Космический корабль. Управление космическим аппаратом в полете

Полеты на космических кораблях многоразового использования и космических станциях становятся частью современной жизни, космические ПУТЕШЕСТВИЯ уже почти доступны. И, как следствие этого, более распространенными становятся и сны о них. Сон такого рода- часто простое ИСПОЛНЕНИЕ ЖЕЛАНИЯ, мечта увидеть мир из другой точки пространства. Однако это также может быть сном о БЕГСТВЕ, путешествии или поиске. Очевидно, что ключом к пониманию такого сна является цель путешествия. Еще один путь к пониманию значения сновидения касается способа путешествия. Вы были в космическом корабле или в чем-то более вам привычном (как, например, ваша машина)?

Сон о космическом путешествии является хорошим материалом для исследования. Вам может присниться, что вы потерялись и ощупью ищете что-то в безбрежном вакууме.

В сновидении вам действительно хотелось оказаться в открытом космосе или вы просто обнаружили, что очутились там? Находясь там, чувствовали ли вы себя в безопасности?

Толкование снов из


Корабли серии «Союз», которым почти полвека назад сулили лунное будущее, так и не покинули околоземную орбиту, зато завоевали себе репутацию самого надежного пассажирского космического транспорта. Посмотрим же на них взглядом командира корабля

Космический корабль «Союз-ТМА» состоит из приборно-агрегатного отсека (ПАО), спускаемого аппарата (СА) и бытового отсека (БО), причем СА занимает центральную часть корабля. Подобно тому как в авиалайнере во время взлета и набора высоты нам предписывают пристегнуть ремни и не покидать кресел, космонавты также обязаны на этапе выведения корабля на орбиту и маневра находиться в своих креслах, быть пристегнутыми и не снимать скафандров. После окончания маневра экипажу, состоящему из командира корабля, бортинженера-1 и бортинженера-2, разрешается снять скафандры и переместиться в бытовой отсек, где можно поесть и сходить в туалет. Полет к МКС занимает около двух суток, возврат на Землю — 3−5 часов.

Применяемая в «Союзе-ТМА» система отображения информации (СОИ) «Нептун-МЭ» относится к пятому поколению СОИ для кораблей серии «Союз».

Как известно, модификация «Союз-ТМА» создавалась специально под полеты к  Международной космической станции, что предполагало участие астронавтов NASA с их более объемными скафандрами.

Чтобы астронавты смогли пробираться через люк, соединяющий бытовой блок со спускаемым аппаратом, потребовалось уменьшить глубину и высоту пульта, естественно, при сохранении его полной функциональности.

Проблема также состояла в том, что ряд приборных узлов, использовавшихся в предыдущих версиях СОИ, уже не мог быть произведен из-за дезинтеграции бывшей советской экономики и прекращения некоторых производств.

Tренажерный комплекс «Союз-ТМА», находящийся в Центре подготовки космонавтов им. Гагарина (Звездный городок), включает в себя макет спускаемого аппарата и бытового отсека.

Поэтому всю СОИ пришлось принципиально переработать. Центральным элементом СОИ корабля стал интегрированный пульт управления, аппаратно совместимый с компьютером типа IBM PC.

Космический пульт

Cистема отображения информации (СОИ) в корабле «Союз-ТМА» носит название «Нептун-МЭ». В настоящее время существует более новая версия СОИ для так называемых цифровых «Союзов» — кораблей типа «Союз-ТМА-М». Однако изменения затронули в основном электронную начинку системы — в частности, аналоговая система телеметрии заменена на цифровую. В основном же преемственность «интерфейса» сохранена.

1. Интегрированный пульт управления (ИнПУ). Всего на борту спускаемого аппарата два ИнПУ — один у командира корабля, второй у сидящего слева бортинженера-1.

2. Цифровая клавиатура для введения кодов (для навигации по дисплею ИнПУ).

3. Блок управления маркером (применяется для навигации по дисплею ИнПУ).

4. Блок электролюминесцентной индикации текущего состояния систем (ТС).

5. РПВ-1 и РПВ-2 - ручные поворотные вентили. Они отвечают за наполнение магистралей кислородом из шаробаллонов, один из которых расположен в приборно-агрегатном отсеке, а другой — в самом спускаемом аппарате.

6. Электропневмоклапан подачи кислорода при посадке.

