Отрицательные числа. Найти обыкновенные дроби среди данных чисел

Отрицательные числа — это числа со знаком минус (−), например −1, −2, −3. Читается как: минус один, минус два, минус три.

Примером применения отрицательных чисел является термометр, показывающий температуру тела, воздуха, почвы или воды. В зимнее время, когда на улице очень холодно, температура бывает отрицательной (или как говорят в народе «минусовой»).

Например, −10 градусов холода:

Обычные же числа, которые мы рассматривали ранее, такие как 1, 2, 3 называют положительными. Положительные числа — это числа со знаком плюс (+).

При записи положительных чисел знак + не записывают, поэтому мы и видим привычные для нас числа 1, 2, 3. Но следует иметь ввиду, что эти положительные числа выглядят так: +1, +2, +3.

Содержание урока

Это прямая линия, на которой располагаются все числа: и отрицательные и положительные. Выглядит следующим образом:

Здесь показаны числа от −5 до 5. На самом деле координатная прямая бесконечна. На рисунке представлен лишь её небольшой фрагмент.

Числа на координатной прямой отмечают в виде точек. На рисунке жирная чёрная точка является началом отсчёта. Начало отсчёта начинается с нуля. Слева от начала отсчёта отмечают отрицательные числа, а справа — положительные.

Координатная прямая продолжается бесконечно по обе стороны. Бесконечность в математике обозначается символом ∞. Отрицательное направление будет обозначаться символом −∞, а положительное символом +∞. Тогда можно сказать, что на координатной прямой располагаются все числа от минус бесконечности до плюс бесконечности:

Каждая точка на координатной прямой имеет своё имя и координату. Имя — это любая латинская буква. Координата — это число, которое показывает положение точки на этой прямой. Проще говоря, координата это то самое число, которое мы хотим отметить на координатной прямой.

Например, точка А(2) читается как «точка А с координатой 2» и будет обозначаться на координатной прямой следующим образом:

Здесь A — это имя точки, 2 — координата точки A.

Пример 2. Точка B(4) читается как «точка B с координатой 4»

Здесь B — это имя точки, 4 — координата точки B.

Пример 3. Точка M(−3) читается как «точка M с координатой минус три» и будет обозначаться на координатной прямой так:

Здесь M — это имя точки, −3 — координата точки M.

Точки можно обозначать любыми буквами. Но общепринято обозначать их большими латинскими буквами. Более того, начало отчёта, которое по другому называют началом координат принято обозначать большой латинской буквой O

Легко заметить, что отрицательные числа лежат левее относительно начала отсчёта, а положительные числа правее.

Существуют такие словосочетания, как «чем левее, тем меньше» и «чем правее, тем больше» . Наверное, вы уже догадались о чём идёт речь. При каждом шаге влево, число будет уменьшаться в меньшую сторону. И при каждом шаге вправо число будет увеличиваться. Стрелка, направленная вправо, указывает на положительное направление отсчёта.

Сравнение отрицательных и положительных чисел

Правило 1. Любое отрицательное число меньше любого положительного числа.

Например, сравним два числа: −5 и 3. Минус пять меньше , чем три, несмотря на то, что пятёрка бросается в глаза в первую очередь, как цифра большая, чем три.

Связано это с тем, что −5 является отрицательным числом, а 3 — положительным. На координатной прямой можно увидеть, где располагаются числа −5 и 3

Видно, что −5 лежит левее, а 3 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что любое отрицательное число меньше любого положительного числа. Отсюда следует, что

−5 < 3

«Минус пять меньше, чем три»

Правило 2. Из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой.

Например, сравним числа −4 и −1. Минус четыре меньше , чем минус единица.

Связано это опять же с тем, что на координатной прямой −4 располагается левее, чем −1

Видно, что −4 лежит левее, а −1 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что из двух отрицательных чисел меньше то, которое располагается левее на координатной прямой. Отсюда следует, что

Минус четыре меньше, чем минус единица

Правило 3. Ноль больше любого отрицательного числа.

