Найти p 5 с помощью схемы горнера. Деление многочлена на многочлен (двучлен) столбиком (уголком)

Цели урока:

  • научить учащихся решать уравнения высших степеней используя схему Горнера;
  • воспитывать умение работать в парах;
  • создать в совокупности с основными разделами курса базу для развития способностей учащихся;
  • помочь ученику оценить свой потенциал, развивать интерес к математике, умение мыслить, высказываться по теме.

Оборудование: карточки для работы в группах, плакат со схемой Горнера.

Метод обучения: лекция, рассказ, объяснение, выполнение тренировочных упражнений.

Форма контроля: проверка задач самостоятельного решения, самостоятельная работа.

Ход урока

1. Организационный момент

2. Актуализация знаний учащихся

Какая теорема позволяет определить, является ли число корнем данного уравнения (сформулировать теорему)?

Теорема Безу. Остаток от деления многочлена Р(х) на двучлен х-с равен Р(с), число с называют корнем многочлена Р(х), если Р(с)=0. Теорема позволяет, не выполняя операцию деления, определить, является ли данное число корнем многочлена.

Какие утверждения облегчают поиск корней?

а) Если старший коэффициент многочлена равен единице, то корни многочлена следует искать среди делителей свободного члена.

б) Если сумма коэффициентов многочлена равна 0, то один из корней равен 1.

в)Если сумма коэффициентов стоящих на четных местах, равна сумме коэффициентов, стоящих на нечетных местах, то один из корней равен -1.

г) Если все коэффициенты положительны, то корнями многочлена являются отрицательные числа.

д) Многочлен нечетной степени имеет хотя бы один действительный корень.

3. Изучение нового материала

При решении целых алгебраических уравнений приходиться находить значения корней многочленов. Эту операцию можно существенно упростить, если проводить вычисления по специальному алгоритму, называемому схемой Горнера. Эта схема названа в честь английского ученого Уильяма Джорджа Горнера. Схема Горнера это алгоритм для вычисления частного и остатка от деления многочлена Р(х) на х-с. Кратко, как он устроен.

Пусть дан произвольный многочлен Р(х)=а 0 х n + а 1 х n-1 + …+ а n-1 х+ а n . Деление этого многочлена на х-с – это представление его в виде Р(х)=(х-с)g(х) + r(х). Частное g(х)=в 0 х n-1 + в n х n-2 +…+в n-2 х + в n-1 , где в 0 =а 0 , в n =св n-1 +а n , n=1,2,3,…n-1. Остаток r(х)= св n-1 +а n . Этот метод вычисления и называется схемой Горнера. Слово « схема» в названии алгоритма связана с тем, что обычно его выполнение оформляют следующим образом. Сначала рисуют таблицу 2(n+2). В левой нижней клетке записывают число с, а в верхней строке коэффициенты многочлена Р(х). При этом левую верхнюю клетку оставляют пустой.

в 0 =а 0

в 1 =св 1 +а 1

в 2 =св 1 + а 2

в n-1 =св n-2 +а n-1

r(х)=f(с)=св n-1 +а n

Число, которое после выполнения алгоритма оказывается записанным в правой нижней клетке, и есть остаток от деления многочлена Р(х) на х-с. Другие числа в 0 , в 1 , в 2 ,… нижней строки являются коэффициентами частного.

Например: Разделить многочлен Р(х)= х 3 -2х+3 на х-2.

Получаем, что х 3 -2х+3=(х-2) (х 2 +2х+2) + 7.

4. Закрепление изученного материала

Пример 1: Разложите на множители с целыми коэффициентами многочлен Р(х)=2х4-7х 3 -3х 2 +5х-1.

Ищем целые корни среди делителей свободного члена -1: 1; -1. Составим таблицу:

X = -1 – корень

Р(х)= (х+1) (2х 3 -9х 2 +6х -1)

Проверим 1/2.