7. Визир специальный космонавта (ВСК). Во время стыковки командир корабля смотрит на стыковочный узел и наблюдает за стыковкой корабля. Для передачи изображения применяется система зеркал, примерно такая же, как в перископе на подводной лодке.

8. Ручка управления движением (РУД). С ее помощью командир корабля управляет двигателями для придания «Союзу-ТМА» линейного (положительного или отрицательного) ускорения.

9. Ручкой управления ориентацией (РУО) командир корабля задает вращение «Союза-ТМА» вокруг центра масс.

10. Холодильно-сушильный агрегат (ХСА) выводит из корабля тепло и влагу, неизбежно накапливающиеся в воздухе ввиду присутствия на борту людей.

11. Тумблеры включения вентиляции скафандров при посадке.

12. Вольтметр.

13. Блок предохранителей.

14. Кнопка запуска консервации корабля после стыковки. Ресурс «Союза-ТМА» всего четверо суток, поэтому его надо беречь. После стыковки электропитание и вентиляция поставляются уже самой орбитальной станцией.

КОСМИЧЕСКИЙ КОРАБЛЬ

Космическими кораблями в наше время называются аппараты, созданные для доставки космонавтов на околоземную орбиту и возвращения их потом на Землю. Понятно, что технические требования к космическому кораблю более жесткие, чем к любым другим космическим аппаратам. Условия полета (перегрузки, температурный режим, давление и т.п.) должны выдерживаться для них очень точно, дабы не создалась угроза жизни человека. В корабле, который на несколько часов или даже суток становится домом для космонавта, должны быть созданы нормальные человеческие условия - космонавт должен дышать, пить, есть, спать, отправлять естественные потребности. Он должен иметь возможность в процессе полета разворачивать корабль по своему усмотрению и менять орбиту, то есть корабль при своем движении в пространстве должен легко переориентироваться и управляться. Для возвращения на Землю космический корабль должен погасить всю ту огромную скорость, которую сообщила ему при старте ракета‑носитель. Если бы Земля не имела атмосферы, на это пришлось бы потратить столько же горючего, сколько было израсходовано при подъеме в космос. К счастью, в этом нет необходимости: если осуществлять посадку по очень пологой траектории, постепенно погружаясь в плотные слои атмосферы, то можно затормозить корабль о воздух с минимальной затратой горючего. Как советские «Востоки», так и американские «Меркурии» осуществляли посадку именно таким образом и этим объясняются многие особенности их конструкции. Поскольку значительная часть энергии при торможении идет на нагрев корабля, то без хорошей тепловой защиты он просто сгорит, как сгорает в атмосфере большая часть метеоритов и заканчивающих свое существование спутников. Поэтому приходится защищать корабли громоздкими жаропрочными теплозащитными оболочками. (Например, на советском «Востоке» ее вес составлял 800 кг - треть всего веса спускаемого аппарата.) Желая по возможности облегчить корабль, конструкторы снабжали этим экраном не весь корабль, а только корпус спускаемого аппарата. Таким образом, с самого начала утвердилась конструкция разделяющегося корабля (она была опробована на «Востоках», а потом стала классической для всех советских и многих американских космических кораблей). Корабль состоит как бы из двух самостоятельных частей: приборного отсека и спускаемого аппарата (последний служит во время полета кабиной космонавта).

Первый советский космический корабль «Восток» при общей массе 4, 73 т выводился на орбиту с помощью трехступенчатой ракеты‑носителя того же названия. Полная стартовая масса космического комплекса составляла 287 т. Конструктивно «Восток» состоял из двух основных отсеков: спускаемого аппарата и приборного отсека. Спускаемый аппарат с кабиной космонавта был выполнен в форме шара диаметром 2, 3 м и имел массу 2, 4 т.

Герметичный корпус изготовлялся из алюминиевого сплава. Внутри спускаемого аппарата конструкторы стремились расположить только те системы и приборы корабля, которые были необходимы в течение всего полета, или те, которыми непосредственно пользовался космонавт. Все остальные были вынесены в приборный отсек. Внутри кабины размещалось катапультируемое кресло космонавта. (На случай, если бы пришлось катапультироваться при старте, кресло снабжалось двумя пороховыми ускорителями.) Здесь же находились пульт управления, запасы пищи и воды. Система жизнеобеспечения была рассчитана на работу в течение десяти суток. Космонавт должен был в течение всего полета находиться в герметическом скафандре, но с открытым шлемом (этот шлем автоматически закрывался в случае внезапной разгерметизации кабины).

