивающие бактерий). Аттрактантами могут быть сахара, аминокислоты, витамины, нуклеотиды и другие химические молекулы; репеллентами - некоторые аминокислоты, спирты, фенолы, неорганические ионы. Бактерии легко детектируют изменение концентрации на 0,1 % при микромолярных концентрациях веществ, а диапазон детектируемых концентраций перекрывает пять порядков. Аттрактантом для аэробных и репеллентом для анаэробных прокариот является молекулярный кислород. Аттрактанты часто представлены пищевыми субстратами, хотя не все вещества, необходимые для организма, выступают в качестве аттрактантов. Также не все ядовитые вещества служат репеллентами и не все репелленты вредны.

Аэротаксис - это движение микроорганизмов, одноклеточных, подвижных клеток многоклеточных организмов к источнику раздражения или от него. Источником раздражения в данном случае является кислород. Движение в сторону концентрации кислорода проявляется у аэробов, в обратную сторону - у анаэробов. Некоторые организмы в зависимости от концентрации кислорода может проявлять как положительный, так и отрицательный таксис. Определить аэротаксис у бактерий можно следующим образом. Под микроскопом наблюдается пробирка, в которой под стеклом находится капля воды. Аэробы скопятся у края стёклышка, анаэробы - в середине капли, бактерии, для которых наиболее благоприятна определённая кислорода среда (например, некоторые спириллы), скопляются на наиболее благоприятном для них расстоянии от края.

Фототаксис, т.е. движение к свету или от него, свойственен прежде всего фототрофным бактериям. Механизм фототаксиса включает три основные стадии: поглощение света и первичная реакция в фоторецепторе; преобразование стимула и передача сигнала двигательному аппарату; изменение движения жгутиков. Различают положительный и отрицательный фототаксисы. Положительный фототаксис - движение в сторону источника света: Эвглена зелёная плывет к свету, хлоропласты перемещаются в сторону света. Отрицательный фототаксис - движение в сторону от света.

Способность перемещаться по силовым линиям магнитного поля Земли или магнита - магнитотаксис - обнаружен у разных бактерий, обитающих в пресной и морской воде. У ряда бактерий обнаружен вискозотаксис - способность реагировать на изменение вязкости раствора и перемещаться в направлении ее увеличения или уменьшения.

За чувствительность бактерий к градиентам определенных факторов ответственны специфические рецепторы. Изучение хемотаксиса у Escherchia coli позволило обнаружить свыше 30 различных хеморецеторов, представляющий собой белки, синтезируемые независимо от присутствия индуктора или только в результате индукции. Рецептор реагирует на эффектор и передает сигнал по определенному пути, конкретный механизм которого неизвестен, на «мотор» жгутика. Мембранные рецепторы группируются в кластеры, как правило расположенные на полюсах клетки, однако это не может помочь бактерии уловить разницу концентраций между полюсами, поскольку она будет слишком маленькой из-за малого размера самой клетки. Вместо этого бактерии ориентируются в химических градиентах путем измерения временных изменений концентраций при движении. Обычно скорость движения Escherichia coli составляет 10-20 своих длин в секунду. Три класса белков участвуют в хемотаксисе: трансмембранные рецепторы, цитоплазматические сигнальные белки и ферменты адаптивного метилирования.

При воспалении в каком-либо участке тела скорость пос­тупления лейкоцитов в поврежденную ткань значительно выше, чем в норме. Костный мозг начинает выбрасывать в кровь свои резервы. Это ведет к лейкоцитозу. При остром гнойном воспа­лении общее число лейкоцитов в крови обычно увеличивается за счет нейтрофилов и их менее зрелых форм (палочкоядерных, юных, миэлоцитов). В самом очаге воспаления срок жизни лей­коцитов, пришедших из крови, тоже сокращается. Если в норме, вышедшие в ткань лейкоциты движутся в разных направлениях, то при воспалении они активно перемещаются в строго опреде­ленном направлении - в сторону максимальной концентрации притягивающих их веществ - хематтрактантов (лат. аttractio - притяжение). Направленная миграция фагоцитов получила назва­ние хемотаксис (греч. taxis - порядок). Без хемотаксиса не было бы воспаления, так как лейкоциты - эффекторы не собира­лись бы в одном месте, а рассредоточивались бы по ткани. Благо­даря тому, что миграция клеток в очаг повреждения сфокусиро­вана в строго определенном направлении, возникает клеточный инфильтрат и серия последующих событий, связанных с его фор­мированием. Активное перемещение фагоцитов в направлении градиента хематтрактантов происходит с помощью особых ультраструктур клеток - микронитей. Они состоят из актиноподобного сократи­тельного белка и располагаются по периферии цитоплазмы фаго­цита. При возбуждении клетки микронити собираются в агрегаты (пучки). В то же время другие функции фагоцитоза после воз­действия хематтрактантов (способность распознавать объекты фагоцитоза, генерировать микробицидные факторы, секреция) не страдают.

