Однородные тригонометрические уравнения 2 степени. Однородные тригонометрические уравнения (10 класс)

В этой статье мы рассмотрим способ решения однородных тригонометрических уравнений.

Однородные тригонометрические уравнения имеют ту же структуру, что и однородные уравнения любого другого вида. Напомню способ решения однородных уравнений второй степени:

Рассмотрим однородные уравнения вида

Отличительные признаки однородных уравнений:

а) все одночлены имеют одинаковую степень,

б) свободный член равен нулю,

в) в уравнении присутствуют степени с двумя различными основаниями.

Однородные уравнения решаются по сходному алгоритму.

Чтобы решить уравнение такого типа, разделим обе части уравнения на (можно разделить на или на )

Внимание! При делении правой и левой части уравнения на выражение, содержащее неизвестное, можно потерять корни. Поэтому необходимо проверить, не являются ли корни того выражения, на которое мы делим обе части уравнения, корнями исходного уравнения.

Если является, то мы выписываем этот корень, чтобы потом про него не забыть, а затем делим на это выражение.

Вообще, первым делом, при решении любого уравнения, в правой части которого стоит ноль, нужно попытаться разложить левую часть уравнения на множители любым доступным способом. А затем каждый множитель приравнять к нулю. В этом случае мы точно не потеряем корни.

Итак, осторожно разделим левую часть уравнения на выражение почленно. Получим:

Сократим числитель и знаменатель второй и третьей дроби:

Введем замену:

Получим квадратное уравнение:

Решим квадратное уравнение, найдем значения , а затем вернемся к исходному неизвестному.

При решении однородных тригонометрических уравнений, нужно помнить несколько важных вещей:

1. Свободный член можно преобразовать к квадрату синуса и косинуса с помощью основного тригонометрического тождества:

2. Синус и косинус двойного аргумента являются одночленами второй степени - синус двойного аргумента легко преобразовать к произведению синуса и косинуса, а косинус двойного аргумента - к квадрату синуса или косинуса:

Рассмотрим несколько примеров решения однородных тригонометрических уравнений.

1 . Решим уравнение:

Это классический пример однородного тригонометрического уравнения первой степени: степень каждого одночлена равна единице, свободный член равен нулю.

Прежде чем делить обе части уравнения на , необходимо проверить, что корни уравнения не являются корнями исходного уравнения. Проверяем: если , то title="sin{x}0">, следовательно их сумма не равна нулю.

Разделим обе части уравнения на .

Получим:

, где

, где

Ответ: , где

2 . Решим уравнение:

Это пример однородного тригонометрического уравнения второй степени. Мы помним, что если мы можем разложить левую часть уравнения на множители, то желательно это сделать. В этом уравнении мы можем вынести за скобки . Сделаем это:

Решение первого уравнения: , где

Второе уравнение - однородное тригонометрическое уравнение первой степени. Чтобы его решить, разделим обе части уравнения на . Получим:

Ответ: , где ,

3 . Решим уравнение:

Чтобы это уравнение "стало" однородным, преобразуем в произведение, и представим число 3 в виде суммы квадратов синуса и косинуса:

Перенесем все слагаемые влево, раскроем скобки и приведем подобные члены. Получим:

Разложим левую часть на множители и приравняем каждый множитель к нулю:

Ответ: , где ,

4 . Решим уравнение:

Мы видим, что можем вынести за скобки . Сделаем это:

Приравняем каждый множитель к нулю:

Решение первого уравнения:

Второе уравнение совокупности представляет собой классическое однородное уравнение второй степени. Корни уравнения не являются корнями исходного уравнения, поэтому разделим обе части уравнения на :

Решение первого уравнения:

Решение второго уравнения.

Тип урока: обяснение нового материала. Работа проходит в группах. В каждой группе есть эксперт, который контролирует и направляет работу учащихся. Помогает слабым учащимся поверить в свои силы при решении данных уравнений.

Скачать:


Предварительный просмотр:

Урок по теме

" Однородные тригонометрические уравнения"

(10-й класс)

Цель:

  1. ввести понятие однородных тригонометрических уравнений I и II степени;
  2. сформулировать и отработать алгоритм решения однородных тригонометрических уравнений I и II степени;
  3. научить учащихся решать однородные тригонометрических уравнений I и II степени;
  4. развивать умение выявлять закономерности, обобщать;
  5. стимулировать интерес к предмету, развивать чувство солидарности и здорового соперничества.