Х=1/2 - корень

Следовательно, многочлен Р(х) можно представить в виде

Р(х)= (х+1) (х-1/2) (х 2 -8х +2) = (х+1) (2х -1) (х 2 - 4х +1)

Пример 2: Решить уравнение 2х 4 - 5х 3 + 5х 2 - 2 = 0

Так как сумма коэффициентов многочлена, записанного в левой части уравнения, равна нулю, то один из корней 1. Воспользуемся схемой Горнера:

Х=1 - корень

Получаем Р(х)=(х-1) (2х 3 -3х 2 =2х +2). Будем искать корни среди делителей свободного члена 2.

Выяснили, что целых корней больше нет. Проверим 1/2; -1/2.

Х= -1/2 - корень

Ответ: 1; -1/2.

Пример 3: Решить уравнение 5х 4 – 3х 3 – 4х 2 -3х+ 5 = 0.

Корни данного уравнения будем искать среди делителей свободного члена 5: 1;-1;5;-5. х=1 - корень уравнения, так как сумма коэффициентов равна нулю. Воспользуемся схемой Горнера:

уравнение представим в виде произведения трех множителей: (х-1) (х-1) (5х 2 -7х + 5)=0. Решая квадратное уравнение 5х 2 -7х+5=0, получили Д=49-100=-51, корней нет.

Карточка 1

  1. Разложите на множители многочлен: х 4 +3х 3 -5х 2 -6х-8
  2. Решите уравнение: 27х 3 -15х 2 +5х-1=0

Карточка 2

  1. Разложите на множители многочлен: х 4 -х 3 -7х 2 +13х-6
  2. Решите уравнение: х 4 +2х 3 -13х 2 -38х-24=0

Карточка 3

  1. Разложите на множители: 2х 3 -21х 2 +37х+24
  2. Решите уравнение: х 3 -2х 2 +4х-8=0

Карточка 4

  1. Разложите на множители: 5х 3 -46х 2 +79х-14
  2. Решите уравнение: х 4 +5х 3 +5х 2 -5х-6=0

5. Подведение итогов

Проверка знаний при решении в парах осуществляется на уроке путем узнавания способа действия и названия ответа.

Домашнее задание:

Решите уравнения:

а) х 4 -3х 3 +4х 2 -3х+1=0

б) 5х 4 -36х 3 +62х 2 -36х+5=0

в) х 4 +х 3 +х+1=4х 2

г) х 4 +2х 3 -х-2=0

Литература

  1. Н.Я. Виленкин и др., Алгебра и начала анализа 10 класс (углубленное изучение математики): Просвещение, 2005.
  2. У.И. Сахарчук, Л.С. Сагателова, Решение уравнений высших степеней: Волгоград, 2007.
  3. С.Б. Гашков, Системы счисления и их применение.

Слайд 3

Горнер Вильямc Джордж (1786-22.9.1837)-английский математик. Родился в Бристоле. Учился и работал там же, затем в школах Бата. Основные труды по алгебре. В 1819г. опубликовал способ приближенного вычисления вещественных корней многочлена, который называется теперь способом Руффини-Горнера (этот способ был известен китайцам еще в XIII в.) Именем Горнера названа схема деления многочлена на двучлен х-а.

Слайд 4

СХЕМА ГОРНЕРА

Способ деления многочлена n-й степени на линейный двучленх - а, основанный на том, что коэффициенты неполного частного и остатокr связаны с коэффициентами делимого многочлена и с а формулами:

Слайд 5

Вычисления по схеме Горнера располагают в таблицу:

Пример 1. Разделить Неполное частное равно х3-х2+3х - 13 и остаток равен 42=f(-3).

Слайд 6

Основным преимуществом этого метода является компактность записи и возможность быстрого деления многочлена на двучлен. По сути, схема Горнера является другой формой записи метода группировки, хотя, в отличие от последнего, является совершенно ненаглядной. Ответ (разложение на множители) тут получается сам собой, и мы не видим самого процесса его получения. Мы не будем заниматься строгим обоснованием схемы Горнера, а лишь покажем, как она работает.