Для возбуждения направленной миграции лейкоцитов доста­точно, чтобы концентрация хематтрактантов у фронтального, по­люса клетки обращенного в сторону вектора перемещения была хотя бы на 1% выше, чем у противоположного полюса.

Каким образом формируется градиент хематтрактантов, притягивающий лейкоциты и ведущий к развитию воспалительного инфильтрата?

Во-первых , многие компоненты плазмы, фильтрую­щиеся в ткань, обладают хемотактическими свойствами. К ним относятся вещества, которые образуются в процессе свертывания крови – калликреин, активатор плазминогена, фибринпептид В, Сза- и С5а-фракции комплемента. От иммуноглобулинов G отщепляются пептиды-лейкоагрессины с выражен­ными хемотактическими свойствами.

Во-вторых , хематтрактанты образуются при разрушении клеточных мембран. При окислении арахидоновой кислоты появляются лейкотриены В4, С4 и Д4, и дру­гие производные, резко усиливающие хемотаксис лейкоцитов в очаг.

В третьих, появившись в очаге повреждения, сами лейко­циты выделяют вещества, которые поддерживают высокий гради­ент хематтрактантов. Так лизосомальные протеазы нейтрофилов прямым путем активируют комплемент, и в ходе этой активации образуются хематтрактанты – Сза, С5а и др. Такие нейтральные протеазы как коллагеназа и эластаза разрушают волокнистые структуры соединительной ткани - коллагеновые и эластиновые нити. Продукты частичной деструкции коллагена и эластина служат хематтрактантами не только для ПМЛ, но и для моноци­тов.


Аттракцию нейтрофилов вызывают и продукты других клеток из очага воспаления. Так, моноциты секретируют низкомолекулярный фактор с массой 400-600 дальтон. По своим свойствам он отличается от С5а.

Лимфоциты после их стимуляции специфи­ческим антигеном или неспецифическими митогенами (лектинами - фитогемагглютинином (ФГА), конкалавалином (Con А) и др.) секретируют белки, притягивающие ПМЛ в очаг.

Важно подчеркнуть, что хематтрактанты не просто привле­кают ПМЛ в зону повреждения, но и активируют их. Последнее связано с тем, что на мембранах нейтрофилов имеются специ­альные рецепторы к хематтрктантам. Лучше всего из них изучены рецепторы к микробным хематтрактантам. Из них выделена активная фракция – формилметионилпептиды, которая вызывает мощный хемотаксис ПМЛ и моноцитов.

В очаге воспаления фагоциты в ответ на стимуляцию начи­нают выбрасывать в окружающую среду свои лизосомальные гра­нулы. Этот процесс получил название секреции . В лизосомах имеется целый набор медиаторов воспаления.

Дегрануляция свя­зана с деятельностью микротрубочек. По ним, как по рельсам, лизосомы передвигаются от центра клетки, из околоядерной зо­ны, к наружной мембране. После слияния с мембраной гранулы опорожняются в среду. При другом варианте они могут выталки­ваться из клетки целиком. Медиаторы воспаления могут выде­ляться из фагоцитов не только в ходе секреторной дегрануляции, но и при разрушении фагоцитов.