Тип урока : урок формирования новых знаний.

Форма проведения : работа в группах.

Оборудование: компьютер, мультимедийная установка

Ход урока

I. Организационный момент

На уроке рейтинговая система оценки знаний (учитель поясняет систему оценки знаний, заполнение оценочного листа независимым экспертом, выбранным учителем из числа учащихся). Урок сопровождается презентацией. Приложение 1.

Оценочный лист№

п\п

Фамилия имя

Домашнее задание

Познавательная активность

Решение уравнений

Самостоятельная

работа

Оценка

II. Актуализация опорных знаний..

Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений. Вспомним основные виды простейших тригонометрических уравнений. Поставьте с помощью стрелок соответствии между выражениями.

III. Мотивация обучения.

Нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Учащиеся отгадывают, независимый эксперт заносит в оценочный лист баллы отвечающим учащимся.

Разгадав кроссворд, ребята прочитают слово “однородные”.

Кроссворд.

Если вписать верные слова, то получится название одного из видов тригонометрических уравнений.

1.Значение переменной, обращающее уравнение в верное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении? (Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций? (Окружность)

6.Какая из тригонометрических функций четная? (Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнение)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение нового материала.

Тема урока “Однородные тригонометрические уравнения”. (Презентация)

Примеры:

  1. sin x + cos x = 0
  2. √3cos x + sin x = 0
  3. sin 4x = cos 4x
  4. 2sin 2 x + 3 sin x cos x + cos 2 x = 0
  5. 4 sin 2 x – 5 sin x cos x – 6 cos 2 x = 0
  6. sin 2 x + 2 sin x cos x – 3cos 2 x + 2 = 0
  7. 4sin 2 x – 8 sin x cos x + 10 cos 2 x = 3
  8. 1 + 7cos 2 x = 3 sin 2x
  9. sin 2x + 2cos 2x = 1

V. Самостоятельная работа

Задачи: всесторонне проверить знания учащихся при решении всех видов тригонометрических уравнений, стимулировать учащихся к самоанализу, самоконтролю.
Учащимся предлагается выполнить письменную работу на 10 минут.
Учащиеся выполняют на чистых листочках под копировку. По истечении времени собираются вершки самостоятельной работы, а решения под копировку остаются у учащихся.
Проверка самостоятельной работы (3 мин) проводится взаимопроверкой.
. Учащиеся цветной ручкой проверяют письменные работы своего соседа и записывают фамилию проверяющего. Затем сдают листочки.

Потом сдают независимому эксперту.

1 вариант: 1) sin x = √3cos x

2) 3sin 2 x – 7sin x cos x + 2 cos 2 x = 0

3) 3sin x – 2sin x cos x = 1

4) sin 2x⁄sin x =0

2 вариант: 1) cosx + √3sin x = 0

2)2sin 2 x + 3sin x cos x – 2 cos 2 x = 0

3)1 + sin 2 x = 2 sin x cos x

4) cos 2x ⁄ cos x = 0

VI. Подведение итогов урока

VII. Задание на дом:

Домашнее задание – 12 баллов (на дом было задано 3 уравнения 4 х 3 = 12)

Активность уч-ся – 1ответ – 1 балл (4 балла максимально)

Решение уравнений 1 балл

Самостоятельная работа – 4 балла


Учитель: Синицина С.И.

МБОУ СОШ №20 им.Милевского Н.И.

Тема: Однородные тригонометрические уравнения (10 класс)

Цели: Ввести понятие однородных тригонометрических уравнений I и II степени;

Сформулировать и отработать алгоритм решения однородных тригонометрических

уравнений I и II степени;

Закрепить навыки решения всех видов тригонометрических уравнений через

развитие и совершенствование умений применять имеющиеся знания в изменённой

ситуации, через умение делать выводы и обобщение

Воспитание у учащихся аккуратности, культуры поведения.

Тип урока: урок формирования новых знаний.

Оборудование: компьютер, мультимедийный проектор, экран, доска, презентация

Ход урока

I. Организационный момент

Приветствие учащихся, мобилизация внимания.

II. Актуализация опорных знаний (Домашняя работа проверяется консультантами до урока. Учитель подводит итог выполнения домашнего задания.)

Учитель: Мы продолжаем изучение темы “Тригонометрические уравнения”. Сегодня на уроке мы познакомимся с вами с еще одним видом тригонометрических уравнений и методами их решения и поэтому повторим изученное. Все виды тригонометрических уравнений при решении сводятся к решению простейших тригонометрических уравнений.