Например, сравним 0 и −3. Ноль больше , чем минус три. Связано это с тем, что на координатной прямой 0 располагается правее, чем −3

Видно, что 0 лежит правее, а −3 левее. А мы говорили, что «чем правее, тем больше» . И правило говорит, что ноль больше любого отрицательного числа. Отсюда следует, что

Ноль больше, чем минус три

Правило 4. Ноль меньше любого положительного числа.

Например, сравним 0 и 4. Ноль меньше , чем 4. Это в принципе ясно и так. Но мы попробуем увидеть это воочию, опять же на координатной прямой:

Видно, что на координатной прямой 0 располагается левее, а 4 правее. А мы говорили, что «чем левее, тем меньше» . И правило говорит, что ноль меньше любого положительного числа. Отсюда следует, что

Ноль меньше, чем четыре

Понравился урок?
Вступай в нашу новую группу Вконтакте и начни получать уведомления о новых уроках

Положительные и отрицательные числа
Координатная прямая
Проведём прямую. Отметим на ней точку 0 (ноль) и примем эту точку за начало отсчёта.

Укажем стрелкой направление движения по прямой вправо от начала координат. В этом направлении от точки 0 будем откладывать положительные числа.

То есть положительными называют уже известные нам числа, кроме нуля.

Иногда положительные числа записывают со знаком «+». Например, «+8».

Для краткости записи знак «+» перед положительным числом обычно опускают и вместо «+8» пишут просто 8.

Поэтому «+3» и «3» - это одно и тоже число, только по разному обозначенное.

Выберем какой-либо отрезок, длину которого примем за единицу и отложим его несколько раз вправо от точки 0. В конце первого отрезка записывается число 1, в конце второго - число 2 и т.д.

Отложив единичный отрезок влево от начала отсчёта получим отрицательные числа: -1; -2; и т.д.

Отрицательные числа используют для обозначения различных величин, таких как: температура (ниже нуля), расход - то есть отрицательный доход, глубина - отрицательная высота и другие.

Как видно из рисунка, отрицательные числа - это уже известные нам числа, только со знаком «минус»: -8; -5,25 и т.д.

  • Число 0 не является ни положительным, ни отрицательным.

Числовую ось обычно располагают горизонтально или вертикально.

Если координатная прямая расположена вертикально, то направление вверх от начала отсчёта обычно считают положительным, а вниз от начала отсчёта - отрицательным.

Стрелкой указывают положительное направление.


Прямая, на которой отмечено:
. начало отсчёта (точка 0);
. единичный отрезок;
. стрелкой указано положительное направление;
называется координатной прямой или числовой осью.

Противоположные числа на координатной прямой
Отметим на координатной прямой две точки A и B, которые расположены на одинаковом расстоянии от точки 0 справа и слева соответственно.

В таком случае длины отрезков OA и OB одинаковы.

Значит, координаты точек A и B отличаются только знаком.


Также говорят, что точки A и B симметричны относительно начала координат.
Координата точки A положительная «+2», координата точки B имеет знак минус «-2».
A (+2), B (-2).

  • Числа, которые отличаются только знаком, называются противоположными числами. Соответствующие им точки числовой (координатной) оси симметричны относительны начала отсчёта.

Каждое число имеет единственное противоположное ему число . Только число 0 не имеет противоположного, но можно сказать, что оно противоположно самому себе.

Запись «-a» означает число, противоположное «a». Помните, что под буквой может скрываться как положительное число, так и отрицательное число.

Пример:
-3 - число противоположное числу 3.

Записываем в виде выражения:
-3 = -(+3)

Пример:
-(-6) - число противоположное отрицательному числу -6. Значит, -(-6) это положительное число 6.

Записываем в виде выражения:
-(-6) = 6

Сложение отрицательных чисел
Сложение положительных и отрицательных чисел можно разобрать с помощью числовой оси.

