Методы контроля за состоянием загрязнения атмосферы. Методы контроля за состоянием атмосферы

Проблема загрязнения окружающей среды, в особенности воздушной оболочки Земли становится всё более актуальной с течением времени. Основа для решения данной проблемы лежит в развитие и совершенствование систем экологического мониторинга, осуществляемого на современной организационной и технологической базе.


Поделитесь работой в социальных сетях

Если эта работа Вам не подошла внизу страницы есть список похожих работ. Так же Вы можете воспользоваться кнопкой поиск


Введение

1. Методы мониторинга атмосферного воздуха

1.1. Общее понятие о мониторинге атмосферного воздуха

1.2. Задачи мониторинга атмосферного воздуха

1.3. Основные методы мониторинга воздуха

1.4. Критерии санитарно-гигиенической оценки состояния воздуха

2. Система государственного мониторинга состояния и загрязнения атмосферного воздуха в России

2.1. Организационная структура мониторинга загрязнений атмосферного воздуха

2.2. Проблемы системы государственного мониторинга состояния и загрязнения атмосферного воздуха

2.3. Пути дальнейшего развития системы государственного мониторинга состояния и загрязнения атмосферного воздуха

2.4. Нормативно-правовые документы регулирующие мониторинг атмосферного воздуха

Заключение

Использованная литература

Введение

Проблема загрязнения окружающей среды, в особенности воздушной оболочки Земли становится всё более актуальной с течением времени. Основа для решения данной проблемы лежит в развитие и совершенствование систем экологического мониторинга, осуществляемого на современной организационной и технологической базе. Основными направлениями методического обеспечения являются анализы пылевого загрязнения и наличия загрязняющих веществ в воздухе.

Целью данного реферата является выделение основных методов мониторинга атмосферного воздуха.

Выделяются следующие задачи:

Определить понятие мониторинга атмосферного воздуха;

Изучить методы мониторинга атмосферного воздуха;

Рассмотреть организацию системы мониторинга атмосферного воздуха.

1. Методы мониторинга атмосферного воздуха

1.1. Общее понятие о мониторинге атмосферного воздуха

Мониторинг атмосферного воздуха – система наблюдений за состоянием атмосферного воздуха , его загрязнением и за происходящими в немприродными явлениями , а также оценка и прогноз состояния атмосферного воздуха , его загрязнения (закон " Об охране атмосферного воздуха ".)

В целях наблюдения за загрязнением атмосферного воздуха, комплексной оценки и прогноза его состояния, а также обеспечения органов государственной власти, органов местного самоуправления, организаций и населения текущей и экстренной информацией о загрязнении атмосферного воздуха Правительство Российской Федерации, органы государственной власти субъектов Российской Федерации, органы местного самоуправления организуют государственный мониторинг атмосферного воздуха и в пределах своей компетенции обеспечивают его осуществление на соответствующих территориях Российской Федерации, субъектов Российской Федерации и муниципальных образований.

Государственный мониторинг атмосферного воздуха является составной частью государственного мониторинга окружающей среды и осуществляется федеральными органами исполнительной власти в области охраны окружающей среды, другими органами исполнительной власти в пределах своей компетенции в порядке, установленном уполномоченным Правительством Российской Федерации федеральным органом исполнительной власти.

Территориальные органы федерального органа исполнительной власти в области охраны окружающей среды совместно с территориальными органами федерального органа исполнительной власти в области гидрометеорологии и смежных с ней областях устанавливают и пересматривают перечень объектов, владельцы которых должны осуществлять мониторинг атмосферного воздуха.

1.2. Задачи мониторинга атмосферного воздуха

Система мониторинга решает следующие задачи, связанные с управлением качеством воздуха, в том числе:

  • контроль за соблюдением государственных и международных стандартов качества атмосферного воздуха;
  • получение объективных исходных данных для разработки природоохранных мероприятий, градостроительного планирования и планирования транспортных систем;
  • информирование общественности о качестве атмосферного воздуха и развертывание систем предупреждения о резком повышении уровня загрязнения;
  • проведение оценки воздействия на здоровье загрязнения воздуха;
  • оценка эффективности природоохранных мероприятий.

1.3. Основные методы мониторинга воздуха

Первые попытки изучения атмосферы были приняты М.В. Ломоносовым. Первая служба погоды появилась в России в 1872 г. Множеством экспериментов подтверждена связь между загрязнение атмосферы и метеорологическими параметрами.

Метеорология- наука о земной атмосфере, ее строении, свойствах и происходящих в ней процессах. Свойства атмосферы и происходящие в ней процессы рассматриваются в связи со свойствами и влиянием подстилающей поверхности (суши и моря). Главная задача метеорологии – прогнозирование погоды на различные сроки.

Метеорологические станция – основной компоненте регулярных наблюдений за состоянием атмосферы. Предназначена для:

  • Измерения температуры, давления и влажности воздуха;
  • Скорости и направления ветра;
  • Контроль облачности, уровня осадков, видимости, солнечной радиации.

Различают метеостанции наземные и дрейфующие, устанавливаемые на судах, на буях в открытом море.

Наземная подсистема получения данных насчитывает 65 центров по гидрометеорологии и мониторингу окружающей среды, 21 гидрометеорологический центр, 21 гидрометеорологическую обсерваторию, 16 гидрометбюро, 18 авиаметеорологических центров, 343 авиаметстанции, 22 центра мониторинга загрязнения окружающей среды, 1606 гидрометеорологических станций в Антарктиде, 17 ионосферно-магнитных и 30 озонометрических станций. На 1450 станций и постах проводятся радиометрические измерения. Загрязнение атмосферного воздуха определяется на 687 станциях в 299 городах.

Методы зондирования атмосферного воздуха

Ракетное зондирование применяется для зондирования верхних слоев атмосферы: слой от 15-20 до 80-120 км (стратосфера и мезосфера), в котором располагается большая часть озоносферы и нижней ионосферы и более высокие слои термосферы и экзосферы.

Для изучения средней атмосферы используются метеорологические ракеты, поднимающиеся до высот 80-100 км. Они могут быть жидкостно- и твердотопливными. Основными параметрами, измеряемыми с помощью метеорологических ракет, являются: давление, температура, плотность и газовый состав воздуха. В зависимости от программы исследований могут измеряться и другие характеристики.

Для изучения верхней атмосферы применяются мощные геофизические ракеты, поднимающиеся до высот более 100-150 км. Производятся измерения интенсивности солнечного и космического излучения, оптических свойств воздуха, его термодинамических и электрических свойств, параметров магнитного поля Земли. Наряду с ракетными зондированием, относящимся к прямым методам измерений, для изучения верхней атмосферы применяются и косвенные методы с использованием радиолокации, метеолидаров, СВЧ, оптической техники.

Система ракетного зондирования состоит из самой ракеты, оснащенной измерительными приборами и наземного измерительного комплекса, под которым понимается совокупность наземных радиотехнических средств, предназначенных для приема телеметрической информации о параметрах атмосферы и для измерения координат ракеты во время полета.

Доставка приборного контейнера на землю происходит с помощью парашюта.

Метод эхо- и радиолокации

Эхолокатор – зондирование атмосферы с помощью звуковых волн. Позволяет выявлять зоны крупномасштабных изменений плотности атмосферы.

Радиолокатор, РЛС – зондирование атмосферы радиоволнами с длинами от метрового до миллиметрового диапазона. Позволяет выявлять различные объекты естественного и искусственного происхождения, движущиеся в атмосфере, определять их расстояние и скорость (используя эффект Доплера).

Радиолокация осуществляется тремя способами:

1) облучение объекта и прием отраженного от него излучения;

2) облучение объекта и прием переизлученных (ретранслируемых) им волн;

3) прием радиоволн, излученных самим объектом.

Лидар – прибор для проведения лазерного зондирования атмосферы в оптическом диапазоне спектра. В обобщенном смысле лазер в лидаре используется как импульсный источник направленного светового излучения. В отличие от радиодиапазона, в световом диапазоне частот из-за малости длин волн особенно видимого и ультрафиолетового излучения отражателями локационного сигнала являются все молекулярные и аэрозольные составляющие атмосферы, т.е. по сути дела сама атмосфера формирует лидарный эхо-сигнал со всей трассы зондирования. Это позволяет осуществлять лазерное зондирование по любым направлениям в атмосфере.

Принцип лазерного зондирования атмосферы заключается в том, что лазерный луч при своем распространении рассеивается молекулами и неоднородностями воздуха, молекулами содержащихся в нем примесей, частицами аэрозолей, частично поглощается и изменяет свои физические параметры (частоту, форму импульса и т.д.). Появляется свечение (флюоресценция), что позволяет качественно и количественно судить о различных параметрах воздушной среды (давлении, температуре, влажности, концентрации газов).

Лазерное зондирование атмосферы осуществляется преимущественно в ультрафиолетовом, видимом и микроволновом диапазоне. Использование лидаров с большой частотой следования импульсов малой длительности позволяет изучать динамику быстро протекающих процессов в малых объемах и в значительных толщах атмосферы.

Метод оптической локации

Аналогичен методу эхо- и радиолокации.

Метод комбинационного рассеяния

При рассеянии света газовыми молекулами происходит сдвиг частоты рассеянного излучения. Комбинационный сдвиг частот имеет каждая молекула газа, который характерен только для нее. Среда, состоящая из газовых молекул, имеет только ей присущий комбинационный спектр. Его регистрация позволяет определить наличие примесей исследуемый среде путем анализа сдвига полос поглощения.

Из-за малого сечения комбинационного рассеяния этот метод применяется на небольших расстояниях – несколько десятков метров (например, для контроля вредных выбросов из домовых труб).

Метод резонансной флюоресценции

Основан на способности молекул флюоресцировать под воздействием излучения. Например, молекулы CO флюоресцируют при облучении излучением с =4,6 мкм, а молекулы NO 2 – при облучении аргоновым лазером с  =488 нм.

Сечение флюоресценции значительно выше сечения комбинационного рассеяния, поэтому данный метод более чувствителен.

Метод регистрации проходящего излучения

Метод основан на регистрации проходящего через среду излучения «на просвет», когда опорный лазерный генератор и приемник находятся по разные стороны от исследуемого объекта.