Устная работа

  1. Какое уравнение мы называем тригонометрическим?
  2. Назовите алгоритм решения уравнения cos t = a
  3. Назовите алгоритм решения уравнения sin t = a

III. Мотивация обучения.

Учитель: нам предстоит работа по разгадыванию кроссворда. Разгадав его, мы узнаем название нового вида уравнений, которые научимся решать сегодня на уроке.

Вопросы спроецированы на доску. Разгадав кроссворд, ребята прочитают слово “однородные”.

1.Значение переменной, обращающее уравнение вверное равенство? (Корень)

2.Единица измерения углов? (Радиан)

3.Числовой множитель в произведении?(Коэффициент)

4.Раздел математики, изучающий тригонометрические функции? (Тригонометрия)

5.Какая математическая модель необходима для введения тригонометрических функций?(Окружность)

6.Какая из тригонометрических функций четная?(Косинус)

7.Как называется верное равенство? (Тождество)

8.Равенство с переменной? (Уравнения)

9.Уравнения, имеющие одинаковые корни? (Равносильные)

10.Множество корней уравнения? (Решение)

IV. Объяснение новой темы

Учитель: Тема урока “Однородные тригонометрические уравнения”.

Запишем тему урока в тетрадь. Однородные тригонометрические уравнения бывают первой и второй степени.

Запишем определение однородного уравнения первой степени. Я на примере показываю решение такого вида уравнения, вы составляете алгоритм решения однородного тригонометрического уравнения первой степени.

Уравнение вида а sinx + b cosx = 0 называют однородным тригонометрическим уравнение первой степени.

Рассмотрим решение уравнения, когда коэффициенты а и в отличны от 0.

Пример1: 2sinx - 3cosx = 0

Разделив обе части уравнения почленно на cosx, получим

2sinx/ cosx - 3cosx/ cosx = 0

2 tgx -3 =0, tgx =3/2, x = arctg3/2 + πn, nє Z,

Внимание! Делить на одно и то же выражение можно лишь в том случае, если это выражение нигде не обращается в 0. Анализируем. Если косинус равен 0, то, чтобы всё выражение обратилось в 0, синус должен быть тоже равен 0 (учитываем, что коэффициенты отличны от 0). Но мы знаем, что синус и косинус обращаются в нуль в различных точках. Поэтому такую операцию производить можно при решении этого вида уравнений.

Уравнение вида а sin mx + b cos mx = 0 тоже называют однородным тригонометрическим уравнение первой степени и решают также делением обеих частей уравнения на cos mх.

Уравнение вида a sin 2 x + b sinx cosx + c cos 2 x = 0 называют однородным тригонометрическим уравнением второй степени.

Пример 2: sin 2 x – 3 sinx cosx +2 cos 2 x = 0

Коэффициент а отличен от 0 и поэтому как и в предыдущем уравнении соsх 0 и поэтому можно воспользоваться способом деления обеих частей уравнения на соs 2 х.

Получим tg 2 x – 3 tgx +2 = 0

Решаем путем введения новой переменной пусть tgx = а, тогда получаем уравнение

а 2 -3 а +2 = 0 а 1 = 1 а 2 = 2

Возвращаемся к замене

tgx =1, x = ¼π+ πn, nє Z tgx = 2 , x = arctg 2 + πn, nє Z

Ответ: x = ¼π + πn, nє Z, x = arctg 2 + πn, nє Z

Если коэффициент а = 0, то уравнение примет вид –3sinx cosx + 2cos 2 x = 0 решаем способом вынесения общего множителя – cosx за скобки: – cosx (3 sinx – 2cosx) = 0,

cosx = 0 или 3sinx – 2cosx = 0. Второе уравнение является однородным уравнением первой степени.

Если коэффициент с = 0, то уравнение примет вид sin 2 x -3sinx cosx = 0 решаем способом вынесения общего множителя sinx за скобки: sinx (sinx -3 cosx) = 0,

sinx = 0 или sinx -3 cosx = 0. Второе уравнение является однородным уравнением первой степени.

Алгоритм решения однородного тригонометрического уравнения второй степени:

1.Посмотреть, есть ли в уравнении член a sin 2 x.