Оказавшись в очаге нейтрофилы работают не в одиночку, а в кооперации с другими типами клеток. Важную роль играют взаимодействия нейтрофилов с лимфоцитами, нейтрофилов с мо­ноцитами-макрофагами. нейтрофилов с тучными клетками. Лимфо­циты в очаге воспаления выделяют растворимые факторы, кото­рые усиливают микробицидные функции нейтрофилов, делают их более "боеспособными" в борьбе с микробами (А.Н.Маянский). Наряду с этим В-лимфоциты и плазматические клетки выделяют специфические антитела. Образующиеся комплексы антиген-анти­тело раздражают нейтрофилы и усиливают их эффекторные функ­ции в очаге воспаления. Это часто наблюдается при аллерги­ческом воспалении.

В последнем случае в очаг может мигрировать много эозинофилов. При контакте клеток-мишеней, сенсибилизированных IgE-антителами со специфическим аллергеном выделяется особый эозинофильно-хемотаксический фактор, около 500 дальтон (ECF-A). Участие эозинофилов в патогенезе воспаления не вполне ясно. Основная их функция заключается в том, что они нейтрализуют гистамин и другие медиаторы воспаления, выделя­емые различными типами клеток-эффекторов.

Хемотаксис - это целенаправленная миграция клеток (локомоция) в сторону увеличения концентрации хемотаксических факторов (хемотаксины).

Для этого процесса необходимы следующие условия: а) распознавание и связывание хемотаксинов специфическими рецепторами цитоплазматической мембраны; б) целенаправленная миграция.

Хемотаксины и соответствующие рецепторы функционально связаны друг с другом. Фагоциты способны специфически связывать большое количество водорастворимых веществ и отвечать на их присутствие активацией клетки. В том случае, если создается градиент концентрации активатора, миграция клетки происходит в направлении более высокой его концентрации. Поэтому термин «хемотаксин» носит относительный характер. В области низких концентраций активатора наблюдают спонтанную миграцию, в области максимальной концентрации - угнетение миграции. Связывание хемотаксинов с поверхностью частицы приводит, как правило, к усиленному фагоцитозу. При появлении хемотаксинов в кровотоке или при их внутривенном введении происходит активация моноцитов, в результате чего возникает опасность развития шока (диссеминированное внутрисосудистое свертывание крови) или симптомов «шокового легкого» (респираторный синдром). С физиологической и патогенетической точек зрения наиболее значимыми являются эндогенные хемотаксины, С5а, С5а-дезаргинин и комплекс С5b, 6, 7 системы комплемента; хемотаксины активированных фагоцитов, лейкотриен В4, фактор активации тромбоцитов, IL-1, а также растворимые иммунные комплексы и некоторые лимфокины. Клиническое значение имеют следующие экзогенные хемотаксины: бактериальные липополисахариды (эндотоксины), формил и олигоцептиды, денатурированные белки (альбумин, иммуноглобулины). Часть этих факторов действует на эозинофилы, базофилы и тучные клетки, активируя их. Рецепторы экспрессируются на мембране в соответствии с регуляторным механизмом обратной связи: утрата при более длительном воздействии лиганда (исследование С5а-рецептора). В связи с этим особое значение при воспалении приобретает взаимодействие многочисленных факторов. При этом наблюдают как потенцирующие, так и ингибирующие эффекты.

Сенсибилизирующие эффекты для других хемотаксинов доказаны применительно к липополисахаридам грамотрицательных бактерий (эндотоксин). Это происходит через индукцию усиленной экспрессии соответствующих рецепторов. Например, предварительная аппликация мурамилдипептида повышает чувствительность организма к действию эндотоксина. Многообразие хемотаксинов или активаторов фагоцитов, с одной стороны, и динамика экспрессии рецепторов - с другой, создает в комплексе основу процесса воспаления, принимающего разные клинические формы. К этому следует добавить участие гистамина из базофильных гранулоцитов и тучных клеток, а также влияние системы кининов, способствующих (через протеазы из фагоцитов) повышению проницаемости стенок сосудов. Хемотаксис фагоцитов и сами хемотаксические факторы исследуются экспериментально в камере Бойдена, в которой суспензия исследуемых клеток и активатор разделены мембраной, проницаемой для хемотаксина, но непроницаемой для клеток, что приводит к накоплению клеток на мембране.