Сложение небольших по модулю чисел удобно выполнять на координатной прямой, мысленно представляя себе как точка, обозначающая число передвигается по числовой оси.

Возьмём какое-нибудь число, например, 3. Обозначим его на числовой оси точкой A.

Прибавим к числу положительное число 2. Это будет означать, что точку A надо переместить на два единичных отрезка в положительном направлении, то есть вправо . В результате мы получим точку B с координатой 5.
3 + (+ 2) = 5


Для того чтобы к положительному числу, например, к 3 прибавить отрицательное число (- 5), точку A надо переместить на 5 единиц длины в отрицательном направлении, то есть влево .

В этом случае координата точки B равна - 2.

Итак, порядок сложения рациональных чисел с помощью числовой оси будет следующим:
. отметить на координатной прямой точку A с координатой равной первому слагаемому;
. передвинуть её на расстояние, равное модулю второго слагаемого в направлении, которое соответствует знаку перед вторым числом (плюс - передвигаем вправо, минус - влево);
. полученная на оси точка B будет иметь координату, которая будет равна сумме данных чисел.

Пример.
- 2 + (- 6) =

Двигаясь от точки - 2 влево (так как перед 6 стоит знак минус), получим - 8.
- 2 + (- 6) = - 8

Сложение чисел с одинаковыми знаками
Складывать рациональные числа можно проще, если использовать понятие модуля.

Пускай нам нужно сложить числа, которые имеют одинаковые знаки.
Для этого, отбрасываем знаки чисел и берём модули этих чисел. Сложим модули и перед суммой поставим знак, который был общим у данных чисел.

Пример.

Пример сложения отрицательных чисел.
(- 3,2) + (- 4,3) = - (3,2 + 4,3) = - 7,5

  • Чтобы сложить числа одного знака надо сложить их модули и поставить перед суммой знак, который был перед слагаемыми.

Сложение чисел с разными знаками
Если числа имеют разные знаки, то действуем несколько по-иному, чем при сложении чисел с одинаковыми знаками.
. Отбрасываем знаки перед числами, то есть берём их модули.
. Из большего модуля вычитаем меньший.
. Перед разностью ставим тот знак, который был у числа с бóльшим модулем.

Пример сложения отрицательного и положительного числа.
0,3 + (- 0,8) = - (0,8 - 0,3) = - 0,5

Пример сложения смешанных чисел.

Чтобы сложить числа разного знака надо:
. из бóльшего модуля вычесть меньший модуль;
. перед полученной разностью поставить знак числа, имеющего больший модуль.

Вычитание отрицательных чисел
Как известно вычитание - это действие, противоположное сложению.
Если a и b - положительные числа, то вычесть из числа a число b, значит найти такое число c, которое при сложении с числом b даёт число a.
a - b = с или с + b = a

Определение вычитания сохраняется для всех рациональных чисел. То есть вычитание положительных и отрицательных чисел можно заменить сложением.

  • Чтобы из одного числа вычесть другое, нужно к уменьшаемому прибавить число противоположное вычитаемому.

Или по другому можно сказать, что вычитание числа b - это тоже самое сложение, но с числом противоположным числу b.
a - b = a + (- b)

Пример.
6 - 8 = 6 + (- 8) = - 2

Пример.
0 - 2 = 0 + (- 2) = - 2

  • Стоит запомнить выражения ниже.
  • 0 - a = - a
  • a - 0 = a
  • a - a = 0

Правила вычитания отрицательных чисел
Как видно из примеров выше вычитание числа b - это сложение с числом противоположным числу b.
Это правило сохраняется не только при вычитании из бóльшего числа меньшего, но и позволяет из меньшего числа вычесть большее число, то есть всегда можно найти разность двух чисел.

Разность может быть положительным числом, отрицательным числом или числом ноль.