С применением отражателей генератор и приемник находятся рядом.

Метод имеет самую высокую чувствительность из всех, но может применяться только для измерения интегральной концентрации только вдоль траектории луча.

Дифференциальный метод

Сочетает в себе метод поглощения и обратного рассеяния.

Биоиндикационные методы

Биоиндикация – метод, который позволяет судить о состоянии окружающей среды по факту встречи, отсутствия, особенностям развития организмов – биоиндикаторов. Сильнейшее антропогенное воздействие на фитоценозы оказывают загрязняющие вещества в окружающем воздухе, такие, как диоксид серы, оксиды азота, углеводороды и др. Среди них наиболее типичным является диоксид серы, образующийся при сгорании серо содержащего топлива (работа предприятий теплоэнергетики, котельных, отопительных печей населения, а также транспорта, особенно дизельного).

Устойчивость растений к диоксиду серы различна. Даже незначительное наличие диоксида серы в воздухе хорошо диагностируется лишайниками – сначала исчезают кустистые, потом листоватые и, наконец, накипные формы. Из высших растений повышенную чувствительность к S02 имеют хвойные (кедр, ель, сосна). Устойчивы к загрязнению бересклет, бирючина, клен ясенелистный.

Для ряда растений установлены границы их жизнедеятельности и предельно допустимые концентрации диоксида серы в воздухе. Величины ПДК (мг/куб. м): для тимофеевки луговой, сирени обыкновенной - 0,2; барбариса - 0,5; овсяницы луговой, смородины золотистой - 1,0; клена ясенелистного - 2,0 .

Чувствительны к содержанию в воздухе других загрязнителей (например, хлороводорода, фтороводорода) такие растения, как пшеница, кукуруза, пихта, ель, земляника садовая, береза бородавчатая.

Стойкими к содержанию фтороводорода в воздухе являются хлопчатник, одуванчик, картофель, роза, табак, томаты, виноград, а к хлороводороду - крестоцветные, зонтичные, тыквенные, гераниевые, гвоздичные, вересковые, сложноцветные.

Методы контроля газового состава атмосферного воздуха

Отбор проб воздуха при анализе газо- и парообразных примесей осуществляется за счет протягивания воздуха через специальные твердые или жидкие поглотители, в которых газовая примесь конденсируется либо адсорбируется.

В последние годы в качестве сорбентов для концентрирования микропримесей используют растворимые неорганические хемосорбенты, пленочные полимерные сорбенты, позволяющие улавливать из загрязненного воздуха самые различные химические вещества. Важным достоинством полимерных сорбентов является их гидрофобность (влага воздуха не концентрируется в ловушки и не мешает анализу) и способность сохранять в течении длительного времени без изменения первоначальной состав пробы.

Контроль концентраций газо- и парообразных примесей атмосферного воздуха производится с помощью газоанализаторов, позволяющих осуществлять мгновенный и непрерывный контроль содержания в нем вредных примесей.

1.4. Критерии санитарно-гигиенической оценки состояния воздуха

Вещества, находящиеся в атмосферном воздухе, попадают в организм человека главным образом через органы дыхания. Вдыхаемый загрязненный воздух через трахею и бронхи попадает в альвеолы легких, откуда примеси поступают в кровь и лимфу.

В нашей стране проводятся работы по гигиенической регламентации (нормированию) допустимого уровня содержания примесей в атмосферном воздухе. Обоснованию гигиенических нормативов предшествуют многоплановые комплексные исследования на лабораторных животных, а в случае оценки ольфакторных реакций организма на действия загрязняющих веществ и на добровольцах. При таких исследованиях используются самые современные методы, разработанные в биологии и медицине.

В настоящее время определены предельно допустимые концентрации в атмосферном воздухе более чем 500 веществ.

Предельно допустимая концентрация (ПДК) - это максимальная концентрация примеси в атмосферном воздухе, отнесенная к определенному времени осреднения, которая при периодическом воздействии или на протяжении всей жизни человека не оказывает и не окажет на него вредного влияния (включая отдаленные последствия) и на окружающую среду в целом.

Гигиенические нормативы должны обеспечивать физиологический оптимум для жизни человека, и, в связи с этим, к качеству атмосферного воздуха у нас в стране предъявляются высокие требования. В связи с тем, что кратковременные воздействия не обнаруживаемых по запаху вредных веществ могут вызвать функциональные изменения в коре головного мозга и в зрительном анализаторе, были введены значения максимальных разовых предельно допустимых концентраций (ПДКмр.) С учетом вероятности длительного воздействия вредных веществ на организм человека были введены значения среднесуточных предельно допустимых концентраций (ПДКсс).

Таким образом, для каждого вещества установлено два норматива: Максимально разовая предельно допустимая концентрация (ПДКмр) (осредненная за 20-30 мин) с целью предупреждения рефлекторных реакций у человека и среднесуточная предельно допустимая концентрация (ПДКсс) с целью предупреждения общетоксического, мутагенного, канцерогенного и другого действия при неограниченно длительном дыхании.

Значения ПДКмр и ПДКсс для наиболее часто встречающихся в атмосферном воздухе примесей приведены в таблице 2.1. В правой крайней графе таблицы приведены классы опасности веществ: 1-чрезвычайноопасные, 2-высокоопасные, 3- умеренноопасные и 4 - малоопасные. Эти классы разработаны для условий непрерывного вдыхания веществ без изменения их концентрации во времени. В реальных условиях возможны значительные увеличения концентраций примесей, которые могут привести в короткий интервал времени к резкому ухудшению состояния человека.

Таблица 1.4

Предельно допустимые концентрации (ПДК) в атмосферном воздухе населенных мест

Вещество

ПДК, мг/м3

Класс опасности

Максимальная разовая

Средняя суточная

Азот диоксида

0,085

0,04

Диоксид серы

0,05

Оксид углерода

Пыль (взвешанные частицы)

0,15

Аммиак

0,04

Кислота серная

Фенол

0,01

0,003

Ртуть металлическая

0,0003

В местах, где расположены курорты, на территориях санаториев, домов отдыха и в зонах отдыха городов с населением более 200 тыс. человек. Концентрации примесей, загрязняющих атмосферный воздух, не должны превышать 0,8 ПДК.

Может создаться ситуация, когда в воздухе одновременно находятся вещества, обладающие суммированным (аддитивным) действием. В таком случае сумма их концентраций (С), нормированная на ПДК, не должна превышать единицы согласно следующему выражению:

К вредным веществам, обладающим суммацией действия, относятся, как правило, близкие по химическому строению и характеру влияния на организм человека, например:

  • диоксид серы и аэрозоль серной кислоты;
  • диоксид серы и сероводород;
  • диоксид серы и диоксид азота;
  • диоксид серы и фенол;
  • диоксид серы и фтористый водород;
  • диоксид и триоксид серы, аммиак, оксиды азота;
  • диоксид серы, оксид углерода, фенол и пыль конверторного производства.

Вместе с тем многие вещества при одновременном присутствии в атмосферном воздухе не обладают суммацией действия, т.е. предельно допустимые значения концентраций сохраняются для каждого вещества в отдельности, например:

  • оксид углерода и диоксид серы;
  • оксид углерода, диоксид азота и диоксид серы;
  • сероводород и сероуглерод.

В том случае, когда отсутствуют значения ПДК, для оценки гигиенической опасности вещества можно пользоваться показателем ориентировочно- безопасного максимального разового уровня загрязнения воздуха (ОБУВ).

Разработаны также значения предельно допустимых концентраций веществ в воздухе рабочей зоны (ПДКрз).

Значение ПДКрз должно быть таким, чтобы не вызывать у рабочих при ежедневном вдыхании в течение 8 часов заболеваний или не приводить к ухудшению состояния здоровья в отдаленные сроки. Рабочей зоной считается пространство до 2 м высотой, где размещается место постоянного или временного пребывания работающих. Так ПДКрз диоксида серы составляет 10, диоксида азота - 5, а ртути - 0,01 мг/м3, что значительно выше, чем ПДКмр и ПДКсс соответствующих веществ (см. табл. 1.4).

2. Система государственного мониторинга состояния и загрязнения атмосферного воздуха в России

2.1. Организационная структура мониторинга загрязнений атмосферного воздуха

Государственный мониторинг атмосферного воздуха – это:

1) составная часть государственного мониторинга окружающей среды;

2) вид мониторинга атмосферного воздуха;

3) система наблюдений за состоянием атмосферного воздуха, его загрязнением и за происходящими в нем природными явлениями, а также оценка и прогноз состояния атмосферного воздуха, его загрязнения, осуществляемых федеральными органами исполнительной власти в области охраны окружающей среды, другими органами исполнительной власти в пределах своей компетенции в порядке, установленном Правительством РФ.

Государственный контроль за охраной атмосферного воздуха должен обеспечить соблюдение:

  • условий, установленных разрешениями на выбросы вредных (загрязняющих) веществ в атмосферный воздух и на вредные физические воздействия на него;
  • стандартов, нормативов, правил и иных требований охраны атмосферного воздуха, в том числе проведения производственного контроля за охраной атмосферного воздуха;
  • режима санитарно-защитных зон объектов, имеющих стационарные источники выбросов вредных (загрязняющих) веществ в атмосферный воздух;
  • выполнения федеральных целевых программ охраны атмосферного воздуха, программ субъектов Российской Федерации охраны атмосферного воздуха и выполнения мероприятий по его охране;
  • иных требований законодательства Российской Федерации в области охраны атмосферного воздуха.

Государственный контроль за охраной атмосферного воздуха осуществляют федеральный орган исполнительной власти в области охраны окружающей среды и его территориальные органы в порядке, определенном Правительством Российской Федерации.

Органы исполнительной власти субъектов Российской Федерации организуют и проводят государственный контроль (государственный экологический контроль) за охраной атмосферного воздуха, за исключением контроля на объектах хозяйственной и иной деятельности, подлежащих федеральному государственному экологическому контролю.