2.Если член asin 2 x в уравнении содержится (т.е. а 0), то уравнение решается делением

обеих частей уравнения на cos 2 x и последующим введение новой переменной а = tgx

3. Если член asin 2 x в уравнении не содержится (т.е. а = 0), то уравнение решается методом разложения на множители: за скобки выносят cosx.

Однородные уравнения вида a sin 2 mx + b sin mx cos mx + c cos 2 mx = 0 решаются таким же способом

V. Усвоение новых знаний

Являются ли однородными данные уравнения?

  1. sin x = 2 cos x
  2. sin 5x + cos 5x = 0
  3. sin 3x - cos 3x = 2
  4. sin 2 8x – 5 sin8x cos8x +2 cos 2 8x =0

V I. Физкультминутка

V II. Формирование навыков решения однородных тригонометрических уравнений

Открываем задачники стр.47 № 18.10(а), № 18.11 (а,б),18.12(г)

VI II. Самостоятельная работа (учащиеся выбираю дифференцированные задания по двум вариантам)

1 вариант 2 вариант

1) sinx + 2cosx = 0. 1) sinx - 4cosx = 0.

2) sin 2 x + 2sinx cosx -3 cos 2 x = 0 2) sin 2 x – 4 sinx cosx +3 cos 2 x = 0

3) 2sin 2 2x – 5 sin2x cos2x +2 cos 2 2x = 0 3) 3sin 2 3x +10 sin3x cos3x +3 cos 2 3x = 0

Правильные ответы проецируются на доску.

IX. Подведение итогов урока, выставление оценок

С каким видом тригонометрических уравнений мы познакомились на уроке?

Какие уравнения мы называем однородными?

Сформулируйте алгоритмы решения однородных тригонометрических уравнений первой и второй степени.

X. Задание на дом: Cоставить и решить 2 однородных уравнения первой степени и 1 однородное уравнение второй степени

С помощью этого видеоурока учащиеся смогут изучить тему однородных тригонометрических уравнений.

Дадим определения:

1) однородное тригонометрическое уравнение первой степени выглядит как a sin x + b cos x = 0;

2) однородное тригонометрическое уравнение второй степени выглядит как a sin 2 x + b sin x cos x + c cos 2 x = 0.

Рассмотрим уравнение a sin x + b cos x = 0. Если а будет равно нулю, то уравнение будет выглядеть как b cos x = 0; если b равно нулю, то уравнение будет выглядеть как a sin x = 0. Это уравнения, которые мы называли простейшими и решали ранее в предыдущих темах.

Сейчас рассмотрим вариант, когда a и b не равны нулю. С помощью деления частей уравнения на косинус x и осуществим преобразование. Получим a tg x + b = 0, тогда tg x будет равен - b/а.

Из вышеизложенного следует вывод, что уравнение a sin mx + b cos mx = 0 является однородным тригонометрическим уравнением I степени. Чтобы решить уравнение, его части делят на cos mx.

Разберем пример 1. Решить 7 sin (x/2) - 5 cos (x/2) = 0. Сначала части уравнения делим на косинус(x/2). Зная, что синус, деленный на косинус, это тангенс, получим 7 tg (x/2) - 5 = 0. Преобразовывая выражение, найдем, что значение тангенса (x/2)равно 5/7. Решение данного уравнения имеет вид х = arctg a + πn, в нашем случае х = 2 arctg (5/7) + 2πn.

Рассмотрим уравнение a sin 2 x + b sin x cos x + c cos 2 x = 0:

1) при а равном нулю уравнение будет выглядеть как b sin x cos x + c cos 2 x = 0. Преобразуя, получим выражение cos x (b sin x + c cos x) = 0 и перейдем к решению двух уравнений. После деления частей уравнения на косинус x, получим b tg x + c = 0, а значит tg x = - c/b. Зная, что х = arctg a + πn, то решением в данном случае будет х = arctg (- с/b) + πn.

2) если а не равно нулю, то, путем деления частей уравнения на косинус в квадрате, получим уравнение, содержащее тангенс, которое будет квадратным. Это уравнение можно решить путем ввода новой переменной.

3) при с равном нулю уравнение примет вид a sin 2 x + b sin x cos x = 0. Это уравнение можно решить, если вынести синус x за скобку.

1. посмотреть, есть ли в уравнении a sin 2 x;

2. если в уравнении член a sin 2 x содержится, то решить уравнение можно путем деления обеих частей на косинус в квадрате и последующим введением новой переменной.