Примеры вычитания отрицательных и положительных чисел.
. - 3 - (+ 4) = - 3 + (- 4) = - 7
. - 6 - (- 7) = - 6 + (+ 7) = 1
. 5 - (- 3) = 5 + (+ 3) = 8
Удобно запомнить правило знаков, которое позволяет уменьшить количество скобок.
Знак «плюс» не изменяет знака числа, поэтому, если перед скобкой стоит плюс, то знак в скобках не меняется.
+ (+ a) = + a

+ (- a) = - a

Знак «минус» перед скобками меняет знак числа в скобках на противоположный.
- (+ a) = - a

- (- a) = + a

Из равенств видно, что если перед и внутри скобок стоят одинаковые знаки, то получаем «+», а если знаки разные, то получаем «-».
(- 6) + (+ 2) - (- 10) - (- 1) + (- 7) = - 6 + 2 + 10 + 1 - 7 = - 13 + 13 = 0

Правило знаков сохраняется и в том случае, если в скобках не одно число, а алгебраическая сумма чисел.
a - (- b + c) + (d - k + n) = a + b - c + d - k + n

Обратите внимание, если в скобках стоит несколько чисел и перед скобками стоит знак «минус», то должны меняться знаки перед всемичислами в этих скобках.

Чтобы запомнить правило знаков можно составить таблицу определения знаков числа.
Правило знаков для чисел

Или выучить простое правило.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.

Умножение отрицательных чисел
Используя понятие модуля числа, сформулируем правила умножения положительных и отрицательных чисел.

Умножение чисел с одинаковыми знаками
Первый случай, который может вам встретиться - это умножение чисел с одинаковыми знаками.
Чтобы умножить два числа с одинаковыми знаками надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «+» (при записи ответа знак «плюс» перед первым числом слева можно опускать).

Примеры умножения отрицательных и положительных чисел.
. (- 3) . (- 6) = + 18 = 18
. 2 . 3 = 6

Умножение чисел с разными знаками
Второй возможный случай - это умножение чисел с разными знаками.
Чтобы умножить два числа с разными знаками, надо:
. перемножить модули чисел;
. перед полученным произведением поставить знак «-».

Примеры умножения отрицательных и положительных чисел.
. (- 0,3) . 0,5 = - 1,5
. 1,2 . (- 7) = - 8,4

Правила знаков для умножения
Запомнить правило знаков для умножения очень просто. Данное правило совпадает с правилом раскрытия скобок.

  • Минус на минус даёт плюс,
  • Плюс на минус даёт минус.


В «длинных» примерах, в которых есть только действие умножение, знак произведения можно определять по количеству отрицательных множителей.

При чётном числе отрицательных множителей результат будет положительным, а при нечётном количестве - отрицательным.
Пример.
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) =

В примере пять отрицательных множителей. Значит, знак результата будет «минус».
Теперь вычислим произведение модулей, не обращая внимание на знаки.
6 . 3 . 4 . 2 . 12 . 1 = 1728

Конечный результат умножения исходных чисел будет:
(- 6) . (- 3) . (- 4) . (- 2) . 12 . (- 1) = - 1728

Умножение на ноль и единицу
Если среди множителей есть число ноль или положительная единица, то умножение выполняется по известным правилам.
. 0 . a = 0
. a . 0 = 0
. a . 1 = a

Примеры:
. 0 . (- 3) = 0
. 0,4 . 1 = 0,4
Особую роль при умножении рациональных чисел играет отрицательная единица (- 1).

  • При умножении на (- 1) число меняется на противоположное.

В буквенном выражении это свойство можно записать:
a . (- 1) = (- 1) . a = - a

При совместном выполнении сложения, вычитания и умножения рациональных чисел сохраняется порядок действий, установленный для положительных чисел и нуля.

Пример умножения отрицательных и положительных чисел.


Деление отрицательных чисел
Как выполнять деление отрицательных чисел легко понять, вспомнив, что деление - это действие, обратное умножению.