Сеть мониторинга качества атмосферного воздуха создана и осуществляется в системе организаций Росгидромета. Она включает 260 городов России. Регулярные наблюдения за качеством атмосферного воздуха проводятся на 710 станциях. Контрольно-наблюдательная сеть других ведомств включает еще 50 станций. В составе Государственной службы наблюдения за состоянием атмосферного воздуха действуют также специализированные подсистемы мониторинга, в частности станции в биосферных заповедниках, в том числе за трансграничным переносом загрязняющих воздух веществ.

Рис. 2.1. Организационно-структурная схема мониторинга загрязнения атмосферного воздуха

Особую роль выполняют контрольные замеры, осуществляемые в рамках совместной программы наблюдений и оценки распространения загрязнителей воздуха на большие расстояния в Европе. По особой программе (Программа ЕМЕП) работают страны, подписавшие «Конвенцию о трансграничном загрязнении воздуха на большие расстояния».

Некоторые наблюдательные станции, действующие в составе подсистем мониторинга, включены в состав международных систем наблюдения, например станции мониторинга фонового загрязнения атмосферы.

На «фоновых» станциях в биосферных заповедниках обязательным является определение следующих химических веществ в воздухе: взвешенные частицы (аэрозоли), диоксид серы, озон, оксиды углерода, оксиды азота, углеводороды, бензапирен, хлорорганические соединения (ДДТ и др.), тяжелые металлы (свинец, ртуть, кадмий, мышьяк), фреоны. В атмосферных осадках дополнительно определяют биогенные элементы (азот, фосфор), радионуклеиды.

Мониторинг важнейших компонентов атмосферы осуществляется, кроме того, в составе глобальных международных наблюдательных сетей. Состав наблюдаемых компонентов и количество пунктов наблюдения следующие: определение озона (130 наземных станция, искусственный спутник земли «Метеор» с озонометрической аппаратурой), определение оптической плотности аэрозоли (10 станций), оценка атмосферно-электрических характеристик (3 станции).

Создана соответствующая подсистема мониторинга для оценки своевременного состояния и прогноза содержания парниковых газов в атмосфере (СО2, СН4, хлорфторуглеводородов).

Основные применения исследований загрязнения атмосферы

  • Обоснование государственных решений в области охраны окружающей среды и экологической безопасности;
  • Оценка риска здоровью населения и нагрузки на окружающую среду;
  • Выбор и оптимизация атмосфероохранных решений и технологий в отраслях экономики, городском хозяйстве и пр.;
  • Нормирование выбросов вредных веществ в атмосферу;
  • Обоснование размеров санитарно-защитных зон;
  • Проектирование и реконструкция объектов различного назначения;
  • Расчетный и гибридный мониторинг загрязнения атмосферы, усвоение и интерпретация данных инструментального мониторинга. С целью нормирования выбросов в расчетах концентраций данные инструментального мониторинга учитываются через фоновые концентрации Сф.;
  • Прогноз и регулирование загрязнения атмосферы;
  • Оценка последствий потенциальных и сопровождение реальных аварий и пр.;
  • Оценка влияния возможных изменений климата на загрязнение воздушного бассейна городов и промышленных районов;
  • Международные проекты;
  • Военные приложения.

2.2. Проблемы системы государственного мониторинга состояния и загрязнения атмосферного воздуха

1.Плотность существующей сети недостаточна:

Численность населения в городах, где уровень загрязнения не оценивается из-за отсутствия наблюдений или их недостаточного количества, составляет 35% от численности городского населения РФ;

Современное состояние сети и объемы финансирования позволяют обеспечивать фактическое выполнение объёмов работ по мониторингу загрязнения атмосферы городов на 41% по отношению к нормативному.

2. Техническое оборудование станций к настоящему времени в значительной степени морально устарело и, как правило, выработало свой ресурс, отмечаются пропуски в наблюдениях из-за частых сбоев в подаче электроэнергии на ПНЗ.

3.Существующая система мониторинга с ручным отбором проб не отвечает современным требованиям по передаче оперативной информации о загрязнении атмосферы в прогностические центры с целью ее усвоения и обеспечивает измерения только малой доли тех вредных примесей, которые надо прогнозировать.

4. Недостаточное обеспечение аналитических лабораторий современными средствами измерений.

2.3. Пути дальнейшего развития системы государственного мониторинга состояния и загрязнения атмосферного воздуха

1. Коренная модернизация приборно-технического оснащения наблюдательной сети и лабораторного оборудования

2. Повсеместный переход от сокращенной к полной программе отбора и анализа проб воздуха;

3. Организация подсистемы мониторинга концентраций мелкодисперсной пыли, фракции РМ10 и РМ2,5;

4. Охват системой наблюдений за загрязнением атмосферного воздуха городов с численностью населения свыше 100 тыс.человек;

5. Разработка новых, имеющих местное значение, и пересмотр существующих методик определения концентраций примесей с активным и пассивным пробоотбором. Особенно перспективными представляются методики с использованием многокомпонентных методов анализа, в частности хроматографические;

6. Совершенствование системы обеспечения качества данных сети мониторинга в целях повышения достоверности результатов измерений концентраций примесей;

7. Обновление нормативно-методической базы инструментального и расчетного мониторинга, прогнозирования загрязнения атмосферы, включая вопросы обработки и представления данных, координации ведомственных, территориальных и локальных систем наблюдений с учетом рекомендаций ВОЗ и зарубежного опыта;

8. Дальнейшее совершенствование углубленного анализа результатов наблюдений с целью более полной оценки изменений уровня загрязнения воздуха;

9. Разработка новых программных средств обработки и анализа данных наблюдений с целью полной автоматизации обобщения и создания информационных документов и ресурсов. Внедрение современных технических средств и технологий в региональных центрах мониторинга;

10. Обеспечение исходными данными для расчетов загрязнения атмосферы;

11. Развитие сети станций ГСА, фонового мониторинга как реперных точек для восстановления характеристик загрязнения атмосферы по территории России.

Основные направления развития наблюдательной сети в соответствии со Стратегией деятельности в области гидрометеорологии и смежных с ней областях на период до 2030 года (с учетом аспектов изменения климата), утвержденной распоряжением Правительства РФ от 3 сентября 2010 г. № 1458-р:

Проведение регулярных наблюдений за загрязнением атмосферного воздуха и их оптимизация путем увеличения частоты наблюдений,

Организации наблюдений в 43 городах с населением свыше 100 тыс. жителей,

Расширения до международных требований перечня определяемых веществ (РМ10, РМ2,5),

Поэтапное внедрение автоматизированных систем непрерывного измерения содержания основных загрязняющих веществ в атмосферном воздухе населенных пунктов.

2.4. Нормативно-правовые документы регулирующие мониторинг атмосферного воздуха

Правовая охрана атмосферы - реализация конституционных прав населения и норм в экологической сфере привела к существенному расширению базы законодательного регулирования в области охраны атмосферного воздуха. Основными законодательными и иными нормативными правовыми актами служат следующие:

* Воздушный кодекс Российской Федерации (19 марта 1997 г.) В нем особые требования предъявляются к состоянию полетной техники, регулированию работы двигателей для снижения загрязнения атмосферы.

* Федеральный закон от 04.05.1999 N 96-ФЗ (ред. от 23.07.2013) «Об охране атмосферного воздуха». Закон устанавливает правовые основы охраны атмосферного воздуха и направлен на реализацию конституционных прав граждан на благоприятную окружающую среду и достоверную информацию о ее состоянии.

* Федеральный Закон «Об уничтожении химического оружия» (2 мая 1997 г.) Устанавливает правовые основы проведения комплекса работ по обеспечению защиты окружающей среды.

* Уголовный кодекс (январь 1997г.) Имеет ряд статей, касающихся охраны атмосферного воздуха содержит определение «Экологические преступления».

* В Госкомэкологии России рассмотрено и утверждено несколько нормативно-правовых документов, касающихся охраны атмосферы, в частности по методике расчета выбросов в атмосферу загрязняющих веществ.

* ГОСТ (1986 г.) «Охрана природы. Атмосфера. Нормы и методы определения выбросов вредных веществ с отработавшими газами дизелей, тракторов и самоходных сельскохозяйственных машин».

Федеральное законодательство и постановления Правительства РФ общего применения

01-01

"Конституция Российской Федерации" (ред. от 30.12.2008) (принята всенародным голосованием 12.12.1993) - /ст. 42, 58/

01-02

"Уголовный кодекс Российской Федерации" от 13.06.1996 № 63-ФЗ (принят ГД ФС РФ 24.05.1996) (ред. от 07.03.2011) /Гл. 26, ст. 358/

01-03

Федеральный конституционный закон от 17.12.1997 № 2-ФКЗ (ред. от 28.12.2010) "О Правительстве Российской Федерации" (одобрен СФ ФС РФ 14.05.1997) - /ст. 18/

01-04

Федеральный закон от 04.05.1999 № 96-ФЗ (ред. от 27.12.2009) "Об охране атмосферного воздуха" (принят ГД ФС РФ 02.04.1999)

01-05

Федеральный закон от 26.12.2008 № 294-ФЗ (ред. от 28.12.2010, с изм. от 07.02.2011) "О защите прав юридических лиц и индивидуальных предпринимателей при осуществлении государственного контроля (надзора) и муниципального контроля" (принят ГД ФС РФ 19.12.2008)

01-06

"Кодекс Российской Федерации об административных правонарушениях" от 30.12.2001 № 195-ФЗ (принят ГД ФС РФ 20.12.2001) (ред. от 07.02.2011) (с изм. и доп., вступающими в силу с 27.01.2011) - /глава 8/

01-07

Федеральный закон от 10.01.2002 № 7-ФЗ (ред. от 29.12.2010) "Об охране окружающей среды" (принят ГД ФС РФ 20.12.2001)

01-08

Федеральный закон от 27.12.2002 № 184-ФЗ (ред. от 28.09.2010) "О техническом регулировании" (принят ГД ФС РФ 15.12.2002)

01-09

Федеральный закон от 26.06.2008 № 102-ФЗ "Об обеспечении единства измерений" (принят ГД ФС РФ 11.06.2008)