Слайд 7

Пример2.

Докажем, что многочлен Р(х)=х4-6х3+7х-392 делится на х-7,и найдем частное от деления. Решение. Используя схему Горнера, найдем Р(7): Отсюда получаем Р(7)=0, т.е. остаток при делении многочлена на х-7 равен нулю и, значит, многочлен Р(х) кратен (х-7).При этом числа во второй строке таблицы являются коэффициентами частного от деления Р(х) на (х-7), поэтому Р(х)=(х-7)(х3+х2+7х+56).

Слайд 8

Разложить на множители многочлен x3 – 5x2 – 2x + 16.

Данный многочлен имеет целые коэффициенты. Если целое число является корнем этого многочлена, то оно является делителем числа 16. Таким образом, если у данного многочлена есть целые корни, то это могут быть только числа ±1; ±2; ±4; ±8; ±16. Непосредственной проверкой убеждаемся, что число 2 является корнем этого многочлена, то есть x3 – 5x2 – 2x + 16 = (x – 2)Q(x), где Q(x) − многочлен второй степени

Слайд 9

Полученные числа 1, −3, −8 являются коэффициентами многочлена, который получается при делении исходного многочлена на x – 2. Значит, результат деления: 1 · x2 + (–3)x + (–8) = x2 – 3x – 8. Степень многочлена, полученного в результате деления, всегда на 1 меньше, чем степень исходного. Итак: x3 – 5x2 – 2x + 16 = (x – 2)(x2 – 3x – 8).








Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Тип урока : Урок усвоения и закрепления первичных знаний.

Цель урока:

  • Ознакомить учеников с понятием корней многочлена, научить находить их. Усовершенствовать навыки применения схемы Горнера по разложению многочлена по степеням и деления многочлена на двучлен.
  • Научиться находить корни уравнения с помощью схемы Горнера.
  • Развивать абстрактное мышление.
  • Воспитывать вычислительную культуру.
  • Развитие межпредметных связей.

Ход урока

1. Организационный момент.

Сообщить тему урока, сформулировать цели.

2. Проверка домашнего задания.

3. Изучение нового материала.

Пусть F n (x)= a n x n +a n-1 x n-1 +...+ a 1 x +a 0 - многочлен относительно x степени n, где a 0 , a 1 ,...,a n –данные числа, причем a 0 не равно 0. Если многочлен F n (x) разделить с остатком на двучлен x-a, то частное (неполное частное) есть многочлен Q n-1 (x) степени n-1, остаток R есть число, при этом справедливо равенство F n (x)=(x-a) Q n-1 (x) +R. Многочлен F n (x) делится нацело на двучлен (x-a) только в случае R=0.

Теорема Безу: Остаток R от деления многочлена F n (x) на двучлен (x-a) равен значению многочлена F n (x) при x=a, т.е. R= P n (a).

Немного истории. Теорема Безу, несмотря на внешнюю простоту и очевидность, является одной из фундаментальных теорем теории многочленов. В этой теореме алгебраические свойства многочленов (которые позволяют работать с многочленами как с целыми числами) связываются с их функциональными свойствами (которые позволяют рассматривать многочлены как функции). Одним из способов решения уравнений высших степеней является способ разложения на множители многочлена, стоящего в левой части уравнения. Вычисление коэффициентов многочлена и остатка записывается в виде таблицы, которая называется схемой Горнера.

Схема Горнера – это алгоритм деления многочленов, записанный для частного случая, когда частное равно двучлену x–a .

Горнер Уильям Джордж (1786 - 1837), английский математик. Основные исследования относятся к теории алгебраических уравнений. Разработал способ приближенного решения уравнений любой степени. В 1819 г. ввёл важный для алгебры способ деления многочлена на двучлен х - а (схема Горнера).

Вывод общей формулы для схемы Горнера.