Внутренний свободный объем спускаемого аппарата составлял 1, 6 кубического метра. Необходимые условия в кабине космического корабля поддерживали две автоматические системы: система жизнеобеспечения и система терморегулирования. Как известно, человек в процессе жизнедеятельности потребляет кислород, выделяет углекислый газ, тепло и влагу. Эти две системы как раз и обеспечивали поглощение углекислого газа, пополнение кислородом, отбор из воздуха избыточной влаги и отбор тепла. В кабине «Востока» поддерживалось привычное на Земле состояние атмосферы с давлением 735‑775 мм рт. ст. и 20‑25% содержания кислорода. Устройство системы терморегулирования отчасти напоминало кондиционер. Она содержала воздушно‑жидкостной теплообменник, по змеевику которого протекала охлажденная жидкость (холодоноситель). Вентилятор прогонял через теплообменник теплый и влажный воздух кабины, который охлаждался на его холодных поверхностях. Влага при этом конденсировалась. Холодоноситель поступал в спускаемый аппарат из приборного отсека. Поглотившая тепло жидкость принудительно прогонялась насосом через радиатор‑излучатель, расположенный на наружной конической оболочке приборного отсека. Температура холодоносителя автоматически поддерживалась в нужном диапазоне при помощи специальных жалюзи, закрывавших радиатор. Створки жалюзи могли открываться или закрываться, изменяя потоки тепла, излучаемые радиатором. Чтобы поддерживать нужный состав воздуха, в кабине спускаемого аппарата имелось регенерационное устройство. Воздух кабины при помощи вентилятора непрерывно прогонялся через специальные сменные патроны, содержавшие надперекиси щелочных металлов. Такие вещества (например, K2O4) способны эффективно поглощать углекислый газ и выделять при этом кислород. Работой всей автоматики руководило бортовое программное устройство. Включение различных систем и приборов производилось как по командам с Земли, так и самим космонавтом. На «Востоке» имелся целый комплекс радиосредств, позволявший вести и поддерживать двухстороннюю связь, производить различные измерения, вести управление кораблем с Земли и многое другое. С помощью передатчика «Сигнал» постоянно поступала информация датчиков, расположенных на теле космонавта, относительно его самочувствия. Основу системы энергоснабжения составляли серебряно‑цинковые аккумуляторы: основная батарея размещалась в приборном отсеке, а дополнительная, обеспечивающая электропитание на спуске - в спускаемом аппарате.

Приборный отсек имел массу 2, 27 т. Вблизи его стыка со спускаемым аппаратом находились 16 сферических баллонов с запасами сжатого азота для микродвигателей ориентации и кислорода для системы жизнеобеспечения. Очень важное значение в любом космическом корабле играет система ориентации и управления движением. На «Востоке» она включала в себя несколько подсистем. Первая из них - навигационная - состояла из ряда датчиков положения космического корабля в пространстве (в том числе датчик Солнца, гироскопические датчики, оптическое устройство «Взор» и другие). Сигналы от датчиков поступали в управляющую систему, которая могла работать автоматически или с участием космонавта. На пульте космонавта имелась рукоятка ручного управления ориентацией космического корабля. Разворачивание корабля происходило при помощи целого набора расположенных определенным образом небольших реактивных сопел, в которые подавался из баллонов сжатый азот. Всего на приборном отсеке имелось два комплекта сопел (по восемь в каждом), которые могли подключаться к трем группам баллонов. Главная задача, которая решалась при помощи этих сопел, заключалась в том, чтобы правильно ориентировать корабль перед подачей тормозного импульса. Это требовалось сделать в определенном направлении и в строго определенное время. Ошибка здесь не допускалась.