Хемотаксис (от Хемо... и таксис (См. Таксисы))

двигательные реакции свободно передвигающихся растительных и простейших животных организмов, а также клеток (зооспор, сперматозоидов, лейкоцитов и др.) под влиянием химических раздражителей. Х. может быть положительным - движение направлено к источнику химического раздражителя (по градиенту его концентрации в воздухе или воде), и отрицательным - движение направлено от источника. Явление Х. известно для ряда микроорганизмов и беспозвоночных животных (Х. можно считать и движение насекомых под влиянием различных феромонов (См. Феромоны)). Природа веществ, вызывающих Х., у разных организмов различна. Так, агрегирующим (собирающим) веществом почвенных миксомицетов рода Dictyostelium служит циклический аденозинмонофосфат (см. Циклические нуклеотиды); женские половые клетки водных грибов Allomyces выделяют изопреноид сиренин, являющийся причиной Х. мужских половых клеток по направлению к ним. Механизм восприятия химического сигнала (Хеморецепция) и путь от его получения до соответствующей физиологической реакции - ориентированного движения - окончательно не выяснены. Х. играет роль в разыскивании организмом пищи, в оплодотворении у высших растений и животных, в Фагоцитоз е.

Лит.: Behaviour of microorganisms, L. - N. Y., 1973; Chemotaxis: its biology and biochemistry, ed. E. Sorkin, Basel - , 1974.


Большая советская энциклопедия. - М.: Советская энциклопедия . 1969-1978 .

Синонимы :

Смотреть что такое "Хемотаксис" в других словарях:

    Хемотаксис … Орфографический словарь-справочник

    Движение подвижных организмов под влиянием одностороннего раздражения хим. веществами. См. также таксис. (Источник: «Микробиология: словарь терминов», Фирсов Н.Н., М: Дрофа, 2006 г.) Хемотаксис направленное движение бактерий, клеток крови или др … Словарь микробиологии

    Химиотаксис Словарь русских синонимов. хемотаксис сущ., кол во синонимов: 1 химиотаксис (1) Словарь синонимов ASIS. В.Н. Тришин … Словарь синонимов

    См. Таксисы … Большой Энциклопедический словарь

    - (от хемо... и таксисы), перемещение свободно передвигающихся организмов под влиянием химических веществ. Может быть положительным (движение направлено к источнику химического раздражителя) и отрицательным (от источника). Явление хемотаксиса… … Экологический словарь

    ХЕМОТАКСИС - ХЕМОТАКСИС, явление движения низших организмов и подвижных клеток высших животных к определенным хим. раздражителям или от них. В мире растений, когда имеется не передвижение в пространстве, а лишь изменение направления роста, явление это… … Большая медицинская энциклопедия

    хемотаксис - Свойство живых свободноперемещающихся клеток (бактерий, макрофагов, нейтрофилов и др.) двигаться на встречу или прочь от специфического химического вещества Тематики биотехнологии EN… … Справочник технического переводчика

И другие потенциально вредоносные вещества. Чувствительность бактерии впечатляет - они легко детектируют изменение концентрации на 0,1 % при микромолярных концентрациях веществ, а диапазон детектируемых концентраций перекрывает пять порядков.

Аттрактанты и репелленты детектируются за счет непосредственного взаимодействия со специфическими хеморецепторами, а не за счет каких-либо внутриклеточных эффектов детектируемого вещества.

Мембранные рецепторы группируются в кластеры, как правило расположенные на полюсах клетки, однако это не может помочь бактерии уловить разницу концентраций между полюсами, поскольку она будет слишком маленькой из-за малого размера самой клетки.

Вместо этого бактерии ориентируются в химических градиентах путем измерения временных изменений концентраций при движении. Обычно скорость движения Escherichia coli составляет 10-20 своих длин в секунду.

Сравнивая текущую загруженность хеморецепторов специфическими лигандами с таковой несколько секунд назад, клетка фактически может «измерить» разницу концентраций определенного вещества на расстоянии, во много раз превышающем длину самой клетки.

Такое измерение концентрации лиганда во времени возможно за счет адаптивного метилирования хеморецепторов, которое зависит от загруженности их лигандами.

Задержка во времени, между связыванием лиганда и метилированием рецептора, представляет собой своеобразную молекулярную «память», которая и позволяет измерять изменение концентраций лиганда.