Если a и b положительные числа, то разделить число a на число b, значит найти такое число с, которое при умножении на b даёт число a.

Данное определение деления действует для любых рациональных чисел, если делители отличны от нуля.

Поэтому, например, разделить число (- 15) на число 5 - значит, найти такое число, которое при умножении на число 5 даёт число (- 15). Таким числом будет (- 3), так как
(- 3) . 5 = - 15

значит

(- 15) : 5 = - 3

Примеры деления рациональных чисел.
1. 10: 5 = 2, так как 2 . 5 = 10
2. (- 4) : (- 2) = 2, так как 2 . (- 2) = - 4
3. (- 18) : 3 = - 6, так как (- 6) . 3 = - 18
4. 12: (- 4) = - 3, так как (- 3) . (- 4) = 12

Из примеров видно, что частное двух чисел с одинаковыми знаками - число положительное (примеры 1, 2), а частное двух чисел с разными знаками - число отрицательное (примеры 3,4).

Правила деления отрицательных чисел
Чтобы найти модуль частного, нужно разделить модуль делимого на модуль делителя.
Итак, чтобы разделить два числа с одинаковыми знаками, надо:

. перед результатом поставить знак «+».

Примеры деления чисел с одинаковыми знаками:
. (- 9) : (- 3) = + 3
. 6: 3 = 2

Чтобы разделить два числа с разными знаками, надо:
. модуль делимого разделить на модуль делителя;
. перед результатом поставить знак «-».

Примеры деления чисел с разными знаками:
. (- 5) : 2 = - 2,5
. 28: (- 2) = - 14
Для определения знака частного можно также пользоваться следующей таблицей.
Правило знаков при делении

При вычислении «длинных» выражений, в которых фигурируют только умножение и деление, пользоваться правилом знаков очень удобно. Например, для вычисления дроби

Можно обратить внимание, что в числителе 2 знака «минус», которые при умножении дадут «плюс». Также в знаменателе три знака «минус», которые при умножении дадут «минус». Поэтому в конце результат получится со знаком «минус».

Сокращение дроби (дальнейшие действия с модулями чисел) выполняется также, как и раньше:

  • Частное от деления нуля на число, отличное от нуля, равно нулю.
  • 0: a = 0, a ≠ 0
  • Делить на ноль НЕЛЬЗЯ!

Все известные ранее правила деления на единицу действуют и на множество рациональных чисел.
. а: 1 = a
. а: (- 1) = - a
. а: a = 1

, где а - любое рациональное число.

Зависимости между результатами умножения и деления, известные для положительных чисел, сохраняются и для всех рациональных чисел (кроме числа нуль):
. если a . b = с; a = с: b; b = с: a;
. если a: b = с; a = с. b; b = a: c

Данные зависимости используются для нахождения неизвестного множителя, делимого и делителя (при решении уравнений), а также для проверки результатов умножения и деления.

Пример нахождения неизвестного.
x . (- 5) = 10

x = 10: (- 5)

x = - 2

Знак «минус» в дробях
Разделим число (- 5) на 6 и число 5 на (- 6).

Напоминаем, что черта в записи обыкновенной дроби - это тот же знак деления, и запишем частное каждого из этих действий в виде отрицательной дроби.

Таким образом знак "минус" в дроби может находиться:
. перед дробью;
. в числителе;
. в знаменателе.

  • При записи отрицательных дробей знак «минус» можно ставить перед дробью, переносить его из числителя в знаменатель или из знаменателя в числитель.

Это часто используется при выполнении действий с дробями, облегчая вычисления.

Пример. Обратите внимание, что после вынесения знака «минуса» перед скобкой мы из большего модуля вычитаем меньший по правилам сложения чисел с разными знаками.


Используя описанное свойство переноса знака в дроби, можно действовать, не выясняя, модуль какого из данных дробных чисел больше.

Урок

математики

в 6 классе.