01-10

Федеральный закон от 23.11.2009 № 261-ФЗ (ред. от 27.07.2010) "Об энергосбережении и о повышении энергетической эффективности и о внесении изменений в отдельные законодательные акты Российской Федерации" (принят ГД ФС РФ 11.11.2009)

01-11

Указ Президента РФ от 01.04.1996 № 440 "О Концепции перехода Российской Федерации к устойчивому развитию"

01-12

Распоряжение Президента РФ от 17.12.2009 № 861-рп "О Климатической доктрине Российской Федерации"

01-13

Постановление Правительства РФ от 02.03.2000 № 182 (ред. от 15.02.2011) "О порядке установления и пересмотра экологических и гигиенических нормативов качества атмосферного воздуха, предельно допустимых уровней физических воздействий на атмосферный воздух и государственной регистрации вредных (загрязняющих) веществ и потенциально опасных веществ"

01-14

Постановление Правительства РФ от 02.03.2000 № 183 (ред. от 15.02.2011) "О нормативах выбросов вредных (загрязняющих) веществ в атмосферный воздух и вредных физических воздействий на него"

01-15

Постановление Правительства РФ от 28.11.2002 № 847 (ред. от 22.04.2009) "О порядке ограничения, приостановления или прекращения выбросов вредных (загрязняющих) веществ в атмосферный воздух и вредных физических воздействий на атмосферный воздух"

01-16

Постановление Правительства РФ от 29.05.2008 № 404 (ред. от 28.01.2011) "О Министерстве природных ресурсов и экологии Российской Федерации"

01-17

Постановление Правительства РФ от 30.07.2004 № 400 (ред. от 12.11.2010) "Об утверждении Положения о Федеральной службе по надзору в сфере природопользования и внесении изменений в Постановление Правительства Российской Федерации от 22 июля 2004 г. № 370"

01-18

Постановление Правительства РФ от 30.07.2004 № 401 (ред. от 28.01.2011) "О Федеральной службе по экологическому, технологическому и атомному надзору"

01-19

Постановление Правительства РФ от 23.07.2004 № 372 (ред. от 28.01.2011) "О Федеральной службе по гидрометеорологии и мониторингу окружающей среды"

01-20

Постановление Правительства РФ от 02.07.2007 № 421 (ред. от 15.02.2011) "О разграничении полномочий федеральных органов исполнительной власти, участвующих в выполнении международных обязательств Российской Федерации в области химического разоружения" - /п. 16, 19/

01-21

Постановление Правительства РФ от 31.03.2009 № 285 "О перечне объектов, подлежащих федеральному государственному экологическому контролю"

01-22

Постановление Правительства РФ от 15.04.2009 № 322 (ред. от 04.03.2011) "О мерах по реализации Указа Президента Российской Федерации от 28 июня 2007 г. № 825 "Об оценке эффективности деятельности органов исполнительной власти субъектов Российской Федерации" (вместе с "Методикой оценки эффективности деятельности органов исполнительной власти субъектов Российской Федерации")

01-23

Распоряжение Правительства РФ от 07.05.2001 № 641-р "О порядке выдачи сертификатов в сфере охраны атмосферного воздуха"

01-24

Распоряжение Правительства РФ от 31.08.2002 № 1225-р "Об Экологической доктрине Российской Федерации"

01-25

Распоряжение Правительства РФ от 28.01.2008 № 74-р "О Концепции федеральной целевой программы "Национальная система химической и биологической безопасности Российской Федерации (2009 - 2013 годы)"

01-26

Распоряжение Правительства РФ от 17.11.2008 № 1662-р (ред. от 08.08.2009) "О Концепции долгосрочного социально-экономического развития Российской Федерации на период до 2020 года" (вместе с "Концепцией долгосрочного социально-экономического развития Российской Федерации на период до 2020 года")

01-27

Распоряжение Правительства РФ от 17.11.2008 № 1663-р (ред. от 14.12.2009) "Об утверждении основных направлений деятельности Правительства РФ на период до 2012 года и перечня проектов по их реализации"

01-28

Распоряжение Правительства РФ от 18.08.2009 № 1166-р "О комплексе мер по охране окружающей среды в части обеспечения экологической и радиационной безопасности в Российской Федерации"

01-29

Распоряжение Правительства РФ от 13.11.2009 № 1715-р "Об Энергетической стратегии России на период до 2030 года"

01-30

Распоряжение Правительства РФ от 31.05.2010 № 869-р "Об утверждении комплекса мер поэтапного приведения наиболее загрязненных территорий населенных пунктов в соответствие с требованиями в области охраны окружающей среды, санитарно-гигиеническими нормами и требованиями, обеспечивающими комфортные и безопасные условия проживания человека"

01-31

Распоряжение Правительства РФ от 03.09.2010 № 1458-р "Об утверждении Стратегии деятельности в области гидрометеорологии и смежных с ней областях на период до 2030 года (с учетом аспектов изменения климата)"

01-32

Приказ МПР РФ от 09.08.2007 № 205 (ред. от 25.12.2009) "Об утверждении Регламента Министерства природных ресурсов и экологии Российской Федерации" (Зарегистрировано в Минюсте РФ 17.09.2007 № 10144)

01-33

Приказ Минпромторга РФ от 18.03.2009 № 150 "Об утверждении Стратегии развития металлургической промышленности России на период до 2020 года"

Примечание : Кроме того, тематике данного раздела соответствуют следующие документы: в разделе 4 - №№ 04-01, 04-03, 04-06, 04-13, 04-16; в разделе 6 - №№ 06-01, 06-02; в разделе 8 - №№ 08-01, 08-09; в разделе 9 - №№ 09-01, 09-02, 09-04.

Заключение

Развитие государственной наблюдательной сети должно осуществляться в увязке с государственными программами социально-экономического развития федеральных округов и субъектов РФ с учетом информации, получаемой территориальными системами наблюдений субъектов Российской Федерации и локальными системами наблюдений.

Использованная литература

  1. Федеральный закон от 04.05.1999 N 96-ФЗ (ред. от 23.07.2013) "Об охране атмосферного воздуха" http://www.consultant.ru/document/cons_doc_LAW_150000/
    Горелин Д.О., Конопелько Л. А. Мониторинг загрязнения атмосферы и источников выбросов. – М.: Изд-во стандартов, 1992. 432 с.
  2. Пешков Ю.В. Система государственного мониторинга состояния и загрязнения атмосферного воздуха, Санкт-Петербург, 2013 г.
  3. Экологический мониторинг. Методы и средства. Учебное пособие. А.К. Муртазов; Рязанский государственный университет имени С.А. Есенина. – Рязань, 2008. – 146 с.
  4. Экологическое право России: словарь юридических терминов. — М.: Городец. А. К. Голиченков. 2008.
  5. Экологический мониторинг атмосферного воздуха Мазулина О.В., Полонский Я.В. Волгоград, 2012 г.

http://sibac.info/index.php/2009-07-01-10-21-16/3003-2012-05-31-06-09-14.

Другие похожие работы, которые могут вас заинтересовать.вшм>

18311. Уровень загрязнения атмосферного воздуха в Костанайской области 173.29 KB
Для этого контролируется воздействие природопользовательской деятельности а также её влияние на окружающую среду: с учетом экологической политики и целевых экологических показателей. Для того чтобы раскрыть задачи экологической политики специалистов Костанайской области необходимо изучить основные понятия и термины экологии. Загрязнением называют поступление в окружающую природную среду любых твердых жидких и газообразных веществ микроорганизмов или энергий в виде звуков шумов излучений в количествах вредных...
21050. Мониторинг загрязнения атмосферного воздуха в границах санитарно-защитный зоны ОАО АК ОЗНА 388.23 KB
Источник выделения загрязняющих атмосферу веществ – технологическое оборудование (установки, агрегаты, гальванические ванны, испытательные стенды и др.) или технологические процессы (перемещение сыпучих материалов, переливы летучих веществ, сварочные,
20982. ЗНАЧЕНИЕ САНИТАРНО-ГИГИЕНИЧЕСКОГО ИССЛЕДОВАНИЯ АТМОСФЕРНОГО ВОЗДУХА В ПРОФИЛАКТИКЕ РАЗЛИЧНЫХ ЗАБОЛЕВАНИЙ 63.35 KB
По химическому составу чистый атмосферный воздух представляет собой смесь газов: кислорода, углекислого газа, азота, целого ряда инертных газов. С высотой, в результате уменьшения плотности атмосферы, снижается концентрация и парциальное давление всех газов в воздухе.
18939. Оценка воздействия выбросов Сибайской обогатительной фабрики на качество атмосферного воздуха на границе СЗЗ и за ее пределами 12.58 MB
Изучение природных и природно-техногенных условий территории расположения Сибайской обогатительной фабрики; изучение технологических процессов Сибайской обогатительной фабрики; анализ размера нормативной и расчетной санитарно-защитной зоны Сибайской обогатительной фабрики...
15259. Методы, применяемые в анализе синтетических аналогов папаверина и многокомпонентных лекарственных форм на их основе 3.1. Хроматографические методы 3.2. Электрохимические методы 3.3. Фотометрические методы Заключение Список л 233.66 KB
Дротаверина гидрохлорид. Дротаверина гидрохлорид является синтетическим аналогом папаверина гидрохлорида а с точки зрения химического строения является производным бензилизохинолина. Дротаверина гидрохлорид принадлежит к группе лекарственных средств обладающих спазмолитической активностью спазмолитик миотропного действия и является основным действующим веществом препарата но-шпа. Дротаверина гидрохлорид Фармакопейная статья на дротаверина гидрохлорид представлена в Фармакопее издания.
15923. Основные методы синтеза пиразалодиазепинов 263.39 KB
Новые методы синтеза производных пиразолодиазепинов. Разработка новых стратегий синтеза представляет значительный интерес. Систематические и обобщающие исследования синтеза производных пиразолодиазепинов не проводились некоторые вопросы остаются незатронутыми спорными или до конца неразрешёнными.
20199. Основные методы защиты информации 96.33 KB
Юридические основы информационной безопасности. Основные методы защиты информации. Обеспечение достоверности и сохранности информации в автоматизированных системах. Обеспечение конфиденциальности информации. Контроль защиты информации.
17678. Основные характеристики и методы измерений 39.86 KB
Под измерением понимается процесс физического сравнения данной величины с некоторым её значением принятым за единицу измерения. Измерение – познавательный процесс заключающийся в сравнении опытным путём измеряемой величины с некоторым значением принятым за единицу измерения. параметры реальных объектов; измерение требует проведения опытов; для проведения опытов требуются особые технические средства- средства измерений; 4 результатом измерения является значение физической величины.
5461. Основные методы построения и преобразования схем САУ 2.18 MB
В настоящее время автоматические системы широко применяются во всех областях деятельности человека в промышленности на транспорте в устройствах связи при научных исследованиях и др. Исследование режимов системы автоматического управления. Определение передаточной функции замкнутой системы В качестве исследуемой системы нам была предложена система...
19868. Основные методы прогнозирования и их использование в организации 16.48 MB
Фктичeски хoть ккoй рзряд пoзнния рссмтривлся кк бз для вeрнoгo oсмысливния будущeгo. Кзхстн-2050 сoствлeн в oснoвe прoгнoзы н будущee и являeтся в oпрeдeлeннoй стeпeни oтвeтoм кзхстнскoгo рукoвoдств н соврeмeнныe вызoвы врeмeни стртeгия нe тoлькo oпрeдeляeт приoритeты для рзвития смoгo гoсудрств нo и сoпoствляeт и грмoнизируeт пoствлeнныe стрнoй здчи с oбщими мирoвыми тeндeнциями . В упрвлeнии oргнизции прoгнoзы нужны для принятия рeшeний дeквтных прeдстoящим пeрeмeнм вo мнoгoм прeдoпрeдeляя стртeгичeскиe кндидтуры. В нстoящee...