Если выбранное направление движения соответствует увеличению концентрации аттрактанта (снижению концентрации репеллента), то время до следующего кувыркания увеличивается. К сожалению, из-за своего малого размера, клетка постоянно сбивается с «верного» пути броуновским движением и, поэтому, просто не может продолжительно двигаться прямо. Такой механизм только в общем обеспечивает движение бактерии по градиенту концентрации в нужном направлении, но для бактерии является достаточно эффективным.

Механизм, основанный на переключении направления вращения жгутиков , приводящий к прямолинейному движению, которое через варьирующиеся промежутки времени сменяется кувырканием на месте, не является единственным.

У Rhodobacter sphaeroides вращение единственного жгутика сменяется его полной остановкой, а у Rhizohium meliloli вращение жгутика никогда не прекращается - изменяется только его скорость. Но, во всех этих случаях, результат работы сенсорной системы хемотаксиса один и тот же: если бактерия движется в «нужном» направлении - продолжительность такого движения увеличивается.

Сенсорный механизм хемотаксиса более сложен, чем рассмотренные ранее. Это объясняется, прежде всего, двумя причинами.

Во-первых, поскольку броуновское движение может очень быстро изменить ориентацию бактериальной клетки, бактерии должны обрабатывать хемотаксические сигналы очень быстро и, действительно, от стимула до переключения «моторов», у бактериальной клетки, проходит не более 0,2 секунды.

Во-вторых, для правильного сравнения пространственных градиентов, клеткам необходимо такое устройство сенсорного механизма, которое «гасило» бы сенсорную стимуляцию в статических условиях, то есть в отсутствие градиента концентрации, как бы много какого-то аттрактанта или репеллента ни присутствовало бы в среде.

Белковый аппарат хемотаксиса бактерий

Три класса белков участвуют в хемотаксисе: трансмембранные рецепторы, цитоплазматические сигнальные белки и ферменты адаптивного метилирования .

Рецепторы хемотаксиса

Многие бактерии детектируют хемотаксические стимулы при помощи рецепторов, известных как метилируемые белки хемотаксиса (англ. methyl-accepting chemotaxis proteins , MCPs).

Эти белки являются мембранными сенсорами, в принципе аналогичными по своей структуре HnvZ, с тем только отличием, что цитоплазматический сигнальный домен не является автокиназой.

Функцию автокиназы выполняет другой белок - CheA, а сигнальные домены МСР обеспечивают взаимодействие с CheA.

Еще одно отличие от типичного сенсора - по обе стороны сигнального домена располагаются сайты метилирования , необходимые для адаптации рецепторов.

МСР-белки состоят приблизительно из 550 аминокислотных остатков и являются димерами.

Хорошо изучены 4 МСР-белка из Е. coli , реагирующие на серин (Tsr), аспартат и мальтозу (Таr), рибозу , глюкозу и галактозу (Trg) и дипептиды (Тар).

Серин, аспартат и цитрат связываются непосредственно с рецепторами, тогда как сахара и дипептиды сначала связываются с соответствующими периплазматическими белками, а уже эти комплексы взаимодействуют с рецепторами.

Кроме того, МСР реагируют на изменения температуры и рН , а также являются рецепторами для различных репеллентов.

Классический рецептор хемотаксиса состоит из

  • аминоконцевой трансмембранной спирали,
  • периплазматического собственно сенсорного домена, сложенного из четырех α-спиральных участков,
  • второй трансмембранной спирали,
  • большого цитоплазматического сигнального и адаптационного домена.

Цитоплазматические домены сенсоров содержат 4 или 5 остатков глутамата , доступных для метилирования.

Трансляция внеклеточного стимула во внутриклеточный сигнал

Для объяснения механизма трансмембранной передачи сигнала молекулой хеморецептора было предложено две модели. Имеющиеся экспериментальные данные не позволяют полностью исключить ни одну из них, однако большинство исследователей склоняется в пользу второй модели (модели пистона).

В соответствии с первой моделью (моделью ножниц) контакт лиганда с дистальными концами связанных с мембраной спиралей хеморецептора может индуцировать значительное перемещение трансмембранных сегментов. В несвязанном с лигандом состоянии субъединицы рецептора предположительно взаимодействуют между собой только в области первого трансмембранного сегмента.