Древнегреческий ученый Пифагор говорил: «Числа правят миром».

Мы с вами живем в этом мире чисел, а в школьные годы учимся работать с разными числами.


Актуализация знаний

1

Андрей простудился, и вечером его температура с 36,6 º повысилась на 2,3º. Но утром ему стало легче, и температура снизилась на 1,8º. Какой была температура у Андрея:

А)вечером? Б) утром?


Актуализация знаний

2

  • Что изображено на рисунке?
  • Как называется точка О?
  • Как называется отрезок ОА?
  • Что показывает стрелка?

Продолжите предложения

  • Координатный луч – это …
  • Начало отсчета обозначают - …
  • Положительное направление- …
  • Единичным отрезком называют - …
  • Координаты точек А, К, Р соответственно равны -…
  • С помощью координатного луча можно …

Актуализация знаний

Распределить информацию в три колонки

Меньше нуля

Равно нулю

Больше нуля

1. Убытки компании составили 1000 000 руб., а через несколько лет компания получила прибыль 500 000 руб.

2. Летом средняя температура воздуха 25 ºС тепла, а зимой – 20 ºС мороза.

3. Уровень моря.

4. Долина смерти находится на 86 м ниже уровня моря и здесь было зафиксировано 57 ºС тепла.

5. Шкала термометра состоит из двух частей – красной и синей.

6. По мере восхождения на гору Эльбрус, высота которой 5 642 м над уровнем моря, температура может опуститься до 30 ºС ниже нуля.

7. Долгое время одни числа называли «долг», «недостача», а другие «имущество».

8. Нулевая отметка на шкале градусника.


Положительные

отрицательные

числа


Формируемые результаты

Предметные: сформировать представление об отрицательных числах, ввести понятие отрицательного числа, положительного числа, чисел с разными знаками.

Личностные : формировать интерес к изучению темы и желание применять приобретенные знания и умения.

Метапредметные: формировать первоначальные представления об идеях и о методах математики как об универсальном языке науки, о средстве моделирования явлений и процессов.


При изложении нового материала,

вам необходимо заполнить таблицу

Теоретический материал

Понимаю/не понимаю (+ / -)

1. Числа, больше нуля, называют положительными.

Вопрос к учителю

2. Числа, меньше нуля, называют отрицательными.

3. Числа со знаком « + » называют положительными.

4. Числа со знаком « - » называют отрицательными.

5. Число 0 не является ни положительным, ни отрицательным.


Окружающий мир настолько сложен и разнообразен. Натуральных и дробных чисел бывает недостаточно, чтобы измерить некоторые величины, описать многие события.

Ребята, какое время года сейчас?

Чем отличается погода летом и зимой?

А как вы узнали, что на улице холодно?

С помощью какого прибора?

Давайте рассмотрим термометр.

Что изображено на термометре?

Как расположены числа?



Историческая справка

Понятие об отрицательных числах возникло в практике очень давно, причем при решении таких заданий, где из меньшего числа приходилось вычитать большее число. Египтяне, вавилоняне, а также древние греки не знали отрицательных чисел и для производства вычислений математики того времени пользовались счетной доской. А так как знаков «плюс» и «минус» не существовало, то они на этой доске положительные числа отмечали красными счетными палочками, а отрицательные – синими. И отрицательные числа долгое время назывались словами, которые означали долг, недостача, а положительные трактовались как имущество.

Древнегреческий ученый Диофант вообще не признавал отрицательных чисел, и если при решении у него получался отрицательный корень, то он отбрасывал его как недоступный.


Историческая справка

Совершенно по-другому относились к отрицательным числам древнеиндийские математики: они признавали существование отрицательных чисел, но относились к ним с некоторым недоверием, считая их своеобразными, не совсем реальными.

Не одобряли их долго и европейцы, потому что истолкование имущество – долг вызывало недоумение и сомнение. Действительно, можно складывать и вычитать имущество – долг, а как умножать и делить? Это было непонятно и нереально.