3. если в уравнении a sin 2 x не содержится, то решить уравнение можно с помощью выноса за скобки cosx.

Рассмотрим пример 2. Вынесем за скобки косинус и получим два уравнения. Корень первого уравнения x = π/2 + πn. Для решения второго уравнения разделим части этого уравнения на косинус x, путем преобразований получим х = π/3 + πn. Ответ: x = π/2 + πn и х = π/3 + πn.

Решим пример 3, уравнение вида 3 sin 2 2x - 2 sin 2x cos 2x + 3 cos 2 2x = 2 и найдем его корни, которые принадлежат отрезку от - π до π. Т.к. это уравнение неоднородное, необходимо привести его к однородному виду. Используя формулу sin 2 x + cos 2 x = 1, получим уравнение sin 2 2x - 2 sin 2x cos 2x + cos 2 2x = 0. Разделив все части уравнения на cos 2 x, получим tg 2 2x + 2tg 2x + 1 = 0. Используя ввод новой переменной z = tg 2x, решим уравнение, корнем которого будет z = 1. Тогда tg 2x = 1, откуда следует, что x = π/8 + (πn)/2. Т.к. по условию задачи нужно найти корни, которые принадлежат отрезку от - π до π, решение будет иметь вид - π< x <π. Подставляя найденное значение x в данное выражение и преобразовывая его, получим - 2,25 < n < 1,75. Т.к. n - это целые числа, то решению уравнения удовлетворяют значения n: - 2; - 1; 0; 1. При этих значениях n получим корни решения исходного уравнения: x = (- 7π)/8, x = (- 3π)/8, x =π/8, x = 5π/8.

ТЕКСТОВАЯ РАСШИФРОВКА:

Однородные тригонометрические уравнения

Сегодня мы разберем, как решаются «Однородные тригонометрические уравнения». Это уравнения специального вида.

Познакомимся с определением.

Уравнение вида а sin x+ b cos x = 0 (а синус икс плюс бэ косинус икс равно нулю) называют однородным тригонометрическим уравнением первой степени;

уравнение вида а sin 2 x+ b sin x cos x cos 2 x = 0 (а синус квадрат икс плюс бэ синус икс косинус икс плюс сэ косинус квадрат икс равно нулю) называют однородным тригонометрическим уравнением второй степени.

Если а=0 , то уравнение примет вид b cos x = 0.

Еслиb = 0 , то получим а sin x= 0.

Данные уравнения являются элементарными тригонометрическими, и их решение мы рассматривали на прошлых наших темах

Рассмотрим тот случай, когда оба коэффициента не равны нулю. Разделим обе части уравнения а sin x + b cos x = 0 почленно на cos x .

Это мы можем сделать, так как косинус икс отличен от нуля. Ведь, если cos x = 0 , то уравнение а sin x + b cos x = 0 примет вид а sin x = 0 , а ≠ 0, следовательно sin x = 0 . Что невозможно, ведь по основному тригонометрическому тождеству sin 2 x+ cos 2 x =1 .

Разделив обе части уравнения а sin x + b cos x = 0 почленно на cos x , получим: + =0

Осуществим преобразования:

1. Так как = tg x, то = а tg x

2 сокращаем на cos x , тогда

Таким образом получим следующее выражение а tg x + b =0 .

Осуществим преобразование:

1.перенесем b в правую часть выражения с противоположным знаком

а tg x =- b

2. Избавимся от множителя а разделив обе части уравнения на а

tg x= - .

Вывод: Уравнение вида а sin m x+ b cos mx = 0 (а синус эм икс плюс бэ косинус эм икс равно нулю) тоже называют однородным тригонометрическим уравнением первой степени. Чтобы решить его, делят обе части на cos mx .

ПРИМЕР 1. Решить уравнение 7 sin - 5 cos = 0 (семь синус икс на два минус пять косинус икс на два равно нулю)

Решение. Разделим обе части уравнения почленно на cos, получим

1. = 7 tg (так как соотношение синуса к косинусу - это тангенс, то семь синус икс на два деленное на косинус икс на два, равно 7 тангенс икс на два)

2. -5 = -5 (при сокращении cos)

Таки образом получили уравнение

7tg - 5 = 0, Преобразуем выражение, перенесем минус пять в правую часть, изменив знак.

Мы привели уравнение к виду tg t = a, где t=, a =. А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

х = arctg a + πn, то решение нашего уравнения будет иметь вид:

Arctg + πn, найдем х

х=2 arctg + 2πn.