Методы контроля за состоянием загрязнения атмосферы

Для анализа примесей, содержащихся в атмосфере, применяют приборы, называемые газоанализаторами. Газоанализаторы позволяют получать непрерывные по времени характеристики загрязнения воздуха и выявлять максимальные концентрации примесей, которые могут быть не зафиксированы при методическом отборе проб воздуха по нескольку раз в сутки.

Газоанализаторы различают по типам определяемых примесей (CО 2 ,NО 2), принципам действия, диапазону измеряемых концентрации. В этих приборах примеси, содержащиеся в воздухе, взаимодействуют со специальными реагентами. Концентрацию примесей определяют по характеру или показателям интенсивности реакции.

Региональные инструментальные методы анализа основаны на автоматизированной системе контроля за загрязнением воздуха в промышленном регионе или на нескольких предприятиях. Такая автоматизированная система контроля позволяет получать по каналам связи (телефонным линиям) непрерывную информацию о концентрации примесей. Информация поступает от автоматических газоанализаторов, установленных в различных местах региона или вокруг крупных промышленных объектов, а иногда на конкретных технологических установках.

Информация, полученная по каналам автоматической телефонной сети, в центре сбора выводится на индикационное табло, а затем обрабатывается по специальной программе. Если в отдельных пунктах отмечается повышение концентраций примесей, то по данным о метеорологических параметрах (в частности о силе ветра) можно судить, чем это вызвано, и от какого источника поступают примеси и передать указания о необходимости сокращения выбросов данному источнику.

Особое значение такие системы имеют для территориально-производственных комплексов, включающих многие предприятия различных типов, связанных единым технологическим циклом, сырьевыми, энергетическими и другими транспортными потоками.

Глобальный мониторинг осуществляется в основном зондированием атмосферы. Для этого используют оптическую ирадиолокационную аппаратуру, которая позволяет определить на разных высотах атмосферы такие загрязнения, как СО, CО 2 , СН 4 , NО 3 .

В настоящее время во всём мире повышенное внимание уделяется использованию и разработке лазеров для дистанционного анализа загрязнений атмосферы. Автоматизированные приборы на основе лазеров, выпускаемые серийно, получают всебольшее распространение.

Приборы, представляющие собой сочетание лазера и локатора, называются лидарами.С их помощью изучают пространственное распределение примесей в воздухе. Лазерные аэрозольные спектрометры предназначены дляисследования в автоматизированном режиме содержания аэрозолей в воздухе (как в городах, так и за их пределами).

Лазерные устройства дифференциального сканирования успешно используются для измерения на уровне десяти тысячных долей процента SО 2 в движущихся за ветром потоках (хвостах) из труб промышленных предприятий и электростанций.

Все перечисленные системы и методы мониторинга окружающей среды служат для накопления и анализа информации о состоянии природной среды. Данные, полученные этими методами, используются для моделирования процессов в окружающей среде, составления научных прогнозов. На основе научных прогнозов вырабатываются практические рекомендации по совершенствованию охраны природы.

Контрольные вопросы:

1. Как проявляется влияние антропогенного фактора на экологическое состояние окружающей природной среды?

Большое значение имеет лабораторный контроль за состоянием атмосферного воздуха населенных мест. Санитарно-эпидемиологические станции Министерства здравоохранения СССР на стационарных точках определяют диффузное загрязнение атмосферного воздуха, ведут наблюдение на территории промышленных предприятий и вокруг них, изучают зональное распространение выбросов, осваивают и внедряют в практику новые методы определения различных, ингредиентов. Сотрудники станций обобщают результаты лабораторного исследования атмосферы для использования их в практической работе, издают совместно с местными органами Госкомгидромета ежемесячные бюллетени о состоянии воздушной среды городов.

Государственному комитету СССР по гидрометеорологии и контролю природной среды (Госкомгидромет) и его органам на местах предоставлено право проверять соблюдение норм и правил по охране атмосферного воздуха предприятиями, учреждениями, организациями, стройками и другими объектами независимо от их ведомственной подчиненности, а также при нарушении вносить предложения остановить действующие производственные объекты. В наиболее крупных городах наблюдения за загрязнением воздуха ведутся одновременно в нескольких пунктах. Сеть контроля загрязнения воздуха имеет более тысячи стационарных и 500 маршрутных постов систематических наблюдений, а также подфакельные наблюдения, пункты которых выбираются в зависимости от направления ветра и других факторов. Она решает и оперативные и прогностические задачи оценки загрязнения воздушного бассейна вредными веществами.

Программы включают ежесуточный трехразовый отбор проб на основные загрязняющие вещества: пыль, двуокись серы, двуокись азота, окись углерода, а также специфические--характерные для промышленных предприятий данного города.

Дальнейшее развитие получило и прогнозирование высоких уровней загрязнения атмосферного воздуха. Прогнозы составляются по 122 городам. В соответствии с ними более чем на тысяче крупных предприятий принимаются оперативные меры по уменьшению вредных выбросов. Новая обязанность Госкомгидромета-- выявлять такие источники и вести надзор за соблюдением норм допустимых выбросов.

Должностным лицам комитета разрешено посещать и контролировать промышленные предприятия, а также налагать соответствующие санкции.

Мукачевский завод комплектных лабораторий выпускает контрольно - измерительный комплекс для исследования загрязнения атмосферы «Пост-1». Это -- стационарная лаборатория. Ее услугами пользуются гидрометеослужба, санитарно-эпидемиологические станции, промышленные предприятия. Она эффективно работает во многих городах страны. Комплекс оснащен автоматическими анализаторами для непрерывной регистрации загрязнения воздуха, имеет оборудование для отбора проб воздуха, которые анализируются в лаборатории. Кроме того, он выполняет и чисто метеорологические функции: измеряет скорость и направление ветра, температуру и влажность воздуха, атмосферное давление.

В 1982 г. завод освоил производство станции «Воздух-1». Назначение станции то же, но проб она отбирает почти в 8 раз больше. Стало быть, повышается и объективность общей оценки состояния воздушного бассейна в радиусе действия станции. Автоматическая станция атмосферы берет на себя функции наблюдательного пункта автоматизированной системы наблюдений и контроля за состоянием атмосферы (АНКОС-А). Именно за такими системами будущее. В Москве действует первая очередь экспериментальной системы АНКОС-А. Кроме метеорологических параметров (направление и скорость ветра) они измеряют содержание в воздухе окиси углерода и двуокиси серы. Создана новая модификация станции «АНКОС-А», которая определяет (кроме вышеупомянутых параметров) и содержание суммы углеводородов, озона и окислов азота.

Информация от автоматических датчиков тут же поступит в диспетчерский центр, и ЭВМ в считанные секунды обработает сообщения с мест. Они будут использоваться для составления своеобразной карты состояния городского воздушного бассейна.

И еще одно преимущество автоматизированной системы: она не просто будет осуществлять контроль, но и даст возможность научно прогнозировать состояние атмосферы в определенных районах города. А значение своевременного и точного прогноза велико. До сих пор фиксировали загрязнения, помогая тем самым устранять их. Прогноз позволит улучшить профилактическую работу, избежать загрязнений атмосферы. Следить за чистотой воздуха--дело очень трудное. И прежде всего потому, что необходимы дистанционные методы исследования.

Первые попытки использовать световой луч для изучения атмосферы относятся к началу XX столетия, когда с этой целью был применен мощный прожектор. С помощью прожекторного зондирования в дальнейшем были получены интересные сведения о строении земной атмосферы. Однако только появление принципиально новых источников света--лазеров--позволило использовать известные явления взаимодействия оптических волн с воздушной средой для исследования ее свойств.

Что это за явления? Прежде всего к ним относится аэрозольное рассеяние. Распространяясь в земной атмосфере, лазерный луч интенсивно рассеивается аэрозолями--твердыми частицами, каплями и кристаллами облаков или туманов. Одновременно лазерный луч рассеивается и за счет колебаний плотности воздуха. Такой вид рассеяния называют молекулярным или релеевским-- в честь английского физика Джона Релея, установившего законы рассеяния света.

В спектре рассеяния света, кроме линий, характеризующих падающий свет, наблюдаются дополнительные, сопровождающие каждую из линий падающего излучения. Различие в -частотах первичной и дополнительных линий характерно для каждого рассеивающего свет газа. Например, послав в атмосферу зеленый луч лазера, сведения об азоте можно получить, определив свойства возникающего красного излучения.

Остановимся на принципиальном устройстве лазерного локатора--лидара--прибора, использующего лазер для зондирования атмосферы.