Связывание с лигандом вызывает сближение сенсорных и периплазматических субъединиц, что передается сигнальным субъединицам и обеспечивает их взаимодействие между собой, а в таком виде они уже не могут взаимодействовать с CheA и стимулировать его автокиназную активность. Метилирование создает стерические препятствия для взаимодействия сигнальных доменов между собой, что снова позволяет им стимулировать автокиназную активность CheA.

Сейчас все больше и больше данных накапливается в пользу другого механизма (модель пистона), основанного на скольжении трансмембранных сегментов (ТМС) друг относительно друга. В соответствии с этой моделью аминоконцевой ТМС закреплен в мембране жестко, тогда как второй более подвижен и, при связывании лиганда, скользит «вниз», то есть в сторону цитоплазмы, что и вызывает конформационное изменение цитоплазматического сигнального домена, инактивирующее его. Вариация на эту тему - участие двух амфипатических спиралей линкерного домена в изменении конформации.

Цитоплазматические сигнальные белки и регуляторный механизм хемотаксиса

Взаимодействие между рецепторами и переключателем жгутика осуществляется четырьмя белками:

  • CheA - гистидинкиназа
  • CheY - PO, аспартаткиназа
  • CheW - «адаптор» между рецептором и CheA
  • CheZ - белок, способствующий дефосфорилированию CheY-P

Пара белков CheA-CheY представляет собой двухкомпонентную регуляторную систему. Наиболее существенным отличием от классических систем является то, что CheY не является транскрипционным фактором и, соответственно, у него отсутствует ДНК-связывающий домен. Гистидинкиназа CheA функционирует в виде димера, с которым связываются два мономера CheW, и уже этот комплекс вступает в ассоциацию с димерным рецептором. В составе такого комплекса автокиназная активность CheA резко возрастает, что усиливает перенос фосфата от CheA~P к CheY. CheY~P связывается с FliM моторно-переключательного комплекса базального тела, что приводит к вращению жгутика по часовой стрелке. CheZ предотвращает накопление CheY~P, стимулируя автофосфатазную активность CheY.

При отсутствии аттрактанта концентрация CheY-P поддерживается на уровне, способствующем вращению жгутика преимущественно по часовой стрелке и, следовательно, отсутствию упорядоченного движения бактерии. Связывание аттрактанта с рецептором индуцирует конформационное изменение, которое передается через мембрану и подавляет автокиназную активность CheA. Концентрация CheY~P падает, и жгутики бактерии более продолжительное время вращаются против часовой стрелки. Поэтому клетки будут дольше двигаться прямолинейно, если они попадают в среду с более высокой концентрацией аттрактанта. Однако этот механизм не объясняет, как клетка может реагировать на постоянно возрастающую концентрацию аттрактанта. Этой цели служит сенсорная адаптация.

Метилазы хемотаксиса и сенсорная адаптация

Адаптация сенсорного аппарата достигается путем обратимого метилирования рецепторов, в котором участвуют два белка - метилтрансфераза CheR и метилэстераза CheB. Метилирование рецепторов оказывает действие, противоположное связыванию аттрактанта. Интересно, что метилирование стимулируется связыванием аттрактанта с рецептором и в конечном итоге нейтрализует эффект связывания аттрактанта. Однако между связыванием аттрактанта и метилированием рецептора проходит некоторое время, в течение которого бактерии движутся прямолинейно, что и составляет основу молекулярной памяти аппарата хемотаксиса.

Метилтрансфераза CheR метилирует остатки глутамата в цитоплазматических доменах МСР с постоянной скоростью, перенося метильную группу с S-аденозилметионина . Регуляции со стороны сенсорного аппарата хемотаксиса подвергается не метилирование рецепторов, а обратный процесс, зависящий от белка CheB. CheB является мишенью для переноса фосфата с CheA~P, и в фосфорилированном состоянии CheB является метилэстеразой, деметилирующей МСР.

В отсутствие стимула метилирование МСР, осуществляемое CheR, компенсируется удалением метильных групп фосфорилированным CheB, что поддерживает метилирование МСР на уровне 0,5-1 метильная группа на субъединицу рецептора.