Ответ: х=2 arctg + 2πn.

Перейдем к однородному тригонометрическому уравнению второй степени

а sin 2 x+b sin x cos x + с cos 2 x= 0.

Рассмотрим несколько случаев.

I. Если а=0 , то уравнение примет вид b sin x cos x cos 2 x = 0.

При решении э то уравнения используем метод разложения на множители. Вынесем cos x за скобку и получим: cos x (b sin x cos x )= 0 . Откуда cos x = 0 или

b sin x + с cos x= 0. А эти уравнения мы уже умеем решать.

Разделим обе части уравнения почленно на cosх, получим

1 (так как соотношение синуса к косинусу - это тангенс).

Таким образом получаем уравнение: b tg х+с=0

Мы привели уравнение к виду tg t = a, где t= х, a =. А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

х = arctg a + πn, то решение нашего уравнения будет:

х = arctg + πn, .

II. Если а≠0 , то обе части уравнения почленно разделим на cos 2 x .

(Рассуждая аналогично, как и в случае с однородным тригонометрическим уравнением первой степени, косинус икс не может обратится в ноль).

III. Если с=0 , то уравнение примет вид а sin 2 x + b sin x cos x = 0. Это уравнение решается методом разложения на множители (вынесем sin x за скобку).

Значит, при решении уравнения а sin 2 x + b sin x cos x cos 2 x = 0 можно действовать по алгоритму:

ПРИМЕР 2. Решить уравнение sinxcosx - cos 2 x= 0 (синус икс, умноженный на косинус икс минус корень из трех, умноженный на косинус квадрат икс равно нулю).

Решение. Разложим на множители (вынесем за скобку cosx). Получим

cos x(sin x - cos x)= 0, т.е. cos x=0 илиsin x - cos x= 0.

Ответ: х =+ πn, х= + πn.

ПРИМЕР 3. Решить уравнение 3sin 2 2x - 2 sin2xcos2 x +3cos 2 2x= 2 (три синус квадрат двух икс минус удвоенное произведение синуса двух икс на косинус двух икс плюс три косинус квадрат двух икс) и найти его корни, принадлежащие промежутку (- π; π).

Решение. Это уравнение не однородное, поэтому проведем преобразования. Число 2, содержащееся в правой части уравнения, заменим произведением 2·1

Так как по основному тригонометрическому тождеству sin 2 x + cos 2 x =1, то

2 ∙ 1= 2 ∙ (sin 2 x + cos 2 x) = раскрыв скобки получим: 2 sin 2 x + 2 cos 2 x.

2 ∙ 1= 2 ∙ (sin 2 x + cos 2 x) =2 sin 2 x + 2 cos 2 x

Значит уравнение 3sin 2 2x - 2 sin2xcos2 x +3cos 2 2x= 2 примет вид:

3sin 2 2x - 2 sin 2x cos2 x +3cos 2 2x = 2 sin 2 x + 2 cos 2 x.

3sin 2 2x - 2 sin 2x cos2 x +3cos 2 2x - 2 sin 2 x - 2 cos 2 x=0,

sin 2 2x - 2 sin 2x cos2 x +cos 2 2x =0.

Получили однородное тригонометрическое уравнение второй степени. Применим способ почленного деления на cos 2 2x:

tg 2 2x - 2tg 2x + 1 = 0.

Введем новую переменную z= tg2х.

Имеем z 2 - 2 z + 1 = 0. Это квадратное уравнение. Заметив в левой части формулу сокращенного умножения - квадрат разности (), получим (z - 1) 2 = 0, т.е. z = 1. Вернемся к обратной замене:

Мы привели уравнение к виду tg t = a, где t= 2х, a =1 . А так как данное уравнение имеет решение для любого значения а и эти решения имеют вид

х = arctg x a + πn, то решение нашего уравнения будет:

2х= arctg1 + πn,

х= + , (икс равно сумме пи на восемь и пи эн на два).

Нам осталось найти такие значения х, которые содержатся в интервале

(- π; π), т.е. удовлетворяют двойному неравенству - π х π. Так как

х= + , то - π + π. Разделим все части этого неравенства на π и умножим на 8, получим

перенесем единицу в право и в лево, поменяв знак на минус один

разделим на четыре получим,

для удобства в дробях выделим целые части

-

Этому неравенству удовлетворяют следующие целочисленные n: -2, -1, 0, 1

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.