Тормозная двигательная установка с тягой 15, 8 килоньютон находилась в нижней части отсека. Она состояла из двигателя, топливных баков и системы подачи горючего. Время ее работы составляло 45 секунд. Перед возвращением на Землю тормозную двигательную установку ориентировали таким образом, чтобы дать тормозной импульс около 100 м/с. Этого было достаточно для перехода на траекторию спуска. (При высоте полета 180‑240 км орбита была рассчитана таким образом, что даже при отказе тормозной установки корабль через десять суток все равно вошел бы в плотные слои атмосферы. Именно на этот срок и был рассчитан запас кислорода, питьевой воды, пищи, заряд аккумуляторов.) Затем происходило отделение спускаемого аппарата от приборного отсека. Дальнейшее торможение корабля шло уже за счет сопротивления атмосферы. При этом перегрузки достигали 10 g, то есть вес космонавта увеличивался в десять раз.

Скорость спускаемого аппарата в атмосфере снижалась до 150‑200 м/с. Но чтобы обеспечить безопасное приземление при соприкосновении с землей, его скорость не должна была превышать 10 м/с. Избыток скорости гасился за счет парашютов. Они раскрывались постепенно: сначала вытяжной, потом - тормозной и, наконец, основной. На высоте 7 км космонавт должен был катапультироваться и приземляться отдельно от спускаемого аппарата со скоростью 5‑6 м/с. Это осуществлялось при помощи катапультирующегося кресла, которое устанавливалось на специальных направляющих и выстреливалось из спускаемого аппарата после отделения крышки люка. Здесь также сначала раскрывался тормозной парашют кресла, а на высоте 4 км (при скорости 70‑80 м/с) космонавт отстегивался от кресла и дальше спускался на своем собственном парашюте.

Работа по подготовке пилотируемого полета в КБ Королева началась в 1958 году. Первый запуск «Востока» в беспилотном режиме был произведен 15 мая 1960 года. Из‑за неправильной работы одного из датчиков перед включением тормозной двигательной установки корабль оказался неправильно ориентирован и, вместо того чтобы опускаться, перешел на более высокую орбиту. Второй запуск (23 июля 1960 г.) был еще менее удачным - в самом начале полета произошла авария. Спускаемый аппарат отделился от корабля и разрушился при падении. Во избежание этой опасности на всех следующих кораблях была введена система аварийного спасения. Зато третий запуск «Востока» (19‑20 августа 1960 г.) был вполне успешным - на второй день спускаемый аппарат вместе со всеми подопытными животными: мышами, крысами и двумя собаками - Белкой и Стрелкой - благополучно совершил посадку в заданном районе. Это был первый в истории космонавтики случай возвращения живых существ на Землю после совершения космического полета. Но следующий полет (1 декабря 1960 г.) опять имел неблагополучный исход. Корабль вышел в космос и выполнил всю программу. Через сутки была подана команда к возвращению на землю. Однако из‑за отказа тормозной двигательной установки спускаемый аппарат вошел в атмосферу с чрезмерно большой скоростью и сгорел. Вместе с ним погибли подопытные собаки Пчелка и Мушка. Во время старта 22 декабря 1960 года произошла авария последней ступени, но система аварийного спасения сработала надлежащим образом - спускаемый аппарат приземлился без повреждений. Только шестой (9 марта 1961 г.) и седьмой (25 марта 1961 г.) старты «Востока» прошли вполне благополучно. Совершив по одному обороту вокруг Земли, оба корабля благополучно вернулись на Землю вместе со всеми подопытными животными. Эти два полета полностью моделировали будущий полет человека, так что даже в кресле находился специальный манекен. Первый в истории полет человека в космос состоялся, как известно, 12 апреля 1961 года. Советский космонавт Юрий Гагарин на корабле «Восток‑1» совершил один виток вокруг Земли и в тот же день благополучно возвратился на Землю (весь полет продолжался 108 минут). Так была открыта эра пилотируемых полетов.

В США подготовка к пилотируемому полету по программе «Меркурий» также началась в 1958 году. Вначале проводились беспилотные полеты, потом полеты по баллистической траектории. Первые два запуска «Меркурия» по баллистической траектории (в мае и июле 1961 г.) производились с помощью ракеты «Редстоун», а следующие выводились на орбиту с помощью ракеты‑носителя «Атлас‑D». 20 февраля 1962 года американский астронавт Джон Гленн на «Меркурии‑6» совершил первый орбитальный полет вокруг Земли.