Разделить с остатком многочлен f(x) на двучлен (x-c) значит найти такой многочлен q(x) и такое число r, что f(x)=(x-c)q(x)+r

Запишем это равенство подробно:

f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n =(x-c) (q 0 x n-1 + q 1 x n-2 + q 2 x n-3 +...+ q n-2 x + q n-1)+r

Приравняем коэффициенты при одинаковых степенях:

x n: f 0 = q 0 => q 0 = f 0
x n-1: f 1 = q 1 - c q 0 => q 1 = f 1 + c q 0
x n-2: f 2 = q 2 - c q 1 => q 2 = f 2 + c q 1
... ...
x 0: f n = q n - c q n-1 => q n = f n + c q n-1.

Демонстрация схемы Горнера на примере.

Задание 1. С помощью схемы Горнера разделим с остатком многочлен f(x) = x 3 - 5x 2 + 8 на двучлен x-2.

1 -5 0 8
2 1 2*1+(-5)=-3 2*(-3)+0=-6 2*(-6)+8=-4

f(x) = x 3 - 5x 2 + 8 =(x-2)(x 2 -3x-6)-4, где g(x)= (x 2 -3x-6), r = -4 остаток.

Разложение многочлена по степеням двучлена.

Используя схему Горнера, разложим многочлен f(x)=x 3 +3x 2 -2x+4 по степеням двучлена (x+2).

В результате должны получить разложение f(x) = x 3 +3x 2 -2x+4 = (x+2)(x 2 +x-4)+12 = (x+2)((x-1)(x+2)-2)+12 = (((1*(x+2)-3)(x+2)-2)(x+2))+12 = (x+2) 3 -3(x+2) 2 -2(x+2)+12

Схему Горнера часто используют при решении уравнений третьей, четвертой и выших степеней, когда удобно разложить многочлен на двучлен x-a. Число a называют корнем многочлена F n (x) = f 0 x n + f 1 x n-1 + f 2 x n-2 + ...+f n-1 x + f n , если при x=a значение многочлена F n (x) равно нулю: F n (a)=0, т.е. если многочлен делится нацело на двучлен x-a.

Например, число 2 является корнем многочлена F 3 (x)=3x 3 -2x-20, так как F 3 (2)=0. это означает. Что разложение этого многочлена на множители содержит множитель x-2.

F 3 (x)=3x 3 -2x-20=(x-2)(3x 2 +6x+10).

Любой многочлен F n (x) степени n 1 может иметь не более n действительных корней.

Любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена.

Если старший коэффициент уравнения равен 1, то все рациональные корни уравнения, если они существуют, целые.

Закрепление изученного материала.

Для закрепления нового материала учащимся предлагается выполнить номера из учебника 2.41 и 2.42 (стр. 65).

(2 ученика решают у доски, а остальные, решив, в тетради задания сверяются с ответами на доске).

Подведение итогов.

Поняв структуру и принцип действия схемы Горнера, ее можно использовать и на уроках информатики, когда рассматривается вопрос о переводе целых чисел из десятичной системы счисления в двоичную и обратно. В основе перевода из одной системы счисления в другую лежит следующая общая теорема

Теорема. Для перевода целого числа Ap из p -ичной системы счисления в систему счисления с основанием d необходимо Ap последовательно делить с остатком на число d , записанное в той же p -ичной системе, до тех пор, пока полученное частное не станет равным нулю. Остатки от деления при этом будут являться d -ичными цифрами числа Ad , начиная от младшего разряда к старшему. Все действия необходимо проводить в p -ичной системе счисления. Для человека данное правило удобно лишь при p = 10, т.е. при переводе из десятичной системы. Что касается компьютера, то ему, напротив, “удобнее” производить вычисления в двоичной системе. Поэтому для перевода “2 в 10” используется последовательное деление на десять в двоичной системе, а “10 в 2” - сложение степеней десятки. Для оптимизации вычислений процедуры “10 в 2” компьютер использует экономную вычислительную схему Горнера.

Домашнее задание. Предлагается выполнить два задание.