Лидар по своему устройству напоминает радиолокатор, радар. Антенна радара принимает радиоизлучение, отраженное, например, от летящего самолета. А антенна лидара может принять световое лазерное излучение, отраженное не только от самолета, но и от инверсионного следа, возникающего за самолетом. Только антенна лидара представляет собой светоприемник--зеркало, телескоп либо объектив фотоаппарата, в фокусе которых расположен фотоприемник светового излучения.

Импульс лазера излучен в атмосферу. Длительность лазерного импульса ничтожна (в лидарах часто применяют лазеры с длительностью импульса, равной 30-миллиардным долям секунды). Это означает; что пространственная протяженность такого импульса составляет 4,5 м. Лазерный луч, в отличие от лучей других световых источников, по мере распространения в атмосфере расширяется незначительно. Поэтому светящийся зонд--импульс лазера в каждый момент времени--информирует о всем, что встретилось на его пути. Информация поступает практически мгновенно на антенну лидара--скорость лазерного зонда равна скорости света. Например, с момента лазерной вспышки до регистрации сигнала, вернувшегося с высоты 100 км, пройдет меньше тысячной доли секунды.

Представим, что на пути лазерного луча находится облако. За счет повышенной концентрации частиц в облаке число световых фотонов, рассеянных назад к лидару, увеличится. При работе с электроннолучевым устройством оператор будет наблюдать характерный импульс, аналогичный импульсу от цели при радиолокационном обзоре. Однако облако представляет собой диффузную цель с распределенными в пространстве каплями воды или кристаллами льда. Расстояние до первого сигнала определяет величины нижней границы облачности, последующие сигналы свидетельствуют о толщине облака и его структуре. Основываясь на известных закономерностях, по сигналу рассеяния лазерного излучения можно определить распространение водности, получить сведения о кристаллах в облаке.

В дальнейшем лидарная техника интенсивно развивалась. Современные лидары позволяют обнаруживать скопление частиц на высоте 100 км и более, следить за временной изменчивостью аэрозольных слоев.

Одним из самых перспективных применений лидаров является определение загрязнения воздушного бассейна городов. Лидары позволяют определять газовый состав непосредственно в шлейфах выбросов, на автострадах, по мере удаления источников выбросов. Чувствительность измерений, проводимых с помощью разработанных методов, высока. На приземных трассах протяженностью в сотни метров--километры удалось измерить концентрации двуокиси азота, сернистого ангидрида, озона, этилена, окиси углерода, аммиака.

Если выбрать несколько опорных точек для установки лидара, то можно исследовать площадь в десятки квадратных километров. Получив таким образом картосхемы загрязнений, градостроители анализируют их и результаты используют в проектных работах.

Каковы возможности лазерной локации? Просмотр картосхем дает объективную картину качества городского воздуха. Выявляются зоны повышенных концентраций, тенденции их распространения в зависимости от конкретных метеорологических факторов. Сопоставляя картосхемы загрязнений воздушного бассейна со схемами размещения промышленных предприятий, легко определить вклад каждого из них. На основе этих данных разрабатываются конкретные мероприятия, направленные на оздоровление воздушного бассейна. В перспективе возможно создание автоматизированной системы контроля качества атмосферы города.

Воздух представляет собой смесь определенных газов, повсюду на Земле представленных приблизительно в равных объемных долях. Загрязнение воздуха имеет место в том случае, если в смеси имеются вещества в таких количествах и так долго, что создают опасность для человека, животных и растений. От загрязнения воздуха страдают все живые организмы, но особенно растения. По этой причине растения, в том числе низшие, наиболее пригодны для обнаружения начального изменения состава воздуха. Соответствующие индексы дают количественное представление о токсичном эффекте загрязняющих воздух веществ .

Общие выбросы загрязняющих веществ в атмосферный воздух от промышленных предприятий по Белгородской области за период с 2008 по 2012 г. растёт. Абсолютные объемы выбросов, отходящих от стационарных источников в сравнении с 2008 годом (115,5 тыс. т) на 2012 г. составили 133,9 тыс. т, в том числе по основным промышленным центрам: городам Белгороду – 7,81 тыс. т, Губкину – 26,97 тыс. т, Старому Осколу – 66,26 тыс. т.

В 2012 году организациями города на проведение природоохранных мероприятий по уменьшению выбросов загрязняющих веществ в атмосферу было использовано 5,1 млн. рублей, что обеспечило снижение выбросов. В результате принятых мер (выполнение воздухоохранных мероприятий) в 2012 г. было уловлено и обезврежено 208,7 тыс. т. (96,4 %) загрязняющих веществ. Экстремально высоких уровней загрязнения атмосферы за многолетний период наблюдений не выявлено .

Это говорит нам о том, что такое качество воздуха достигнуто в результате реализации региональных программ по снижению негативного воздействия производства, предотвращению природных и техногенных рисков, деятельности предприятий по снижению выбросов загрязняющих веществ, внедрению новых технологий, а также работе государственных органов в области контроля и охраны окружающей среды.

Важнейшим условием функционирования системы управления качеством окружающей среды является наличие полной и достоверной информации о степени вредного влияния на нее результатов антропогенной деятельности. Работы по оценке масштабов этого влияния на атмосферный воздух в соответствии с законом Российской Федерации «Об охране атмосферного воздуха» проводятся в рамках «Государственного учета вредных воздействий на атмосферный воздух и их источников».

В этом вопросе особое внимание уделяется мониторингу окружающей среды, а также контролю за соблюдением природоохранного законодательства в регионах, которые характеризуются высокой техногенной нагрузкой.

Современная биосфера адаптирована к существующему климату и к химическому составу атмосферы Земли. Состав сухого незагрязненного воздуха у земной поверхности в объемных процентах выражается следующими цифрами: азот – 78,08 %; кислород – 20,95 %; аргон – 0,93 %; углекислый газ – 0,03 %. Содержание остальных газов (неон, гелий, метан, криптон, водород, оксиды серы и азота, аммиак, ксенон, озон, радон и др.) не превышает 0,01 %. Во влажном воздухе у земной поверхности содержание водяного пара составляет в среднем от 0,2 % в полярных широтах до 2,5 % у экватора. Значительные изменения в составе атмосферного воздуха неизбежно повлекут за собой необратимые изменения в биосфере .

Высокая освоенность территории, плотность населения, развитая транспортная сеть несут антропогенную и техногенную нагрузки, отрицательно влияют на окружающую среду. Поэтому качество воздуха зависит в основном от выбрасываемых загрязняющих веществ в атмосферу, промышленными предприятиями и транспортом.

Выброс автотранспорта представляет собой смесь следующих газов: оксида углерода, угарного газа, азота, диоксида азота, циклических углеводородов, бензола, свинца, твердых частиц, сажи, водяного пара.

Выделяют группы, загрязняющие атмосферу:

1) аэродисперсные системы, состоящие из твердых и жидких частиц, взвешенных в воздухе (пыль, туман, дым, смог);

2) газообразные вещества (оксиды углерода, аммиак, сероводород и другие);

3) пары веществ (углеводороды, ароматические углеводороды).

В системе Росгидромета за качеством атмосферного воздуха населенных пунктов ведутся наблюдения со стационарных, маршрутных и передвижных постов. Стационарный пост предназначен для обеспечения непрерывной регистрации содержания загрязняющих веществ или регулярного отбора проб воздуха для последующего анализа.

Из числа стационарных постов выделяют опорные стационарные посты, которые предназначены для выявления долговременных изменений содержания основных и наиболее распространенных загрязняющих веществ.

Маршрутный пост наблюдения предназначен для регулярного отбора проб воздуха в фиксированной точке местности при наблюдениях, которые проводятся с помощью передвижного оборудования.

Передвижной пост предназначен для отбора проб под дымовым (газовым) факелом с целью выявления зоны влияния данного источника.

Правила контроля воздуха населенных пунктов устанавливают программы наблюдений. Устанавливают четыре программы наблюдений на стационарных постах:



1) полную,

2) неполную,

3) сокращенную,

4) суточную.

Полная программа наблюдений предназначена для получения информации о разовых и среднесуточных концентрациях. Наблюдения по полной программе выполняют ежедневно путем непрерывной регистрации с помощью автоматических устройств или дискретно через равные промежутки времени не менее четырех раз с обязательным отбором в 1,7, 13, 19 ч по местному декретному времени. Допускается проводить наблюдения по скользящему графику 7, 10, 13 ч во вторник, четверг, субботу и в 16, 19, 22 ч в понедельник, среду, пятницу.

Наблюдения по неполной программе разрешается проводить с целью получения информации о разовых концентрациях ежедневно в 7, 13, 19 ч местного декретного времени.

По сокращенной программе наблюдения проводят с целью получения информации о разовых концентрациях ежедневно в сроки 7 и 13 ч местного декретного времени. Наблюдения по сокращенной программе допускается проводить при температуре воздуха ниже минус 45 °С и в местах, где среднемесячные концентрации ниже его разовой ПДК или меньше нижнего предела диапазона измерений примеси используемым методом.

Программа суточного отбора проб предназначена для получения информации о среднесуточной концентрации. Наблюдения по этой программе проводятся путем непрерывного суточного отбора проб.

В период неблагоприятных метеорологических условий и значительного возрастания содержания загрязняющих веществ, проводят наблюдения через каждые 3 ч. При этом отбирают, пробы под факелами основных источников загрязнения и на территории наибольшей плотности населения.

Одновременно с отбором проб воздуха определяют следующие метеорологические параметры: направление и скорость ветра, температуру воздуха, состояние погоды и подстилающей поверхности. На отдельных постах допускается смещение всех сроков наблюдений на один час. Допускается не проводить наблюдения в воскресные и праздничные дни.

На опорных стационарных постах проводятся наблюдения за содержанием пыли, сернистого газа, окиси углерода, двуокиси азота (основные загрязняющие вещества) и за специфическими (веществами, которые характерны для промышленных выбросов данного населенного пункта).

На стационарных (неопорных) постах проводятся наблюдения за специфическими загрязняющими веществами. Наблюдения за основными загрязняющими веществами на этих постах допускается проводить по сокращенной программе и не проводить их, если среднемесячные концентрации этих веществ в течение года не превышают 0,5 среднесуточной ПДК.