Первый американский космический корабль был значительно меньше советского. Ракета‑носитель «Атлас‑D» при стартовой массе 111, 3 тонн была способна вывести на орбиту груз не более 1, 35 тонны. Поэтому корабль «Меркурий» проектировался при крайне жестких ограничениях по массе и габаритам. Основу корабля составляла возвращаемая на Землю капсула. Она имела форму усеченного конуса со сферическим днищем и цилиндрической верхней частью. На основании конуса размещалась тормозная установка из трех твердотопливных реактивных двигателей по 4, 5 килоньютон и временем работы 10 секунд. При спуске капсула входила в плотные слои атмосферы днищем вперед. Поэтому тяжелый теплозащитный экран располагался только здесь. В передней цилиндрической части находилась антенна и парашютная секция. Парашютов было три: тормозной, основной и запасной, которые выталкивались с помощью пневмобаллона.

Внутри кабины пилота имелся свободный объем 1, 1 кубических метра. Астронавт, одетый в герметический скафандр, располагался в кресле. Перед ним находились иллюминатор и пульт управления. На ферме над кораблем помещался пороховой двигатель САС. Система жизнеобеспечения на «Меркурии» существенно отличалась от той, что была на «Востоке». Внутри корабля создавалась чисто кислородная атмосфера с давлением 228‑289 мм рт. ст. По мере потребления кислород из баллонов подавался в кабину и скафандр астронавта. Для удаления углекислоты использовалась система с гидроокисью лития. Скафандр охлаждался кислородом, который, перед тем как использоваться для дыхания, подавался к нижней части тела. Температура и влажность поддерживались с помощью теплообменников испарительного типа - влага собиралась с помощью губки, которая периодически отжималась (оказалось, что в условиях невесомости такой способ не годился, поэтому он использовался только на первых кораблях). Энергопитание обеспечивалось аккумуляторными батареями. Вся система жизнеобеспечения была рассчитана только на 1, 5 суток. Для управления ориентацией «Меркурий» имел 18 управляемых двигателей, работавших на однокомпонентном топливе - перекиси водорода. Астронавт приводнялся вместе с кораблем на поверхность океана. Капсула имела неудовлетворительную плавучесть, поэтому на всякий случай на ней имелся надувной плот.

РОБОТ

Роботом называют автоматическое устройство, имеющее манипулятор - механический аналог человеческой руки - и систему управления этим манипулятором. Обе эти составные части могут иметь различное устройство - от очень простого до чрезвычайно сложного. Манипулятор обычно состоит из шарнирно соединенных звеньев, как рука человека состоит из костей, связанных суставами, и заканчивается охватом, который является чем‑то вроде кисти человеческой руки.

Звенья манипулятора подвижны друг относительно друга и могут совершать вращательные и поступательные движения. Иногда вместо схвата последним звеном манипулятора служит какой‑нибудь рабочий инструмент, например, дрель, гаечный ключ, краскораспылитель или сварочная горелка.

Перемещение звеньев манипулятора обеспечивают так называемые приводы - аналоги мускулов в руке человека. Обычно в качестве таковых используются электродвигатели. Тогда привод включает в себя еще редуктор (систему зубчатых передач, которые снижают число оборотов двигателя и увеличивают вращающие моменты) и электрическую схему управления, регулирующую скорость вращения электродвигателя.

Кроме электрического часто применяется гидравлический привод. Действие его очень просто. В цилиндр 1, в котором находится поршень 2, соединенный с помощью штока с манипулятором 3, поступает под давлением жидкость, которая передвигает поршень в ту или иную сторону, а вместе с ним и «руку» робота. Направление этого движения определяется тем, в какую часть цилиндра (в пространство над поршнем или под ним) попадает в данный момент жидкость. Гидропривод может сообщить манипулятору и вращательное движение. Точно так же действует пневматический привод, только вместо жидкости здесь применяется воздух.

Таково в общих чертах устройство манипулятора. Что касается сложности задач, которые может разрешать тот или иной робот, то они во многом зависят от сложности и совершенства управляющего устройства. Вообще, принято говорить о трех поколениях роботов: промышленных, адаптивных и роботах с искусственным интеллектом.