Когда аттрактант связывается с рецептором и ингибирует активность CheA, концентрация CheB~P падает, хотя и более медленно, чем концентрация CheY~P, поскольку CheB~P не является субстратом для CheZ. Повышение степени метилирования восстанавливает способность рецептора стимулировать CheA. Однако, даже после того как базальные уровни CheY~P и CheB~P восстанавливаются, связанный с аттрактантом рецептор остается метилированным, поскольку метилированный рецептор - более плохой субстрат для метилэстеразы CheB~P.

Таким образом, с учетом метилирования принцип работы молекулярной машины хемотаксиса выглядит следующим образом.

  • В отсутствие аттрактанта хеморецептор находится в активированном состоянии и его сигнальный домен стимулирует киназную активность CheA, что ведет к фосфорилированию CheY, a фосфо-CheY, взаимодействуя с переключателем мотора, вызывает вращение жгутика по часовой клетке, что приводит к «кувырканию» бактерии на месте.
  • Связывание аттрактанта инактивирует рецептор, и его сигнальный домен уже не может стимулировать киназную активность CheA, концентрация фосфо-CheY быстро падает (что стимулируется белком CheZ), направление вращения жгутика меняется, и бактерия движется прямолинейно.
  • Прямолинейное движение, однако, может прекратиться по двум причинам. Если бактерия начала двигаться в неблагоприятном направлении, рецептор освобождается, начинается фосфорилирование CheY, и бактерия снова «кувыркается» на месте. Кроме того, когда киназа CheA «выключена», одновременно с дефосфорилированием CheY~P происходит дефосфорилирование CheB~P, хотя и с меньшей скоростью (поскольку CheB-P не является субстратом для CheZ), что приводит к повышению степени метилирования рецептора и восстановлению его сигнальной активности.

Поскольку и CheY, и CheB являются свободными цитоплазматическими белками, степень их фосфорилирования будет зависеть от степени метилирования рецепторов и их загруженности лигандами. Это делает возможным вместо ответа «все или ничего» плавно регулировать подвижность бактерий в широком диапазоне концентраций аттрактантов и репеллентов. Метилирование рецепторов обеспечивает простейшую молекулярную память, позволяющую бактерии контролировать «правильность» направления движения. Уровень метилирования будет высоким, если концентрация аттрактанта была высокой некоторое время назад. Когда клетка движется, она «сравнивает» сиюмоментную концентрацию аттрактанта (определяемую по степени занятости рецепторов) с концентрацией в недавнем прошлом (как зафиксировано степенью метилирования рецепторов). Если окружающие условия значительно улучшились или ухудшились, активность гистидинкиназы СheА будет соответственно снижена или повышена, изменяя продолжительность прямолинейного движения бактерии соответствующим образом.

Литература

  1. Manson M. D., Armiiage J. P., Hoch J. A., Macnab R. M. Bacterial locomotion and signal transduction // Journal of Bacteriology. 1998. 180:1009-1022
  2. Eisenbach M. Bacterial Chemotaxis // Encyclopedia of Life Sciences. 2001. Nature Publishing Group (www.els.nei)
  3. Berry R. M. Bacterial Flagella: Flagellar Motor Encyclopedia of Life Sciences. 2001. Nature Publishing Group (www.els.net)
  4. Armiiage J. P. Bacterial Taxis // Encyclopedia of Life Sciences. 2001. Nature Publishing Group (www.els.nei)
  5. Falke J. J., Bass R. В. Butler S. L. Chervitz S. A., and Danielson M. A. The two-component signaling pathway of bacterial chemotaxis: a molecular view of signal transduction by receptors, kinases, and adaptation enzymes // Annu. Rev. Cell Dev. Biol. 1997. 13:457-512
  6. Williams S. B. and Stewart V. Functional similarities among two-component sensors and methyl-accepting chemotaxis proteins suggest a role for linker region amphipaihic helices in transmembrane signal transduction // Molecular Microbiology. 1999. 33:1093-1102

Wikimedia Foundation . 2010 .

Синонимы :

Смотреть что такое "Хемотаксис" в других словарях:

    Хемотаксис … Орфографический словарь-справочник

    Движение подвижных организмов под влиянием одностороннего раздражения хим. веществами. См. также таксис. (