Всеобщее признание отрицательные числа получили в первой половине XIX века. Была создана теория, по которой мы сейчас и изучаем отрицательные числа.


Координатная прямая

Проведём прямую. Отметим на ней точку 0 (ноль) и примем эту точку за начало отсчёта.

Укажем стрелкой направление движения по прямой вправо от начала координат. В этом направлении от точки 0 будем откладывать положительные числа.

Отложив единичный отрезок влево от начала отсчёта получим отрицательные числа: -1; -2; и т.д.


Координатная прямая

Число 0 не является ни положительным, ни отрицательным.

Прямая, на которой отмечено:

Начало отсчёта (точка 0);

Единичный отрезок;

Стрелкой указано положительное направление;

называется координатной прямой или числовой осью.


З А П О М Н И!

Числа, которые отличаются только знаком, называются противоположными числами. Соответствующие им точки числовой (координатной) оси симметричны относительны начала отсчёта.

Каждое число имеет единственное противоположное ему число. Только число 0 не имеет противоположного, но можно сказать, что оно противоположно самому себе..

Запись «-a» означает число, противоположное «a» . Помните, что под буквой может скрываться как положительное число, так и отрицательное число.

5 - число противоположное числу 5.

Записываем в виде выражения:


З А П О М Н И!

Если одно число положительное, а другое отрицательное, то о таких числах говорят,

что они имеют разные знаки.

Если оба числа положительны или оба числа отрицательны, то они имеют одинаковые знаки.


Первичное закрепление

нового материала



Какие из чисел

7; 23; -89; ⅜; - 4⅔; -5,4; 9⅞; 0; 10; -14;

А) являются положительными;

Б) являются отрицательными;

В) не являются ни положительными, ни отрицательными;

Г) натуральными числами;



Запишите с помощью знаков «+» и «-» информацию Гидрометцентра:

а) 18º тепла; в) 12º ниже нуля;

б) 7º мороза; г) 16º выше нуля.

а) + 18 ; б) – 7 ; в) – 12 ; г) + 16 или 16

Запишите шесть отрицательных дробей со знаменателем 5.


1

Повторение

В парке растет 150 кленов, дубов больше на 2/15 количества кленов, березы составляют 23/34 количества дубов, а липы – 20/87 общего количества кленов, дубов и берез.

Сколько всего указанных деревьев растет в парке?


2

Повторение




Итог урока

  • С какими числами сегодня познакомились?
  • С помощью какого символа обозначают отрицательные числа? Положительные числа?
  • Каким числом является нуль?
  • О каких двух числах говорят, что они имеют разные знаки? Одинаковые знаки?

Домашнее задание

вопросы 1 – 3,


Сейчас мы разберем положительные и отрицательные числа . Сначала дадим определения, введем обозначения, после чего приведем примеры положительных и отрицательных чисел. Также остановимся на смысловой нагрузке, которую несут в себе положительные и отрицательные числа.

Навигация по странице.

Положительные и отрицательные числа – определения и примеры

Дать определение положительных и отрицательных чисел нам поможет . Для удобства будем считать, что она расположена горизонтально и направлена слева направо.

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим правее начала отсчета, называют положительными .

Определение.

Числа, которые соответствуют точкам координатной прямой, лежащим левее начала отсчета называю отрицательными .

Число нуль, соответствующее началу отсчета, не является ни положительным, ни отрицательным числом.

Из определения отрицательных и положительных чисел следует, что множество всех отрицательных чисел представляет собой множество чисел, противоположных всем положительным числам (при необходимости смотрите статью противоположные числа). Следовательно, отрицательные числа всегда записываются со знаком минус.