Самые первые образцы простых промышленных роботов были созданы в 1962 году в США. Это были «Версатран» фирмы «АМФ Версатран» и «Юнимейт» фирмы «Юнимейшн Инкорпорейтед». Эти роботы, а также те, что последовали за ними, действовали по жесткой, не меняющейся в процессе работы программе и были предназначены для автоматизации несложных операций при неизменном состоянии окружающей среды. В качестве управляющего устройства для таких роботов мог служить, например, «программируемый барабан». Действовал он так: на цилиндре, вращаемом электродвигателем, размещались контакты приводов манипулятора, а вокруг барабана - токопроводящие металлические пластины, замыкавшие эти контакты, когда те их касались. Расположение контактов было таким, чтобы при вращении барабана приводы манипулятора включались в нужное время, и робот начинал выполнять запрограммированные операции в нужной последовательности. Точно так же управление могло осуществляться с помощью перфокарты или магнитной ленты.

Очевидно, что даже малейшее изменение окружающей обстановки, малейший сбой в технологическом процессе, ведет к нарушению действий такого робота. Однако они обладают и немалыми преимуществами - они дешевы, просты, легко перепрограммируются и вполне могут заменить человека при выполнении тяжелых однообразных операций. Именно на такого типа работах и были впервые применены роботы. Они хорошо справлялись с простыми технологическими повторяющимися операциями: выполняли точечную и дуговую сварку, осуществляли загрузку и разгрузку, обслуживали прессы и штампы. Робот «Юнимейт», например, был создан для автоматизации контактной точечной сварки кузовов легковых автомобилей, а робот типа «SMART» устанавливал колеса на легковые автомобили.

Однако принципиальная невозможность автономного (без вмешательства человека) функционирования роботов первого поколения очень затрудняла их широкое внедрение в производство. Ученые и инженеры настойчиво старались устранить этот недостаток. Результатом их трудов стало создание гораздо более сложных адаптивных роботов второго поколения. Отличительная черта этих роботов состоит в том, что они могут изменять свои действия в зависимости от окружающей обстановки. Так, при изменении параметров объекта манипулирования (его угловой ориентации или местоположения), а также окружающей среды (скажем, при появлении каких‑то препятствий на пути движения манипулятора) эти роботы могут соответственно спроектировать свои действия.

Понятно, что, работая в изменяющейся среде, робот должен постоянно получать о ней информацию, иначе он не сможет ориентироваться в окружающем пространстве. В связи с этим адаптивные роботы имеют значительно более сложную, чем роботы первого поколения, систему управления. Эта система распадается на две подсистемы: 1) сенсорную (или очувствления) - в нее входят те устройства, которые собирают информацию о внешней окружающей среде и о местоположении в пространстве различных частей робота; 2) ЭВМ, которая анализирует эту информацию и в соответствии с ней и заданной программой управляет перемещением робота и его манипулятора.

К сенсорным устройствам относятся тактильные датчики осязания, фотометрические датчики, ультразвуковые, локационные, а также различные системы технического зрения. Последние имеют особенно важное значение. Главная задача технического зрения (собственно «глаза» робота) состоит в том, чтобы преобразовать изображения объектов окружающей среды в электрический сигнал, понятный для ЭВМ. Общий принцип систем технического зрения состоит в том, что с помощью телевизионной камеры в ЭВМ передается информация о рабочем пространстве. ЭВМ сравнивает ее с имеющимися в памяти «моделями» и выбирает соответствующую обстоятельствам программу. На этом пути одна из центральных проблем при создании адаптивных роботов заключалась в том, чтобы научить машину распознавать образы. Из многих объектов робот должен выделить те, которые ему необходимы для выполнения каких‑то действий. То есть он должен уметь различать признаки объектов и классифицировать объекты по этим признакам. Это происходит благодаря тому, что робот имеет в памяти прототипы образов нужных объектов и сравнивает с ними те, что попадают в поле его зрения. Обычно задача «узнавания» нужного объекта распадается на несколько более простых задач: робот ищет в окружающей среде нужный предмет путем изменения ориентации своего взгляда, измеряет дальность до объектов наблюдения, автоматически подстраивает чувствительный видеодатчик в соответствие с освещенностью предмета, сравнивает каждый предмете «моделью», которая хранится в его памяти, по нескольким признакам, то есть выделяет контуры, текстуру, цвет и другие признаки. В результате всего этого происходит «узнавание» объекта.