1-е. Используя схему Горнера разделить многочлен f(x)=2x 5 -x 4 -3x 3 +x-3 на двучлен (x-3).

2-е. Найти целые корни многочлена f(x)=x 4 -2x 3 +2x 2 -x-6.(учитывая, что любой целый корень уравнения с целыми коэффициентами является делителем его свободного члена)

Литература.

  1. Курош А.Г. “Курс высшей алгебры”.
  2. Никольский С.М, Потапов М.К. и др. 10 класс “Алгебра и начала математического анализа”.
  3. http://inf.1september.ru/article.php?ID=200600907.

С помощью данной математической программы вы можете поделить многочлены столбиком.
Программа деления многочлена на многочлен не просто даёт ответ задачи, она приводит подробное решение с пояснениями, т.е. отображает процесс решения для того чтобы проконтролировать знания по математике и/или алгебре.

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вам нужно или упростить многочлен или умножить многочлены , то для этого у нас есть отдельная программа Упрощение (умножение) многочлена

Первый многочлен (делимое - что делим):

Второй многочлен (делитель - на что делим):

Разделить многочлены

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Деление многочлена на многочлен (двучлен) столбиком (уголком)

В алгебре деление многочленов столбиком (уголком) - алгоритм деления многочлена f(x) на многочлен (двучлен) g(x), степень которого меньше или равна степени многочлена f(x).

Алгоритм деления многочлена на многочлен представляет собой обобщенную форму деления чисел столбиком, легко реализуемую вручную.

Для любых многочленов \(f(x) \) и \(g(x) \), \(g(x) \neq 0 \), существуют единственные полиномы \(q(x) \) и \(r(x) \), такие что
\(\frac{f(x)}{g(x)} = q(x)+\frac{r(x)}{g(x)} \)
причем \(r(x) \) имеет более низкую степень, чем \(g(x) \).

Целью алгоритма деления многочленов в столбик (уголком) является нахождение частного \(q(x) \) и остатка \(r(x) \) для заданных делимого \(f(x) \) и ненулевого делителя \(g(x) \)

Пример

Разделим один многочлен на другой многочлен (двучлен) столбиком (уголком):
\(\large \frac{x^3-12x^2-42}{x-3} \)

Частное и остаток от деления данных многочленов могут быть найдены в ходе выполнения следующих шагов:
1. Делим первый элемент делимого на старший элемент делителя, помещаем результат под чертой \((x^3/x = x^2) \)

\(x \) \(-3 \)
\(x^2 \)

3. Вычитаем полученный после умножения многочлен из делимого, записываем результат под чертой \((x^3-12x^2+0x-42-(x^3-3x^2)=-9x^2+0x-42) \)

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(x \) \(-3 \)
\(x^2 \)

4. Повторяем предыдущие 3 шага, используя в качестве делимого многочлен, записанный под чертой.

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(-9x^2 \) \(+27x \)
\(-27x \) \(-42 \)
\(x \) \(-3 \)
\(x^2 \) \(-9x \)

5. Повторяем шаг 4.

\(x^3 \) \(-12x^2 \) \(+0x \) \(-42 \)
\(x^3 \) \(-3x^2 \)
\(-9x^2 \) \(+0x \) \(-42 \)
\(-9x^2 \) \(+27x \)
\(-27x \) \(-42 \)
\(-27x \) \(+81 \)
\(-123 \)
\(x \) \(-3 \)
\(x^2 \) \(-9x \) \(-27 \)

6. Конец алгоритма.
Таким образом, многочлен \(q(x)=x^2-9x-27 \) - частное деления многочленов, а \(r(x)=-123 \) - остаток от деления многочленов.

Результат деления многочленов можно записать в виде двух равенств:
\(x^3-12x^2-42 = (x-3)(x^2-9x-27)-123 \)
или
\(\large{\frac{x^3-12x^2-42}{x-3}} = x^2-9x-27 + \large{\frac{-123}{x-3}} \)