Перечень веществ для контроля на каждом стационарном посту в городе устанавливается местными органами Государственного комитета по гидрометеорологии и контролю природной среды и санитарно – эпидемиологической службы.

На маршрутных постах проводятся наблюдения за основными загрязняющими веществами и специфическими веществами, характерными для промышленных выбросов данного населенного пункта.

На передвижных (подфакельных) постах проводятся наблюдения за специфическими загрязняющими веществами, характерными для выбросов данного предприятия.

При проведении эпизодических обследований наблюдения проводятся по программе, включающей необходимый минимум регулярной программы.

Отбор проб:

1) Продолжительность отбора проб загрязняющих веществ при определении разовых концентраций составляет 20 – 30 мин.

2) Продолжительность отбора проб загрязняющих веществ для определения среднесуточных концентраций при дискретных наблюдениях по полной программе составляет 20 – 30 мин, при непрерывном отборе – 24 ч.

3) Отбор проб при определении приземной концентрации примеси в атмосфере проводят на высоте от 1,5 до 3,5 м от поверхности земли.

4) Конкретные требования к способам и средствам отбора проб, необходимым реактивам, условиям хранения и транспортирования образцов, индивидуальным для каждого загрязняющего вещества, устанавливаются в нормативно-технических документах на методы определения загрязняющих веществ.

По данным о загрязнении атмосферы определяют величины концентраций примесей: разовые (20 – 30 мин), среднесуточные, среднемесячные и среднегодовые.

Среднесуточныеконцентрации определяют как среднее арифметическое значение разовых концентраций, полученных по полной программе через равные промежутки времени, включая обязательные сроки 1,7, 13, 19 ч, а также по данным непрерывной регистрации в течение суток.

Среднемесячные значения концентраций загрязняющих веществ определяют как среднее арифметическое значение всех разовых или среднесуточных концентраций, полученных в течение месяца.

Среднегодовую концентрацию загрязняющего вещества определяют как среднее арифметическое значение разовых или среднесуточных концентраций, полученных в течение года.

Так, специализированной лабораторией мониторинга окружающей среды Белгородского центра по гидрометеорологии и мониторингу окружающей среды, а также Старооскольской комплексной лабораторией по мониторингу окружающей среды проводится ежедневный контроль за состоянием атмосферного воздуха. Отбор проб воздуха осуществляется на стационарных постах. В основных промышленных городах области расположено 9 постов наблюдений: в г. Белгороде – 4, Старом Осколе – 3, Губкине – 2. Посты условно подразделяются на «городские, фоновые» - в жилых районах; «промышленные» - вблизи предприятий и «авто» - вблизи автомагистралей или в районах с интенсивным движением транспорта.

Программой работ предусматривается определение 8 вредных веществ.

Контроль осуществляется по 4 основным ингредиентам: пыли (взвешенные вещества), диоксиду серы, оксиду углерода и диоксиду азота.

Кроме того на постах производятся отборы проб воздуха на специфи­ческие ингредиенты: растворимые сульфаты, оксид азота, формальдегид, бенз (а) пирен, тяжелые металлы.

Силами работников Белгородского филиала ФГУ «Специализированная инспекция аналитического контроля по Центральному региону» регулярно отбираются и анализируются пробы воздуха на стационарных источниках выбросов.

Статистическая обработка результатов анализов производится на компьютере с применением программы «АСОИЗА». Ежемесячно в территориальное управление, а также заинтересованным организациям передается справка о состоянии загрязнения атмосферы по городам. По результатам работ за год выпускается годовой отчет о состоянии загрязнения воздуха в городах.

В связи с постоянно увеличивающейся техногенной нагрузкой в последние годы такая система контроля уже не может дать объективной оценки загрязнения атмосферы: количество стационарных постов недостаточное, оборудование морально устарело .

С целью усиления государственного контроля и расширения системы экологического мониторинга за качеством атмосферного воздуха Государственной экологической инспекцией Белгородской области приобретена передвижная станция контроль атмосферы, которая оснащена самым современным оборудованием. Использование этой станции позволяет полу­чать своевременную и достоверную информацию о состоянии атмосферного воздуха, а также о фактах хозяйственной и иной деятельности, создающих угрозу жизни, здоровью и имуществу граждан.

Таким образом, система совместного отбора и анализа проб лабораториями различных природоохранных структур исключает ошибки и дает высокоэффективные результаты. Для лаборатории областного гидрометеоцентра, мониторинг атмосферы является прямой обязанностью.

Для оценки состояния атмосферного воздуха нами был выбран метод биоиндикационного исследования. Из биоиндикационного метода использовался метод по определению степени чистоты атмосферного воздуха по сосне обыкновенной .


Глава 2. Характеристика района исследования

2.1 Общие сведения о г. Белгороде

Город Белгород – административный центр Белгородской области, которая находится на юго-западе Российской Федерации. Дата образования области – 6 января 1954 г. Размещаясь на площади в 27,1 тыс. км 2 , область в составе ЦЧР уступает только Курской и Воронежской областям, но превышает территории многих государств мира – Израиля (14,1 тыс. км 2), Кувейта (17,8 тыс. км 2). У нее выгодное экономико – географическое положение: южное положение, высокая степень освоенности и заселенности, развитая транспортная инфраструктура (ее пересекают важные железнодорожные, автомобильные магистрали межгосударственного значения, линии электропередач), соседство с развитыми экономическими регионами России и Украины. Приграничное положение области способствует интенсивному развитию внешнеэкономической деятельности. Белгородская область на основе параметров социально-экономического характера входит в пятерку регионов РФ с наиболее высоким уровнем жизни .

В области 19 муниципальных районов, 3 городских округа, 25 городских и 263 сельских поселений. Самый крупный город – областной центр Белгород с числом жителей 373,5 тыс. чел. (на 01.01.2013 г.), представляющих около 100 национальностей. Это полифункциональный город с разнообразной экономической и неэкономической деятельностью .

Город был основан как город – крепость в 1596 г. В 1954 г. Белгород становиться центром Белгородской области, после чего шел его активный рост, особенно по масштабам.

Синонимом Белгорода стали слова «Город первого салюта». Всего полторы сотни жителей, оставшихся в живых, встретили своих освободителей 5 августа 1943 года. Указом Президиума Верховного Совета СССР от 9 апреля 1980 г. за мужество и стойкость, проявленные трудящимися города в годы Великой Отечественной войны, и за успехи, достигнутые в хозяйственном и культурном строительстве, Белгород был награжден орденом Отечественной войны I степени.

Указом Президента РФ от 27 апреля 2007 года № 558 за мужество, стойкость и массовый героизм, проявленные защитниками города в борьбе за свободу и независимость Отечества, городу Белгороду присвоено почет­ное звание Российской Федерации «Город воинской славы».

Город Белгород является административным центром Белгородской области. Он расположен на площади в 153 км 2 . Жилищный фонд областного центра около 9152 тыс. м 2 . Протяженность белгородских улиц составляет 512 км. Площадь застроенных земель составляет 59 %, а общая площадь зеленых насаждений в пределах городской черты – 32 % от общей площади городских земель. Расстояние от Москвы до Белгорода 695 км.

За период с 1954 по 2000 годы в Белгороде были построены и вступили в строй действующих заводы металлоконструкций, авторемонтный и лимонной кислоты, слюдяная и мебельная фабрики, витаминный комбинат.

Энергично стало развиваться социально-культурное строительство. В этот период в областном центре построены Дворцы культуры «Железнодорожников», «Витаминщик», «Строитель», «Энергомаш». Введены в действие два Дома быта, областная научная библиотека, музыкальное училище, театр кукол, новые здания аэропорта, авто и железнодорожного вокзалов.

Велось интенсивное строительство общеобразовательных школ, дошкольных учреждений. Построены и открыты новые здания пединститута, технологического и кооперативного институтов.

Основу промышленного комплекса города составляют предприятия обрабатывающих производств, среди них: ЗАО «Энергомаш (Белгород)» крупное, многопрофильное предприятие, одно из основных поставщиков энергетического оборудования в России; ОАО «Белагромашсервис» - один из передовых российских заводов, производящих высококачественную почвообрабатывающую технику; ОАО «Белгородасбестцемент» - одно из новейших предприятий в России, выпускающее асбестоцементные изделия; ЗАО «Белгородский цемент» - крупнейший производитель высокомарочных цементов России; ООО «Управляющая компания ЖБК-1» - одно из ведущих предприятий строительного комплекса Белгородской области; ОАО «Белгородский абразивный завод» - крупнейший в России и странах СНГ производитель водостойкой шлифовальной шкурки и изделий из неё. В 2012 году предприятиями обрабатывающих производств отгружено товаров собственного производства, выполнено работ и услуг собственными силами в действующих ценах на 57,5 млрд. рублей.

Сегодняшний Белгород является культурным и научным центром. В Белгороде открыты Православная духовная семинария с миссионерской направленностью и Православная гимназия во имя св. Кирилла и Мефодия.

По особенностям ботанико-географических условий и характеру растительных группировок территория Белгородского района относится к подзоне типичной лесостепи. Девственный растительный покров был коренным образом видоизменён хозяйственной деятельностью человека в силу природных особенностей и исторического развития.

Лесостепные и степные ландшафты подверглись практически полному коренному преобразованию, превратившись в антропогенные ландшафты, характерные для аграрно-индустриальных районов. Издавна район ориентирован на выращивание сельскохозяйственной продукции.

Согласно Указу Президента Российской Федерации от 02.10.92 г. № 1155 «Об особо охраняемых природных территориях РФ», сохранение и развитие ООПТ является приоритетным направлением государственной политики.

В соответствии с современной концепцией территориальной охраны природы, «каждый район должен обладать системой природных охраняемых территорий, обеспечивающих целесообразное экологическое равновесие, позволяющее иметь климаксовые или узловые экосистемы...» . Являясь наиболее ценными по своим природным характеристикам участками территорий, ООПТ образуют узлы регионального экологического каркаса.