Теперь, зная определения положительных и отрицательных чисел, мы с легкостью можем привести примеры положительных и отрицательных чисел . Примерами положительных чисел являются натуральные числа 5 , 792 и 101 330 , да и вообще любое натуральное число является положительным. Примерами положительных рациональных чисел являются числа , 4,67 и 0,(12)=0,121212... , а отрицательных – числа , −11 , −51,51 и −3,(3) . В качестве примеров положительных иррациональных чисел можно привести число пи, число e , и бесконечную непериодическую десятичную дробь 809,030030003… , а примерами отрицательных иррациональных чисел являются числа минус пи, минус e и число, равное . Следует отметить, что в последнем примере отнюдь не очевидно, что значение выражения является отрицательным числом. Чтобы это узнать наверняка, нужно получить значение этого выражения в виде десятичной дроби, а как это делается, мы расскажем в статье сравнение действительных чисел .

Иногда перед положительными числами записывается знак плюс, также как перед отрицательными числами записывается знак минус. В этих случаях следует знать, что +5=5 , и т.п. То есть, +5 и 5 и т.п. – это одно и то же число, но по-разному обозначенное. Более того, можно встретить определение положительных и отрицательных чисел, на основании знака плюс или минус.

Определение.

Числа со знаком плюс называют положительными , а со знаком минус – отрицательными .

Существует еще одно определение положительных и отрицательных чисел, основанное на сравнении чисел. Чтобы дать это определение, достаточно лишь вспомнить, что точка на координатной прямой, соответствующая большему числу, лежит правее точки, соответствующей меньшему числу.

Определение.

Положительные числа – это числа, которые больше нуля, а отрицательные числа – это числа, меньшие нуля.

Таким образом, нуль как бы отделяет положительные числа от отрицательных.

Конечно же, следует еще остановиться на правилах чтения положительных и отрицательных чисел. Если число записано со знаком + или −, то произносят название знака, после чего произносят число. Например, +8 читается как плюс восемь, а - как минус одна целая две пятых. Названия знаков + и − не склоняются по падежам. Примером правильного произношения является фраза «a равно минус трем» (не минусу трем).

Интерпретация положительных и отрицательных чисел

Мы уже достаточно долго описываем положительные и отрицательные числа. Однако неплохо было бы знать, какой смысл они несут в себе? Давайте разберемся с этим вопросом.

Положительные числа можно интерпретировать как приход, как прибавку, как увеличение какой-либо величины и тому подобное. Отрицательные числа, в свою очередь, означают строго противоположное – расход, недостаток, долг, уменьшение какой-либо величины и т.п. Разберемся с этим на примерах.

Можно сказать, что мы обладаем 3 предметами. Здесь положительное число 3 указывает количество находящихся у нас предметов. А как можно интерпретировать отрицательное число −3 ? Например, число −3 может означать, что мы должны кому-нибудь отдать 3 предмета, которых у нас даже нет в наличии. Аналогично можно сказать, что в кассе нам выдали 3,45 тысяч рублей. То есть, число 3,45 связано с нашим приходом. В свою очередь отрицательное число −3,45 будет указывать на уменьшение денег в кассе, выдавшей эти деньги нам. То есть, −3,45 – это расход. Еще пример: повышение температуры на 17,3 градуса можно описать положительным числом +17,3 , а понижение температуры на 2,4 можно описать с помощью отрицательного числа, как изменение температуры на −2,4 градуса.

Положительные и отрицательные числа часто используются для описания значений каких-либо величин в различных измерительных приборах. Самым доступным примером является прибор для измерения температур – термометр - со шкалой, на которой записаны и положительные и отрицательные числа. Часто отрицательные числа изображают синим цветом (он символизирует снег, лед, а при температуре ниже нуля градусов Цельсия начинает замерзать вода), а положительные числа записывают красным цветом (цвет огня, солнца, при температуре выше нуля градусов начинает таять лед). Запись положительных и отрицательных чисел красным и синим цветом используют и в других случаях, когда нужно особо выделить знак чисел.

Список литературы.

  • Виленкин Н.Я. и др. Математика. 6 класс: учебник для общеобразовательных учреждений.