Существующая сеть ООПТ создавалась с середины 1982 – 1990 гг. Решение облисполкома от 30.08.1991 г. № 267 «О создании сети особо охраняемых природных территорий области» можно считать началом создания региональной сети ООПТ.

При его подготовке был допущен ряд погрешностей: категории ООПТ присваивались достаточно произвольно, без достаточного обоснования экологической ценности, для ряда ООПТ отсутствовали данные по их картографической привязке, в некоторых случаях без указания площади, не разработаны ограничения по использованию земель конкретной охраняемой территории; отсутствуют охранные зоны, предупредительные и информационные аншлаги, в сеть ООПТ включены охотничьи заказники, которые по своему целевому назначению не отвечают требованиям ООПТ, хотя и являются буферными зонами и центрами интродукции промысловых животных .

Белгород – город высокой культуры. Развитию культуры и сохранению культурных ценностей в городе придают большое значение. В городе имеются свыше 7 музеев, 2 парка отдыха и культуры, 2 театра, зоопарк, 3 кинотеатра, 12 учреждений культурно – досугового типа, 26 библиотек, ледовый дворец «Оранжевый лёд», учебно – спортивный комплекс НИУ «БелГУ» Светланы Хоркиной, дворец спорта «Космос», стадион «Энергомаш».

1.4 Методы контроля за состоянием атмосферы

Мониторинг - в точном смысле слова - означает наблюдение (слежение) за состоянием среды с целью обнаружения изменения этого состояния, их динамики, быстроты и направления. Получаемые в результате длительных наблюдений и многочисленных анализов сводные данные позволяют прогнозировать экологическую обстановку на ряд лет вперед и принимать меры для устранения неблагоприятных воздействий и явлений. Этой работой профессионально занимаются специальные организации - биосферные заповедники, санэпидемстанции, экологические стационары и другие.

В системе мониторинга различают три уровня: санитарно-токсикологический, экологический и биосферный. В настоящее время более или менее развита система санитарно-токсикологического мониторинга. Она включает в себя наблюдение за состоянием окружающей среды, степенью загрязнения природных объектов вредными веществами, за влиянием этих загрязнителей на человека, животный и растительный мир.

В качестве наиболее распространенных и опасных были выявлены восемь категорий загрязнителей: 1 - взвешенные вещества, они могут переносить другие загрязнители, растворенные в них или адсорбированные на поверхности частиц; 2 - углеводороды и другие летучие органические соединения; 3 - угарный газ (СО); 4 - оксиды азота (NOX); 5 - оксиды серы, в основном диоксид (SO2); 6 - свинец и другие тяжелые металлы; 7 - озон и другие фотохимические окислители; 8 - кислоты, в основном серная и азотная.

Контроль за состоянием атмосферного воздуха включает в себя изучение источников загрязнения, исследование химических и фотохимических превращений загрязняющих веществ, выявление наиболее токсичных веществ, изучение распространения загрязнителей с воздушными потоками, отбор и анализ загрязнителей.

Основным способом отбора воздуха является аспирационный способ, при котором воздух прогоняется через сорбционное устройство (поглотительный сосуд, концентрационная трубка, фильтр) с учетом расхода воздуха с определенной скоростью.

При исследовании атмосферных загрязнений определяют как максимально разовые, так и среднесуточные концентрации. Метод измерения концентрации вредных веществ должен обеспечивать определение их на уровне 0,8 ПДК с суммарной погрешностью ±25% и отбором пробы воздуха от 20 до 30 мин при определении максимально разовой концентрации, а также круглосуточный отбор пробы при определении среднесуточной концентрации.

Наблюдение за загрязнением атмосферы проводится на стационарных, маршрутных и передвижных постах. (А.И. Федорова, 2003.)

Комитет экспертов Всемирной организации здравоохранения (ВОЗ) разработал сводку допустимых уровней загрязнения, то есть осредненного предельного содержания в воздухе тех или иных примесей - среднегодовых, среднесуточных, среднепериодических. В соответствии с ними в виде установленных нормативов качества воздуха применяются:

Ориентировочные безопасные уровни воздействия (ОБУВ);

Ориентировочные допустимые концентрации (ОДК). Так, среднегодовые ОБУВ для диоксида серы составляют 0,06 мг/м3.

В то же время основным показателем контроля качества атмосферного воздуха являются предельно допустимые концентрации вредных веществ (ПДК).На практике обычно используют три типа ПДК: в воздухе рабочей зоны, в атмосферном воздухе населенного пункта и максимально разовую.

ПДКр з - это такая максимальная концентрация вредного вещества, которая при ежедневной работе в течение 8 часов (но не более 41 часа в неделю) всего рабочего стажа не может вызвать заболевания или отклонения в состоянии здоровья в процессе работы или в отдаленные сроки жизни настоящего и последующих поколений. Под рабочей зоной понимают пространство высотой до 2 метров над уровнем пола или площадки, на которой находятся рабочие места.

ПДКс с - это средне суточная концентрация загрязняющего вещества в атмосфере.

ПДКм р - это максимальное количество вредных выбросов в атмосферу в течение 30 минут, которое не приводит к превышению их концентрации в населенном пункте среднесуточной предельно допустимой концентрации.

Минимальное значение ПДКсс объясняется тем, что в населенном пункте проживают и малолетние дети, и старики, и больные, которые могут пострадать даже от незначительных концентраций вредных веществ в атмосферном воздухе. (Успенский С.В. 1992 г.)

1.5 Современные методы очистки выбросов

Промышленные абсорбционные установки. При очистке газовых потоков от вредных веществ абсорбционные процессы применяются в тех случаях, когда концентрация абсорбируемого вещества в газовом потоке довольно высокая и когда газовый поток обладает большим объемом.

Примерами абсорбционной очистки газовых потоков от вредных примесей являются очистка отходящих газов металлургических предприятий от диоксида серы, хвостовых газов заводов по производству азотной кислоты от оксидов азота, дымовых газов тепловых электростанций от диоксида серы и оксидов азота, природного газа от сероводорода.

Процессы абсорбции наиболее эффективно происходят при низких температурах. При этом вредные примеси газового потока поглощаются абсорбентом и взаимодействуют с его активным компонентом, образуя химические соединения, легко разлагающиеся при нагревании. Следовательно, нагревание приводит к противоположному процессу - выделению поглощенного газа из абсорбента.

Выделение примеси из насыщенного абсорбента путем его нагрева или каким-то другим способом (например уменьшением давления) называется десорбцией.

Возможность выделения поглощенного газа из абсорбента путем повышения температуры позволяет использовать один и тот же абсорбент многократно в замкнутом цикле. При этом абсорбент после выделения из него поглощенного газа называется регенерированным абсорбентом. В нем остается очень малое количество поглощенного газа, поэтому регенерированный абсорбент обладает практически такой же поглотительной способностью, как и свежий абсорбент.

Абсорбция представляет собой наиболее распространенный способ очистки газовых потоков. Процесс абсорбции проводится в вертикальных аппаратах - абсорберах, которые наполняются так называемыми насадками, позволяющими создавать развитую поверхность контакта абсорбента с газовым потоком, движущимся в противоположном направлении.

Адсорбционные установки, применяемые в промышленности. Адсорбционные процессы осуществляются в горизонтальных или вертикальных аппаратах-адсорберах, в которых располагается слой адсорбента толщиной не более 0,8 м. Такие адсорберы находят широкое применение при рекуперации летучих растворителей и паров других легколетучих органических веществ.

Цеолиты используются при осушке газовых потоков и для улавливания химически активных газов, таких как диоксид азота. Молекулы вредных газов и паров в порах адсорбента под действием адсорбционных сил конденсируются и переходят в жидкое состояние подобно конденсации паров воды на холодной поверхности. Это приводит к заполнению микропор и насыщению адсорбента. В момент насыщения адсорбент имеет максимальную адсорбционную емкость.

Для активированных углей адсорбционная емкость составляет 12 - 14% от массы адсорбента, для остальных адсорбентов - от 6 до 8%. Это означает, что 100 кг активированного угля способно поглотить 12 - 14 кг вредных паров или газов, тогда как такое же количество других адсорбентов, например, силикагелей, алюмогелей и цеолитов, - не более 6 - 8 кг. После насыщения адсорбента - заполнения пор поглощаемым веществом - его продувают насыщенным водяным паром или горячим воздухом. При этом конденсированное на поверхности пор вещество снова переходит в газообразное состояние и вместе с продувочным паром или воздухом удаляется из адсорбера. Такой процесс называется десорбцией.

Выделение десорбированного газа из смеси с водяным паром происходит в специальных аппаратах-холодильниках, где водяной пар превращается в конденсат. Если при этом происходит также конденсация десорбированного газа или пара органического вещества, не смешивающегося с водой, то их разделяют в сепараторах путем расслаивания.

Мембранные процессы очистки газовых потоков

В последние годы для очистки газовых потоков от примесей начали использовать мембранные процессы.

Мембраны представляют собой тонкие полимерные пленки (толщина несколько десятков мкм), полученные на основе поливинилхлорида, полиэтилена, полиамида и других полимеров. Мембранные процессы основаны на селективном (выборочном) разделении газов, различающихся по величине объема молекул. Такие мембраны имеют поры, соизмеримые с размерами молекул газов, проходящих через мембрану. Газ, который проходит через мембрану, называется фильтратом, а смесь газов, остающаяся над мембраной, называется концентратом.

В отличие от механического фильтрования мембранные процессы зависят от многих физико-химических факторов, таких как интенсивность межмолекулярных взаимодействий между мембраной и молекулами фильтрата, скорость удаления концентрата над мембраной, разность концентраций примесей в концентрате и фильтрате.

В промышленности мембранное разделение газов применяется для очистки газообразного водорода от примесей в производстве аммиака, при очистке газовых потоков от диоксида углерода, сероводорода и диоксида серы.

Перспективы применения мембранного разделения газовых потоков в народном хозяйстве определяются прежде всего простотой аппаратурного оформления процесса, отсутствием реагентов, длительной работой газоразделительных мембран (5-10 лет), экономичностью и возможностью полной автоматизации мембранных установок. (Мухутдинова А.А. , 1998.)