Следующим этапом работы адаптивного робота обычно являются какие‑то действия с этим предметом. Робот должен приблизиться к нему, захватить и переставить на другое место, притом не как попало, а определенным образом. Чтобы выполнить все эти сложные манипуляции, одних знаний об окружающей обстановке недостаточно - робот должен точно контролировать каждое свое движение и как бы «ощущать» себя в пространстве. С этой целью кроме сенсорной системы, отражающей внешнюю среду, адаптивный робот оснащается сложной системой внутренней информации: внутренние датчики постоянно передают ЭВМ сообщения о местоположении каждого звена манипулятора. Они как бы дают машине «внутреннее чувство». В качестве таких внутренних датчиков могут использоваться, например, высокоточные потенциометры.

Высокоточный потенциометр представляет собой прибор типа хорошо известного реостата, но отличающийся более высокой точностью. В нем вращающийся контакт не перескакивает с витка на виток, как при смещении ручки обычного реостата, а следует вдоль самих витков провода. Потенциометр крепится внутри манипулятора, так что при повороте одного звена относительно другого подвижный контакт тоже смещается и, следовательно, сопротивление прибора изменяется. Анализируя величину его изменения, ЭВМ судит о местоположении каждого из звеньев манипулятора. Скорость перемещения манипулятора связана со скоростью вращения электродвигателя в приводе. Имея всю эту информацию, ЭВМ может измерить скорость движения манипулятора и руководить его перемещением.

Каким же образом робот «планирует» свое поведение? В этой способности нет ничего сверхъестественного - «сообразительность» машины всецело зависит от сложности составленной для нее программы. В памяти ЭВМ адаптивного робота обычно заложено столько различных программ, сколько может возникнуть различных ситуаций. Пока ситуация не меняется, робот действует по базовой программе. Когда же внешние датчики сообщают ЭВМ об изменении ситуации, она анализирует ее и выбирает ту программу, которая более соответствует данной ситуации. Имея общую программу «поведения», запас программ для каждой отдельной ситуации, внешнюю информацию об окружающей среде и внутреннюю информацию о состоянии манипулятора, ЭВМ руководит всеми действиями робота.

Первые модели адаптивных роботов появились фактически одновременно с промышленными роботами. Прообразом для них послужил автоматически действующий манипулятор, разработанный в 1961 году американским инженером Эрнстом и названный впоследствии «рукой Эрнста». Этот манипулятор имел захватывающее устройство, снабженное различными датчиками - фотоэлектрическими, тактильными и другими. С помощью этих датчиков, а также управляющей ЭВМ он находил и брал заданные ему произвольно расположенные предметы. В 1969 году в Стэнфордском университете (США) был создан более сложный робот «Шейки». Эта машина также обладала техническим зрением, могла распознавать окружающие предметы и оперировать ими по заданной программе.

Робот приводился в движение с помощью двух шаговых электродвигателей, имеющих независимый привод к колесам на каждой стороне тележки. В верхней части робота, которая могла поворачиваться вокруг вертикальной оси, были установлены телевизионная камера и оптический дальномер. В центре располагался блок управления, который распределял команды, поступающие от ЭВМ к механизмам и устройствам, реализующим соответствующие действия. По периметру устанавливались сенсорные датчики для получения информации о столкновении робота с препятствиями. «Шейки» мог перемещаться по кратчайшему пути в заданное место помещения, вычисляя при этом траекторию таким образом, чтобы избежать столкновения (он воспринимал стены, двери, дверные проемы). ЭВМ из‑за своих больших габаритов находилась отдельно от робота. Связь между ними осуществлялась по радио. Робот мог выбирать нужные предметы и перемещать их «толканием» (манипулятора у него не было) в нужное место.

Позже появились другие модели. Например, в 1977 году фирмой «Quasar Industries» был создан робот, который умел подметать полы, вытирать пыль с мебели, работать с пылесосом и удалять растекшуюся по полу воду. В 1982 году фирма «Мицубиси» объявила о создании робота, который был настолько ловок, что мог зажигать сигарету и снимать телефонную трубку. Но самым замечательным был признан созданный в том же году американский робот, который с помощью своих механических пальцев, камеры‑глаза и компьютера‑мозга менее чем за четыре минуты собирал кубик Рубика. Серийный выпуск роботов второго поколения начался в конце 70‑х годов. Особенно важно то, что их можно успешно использовать на сборочных операциях (например, при сборке пылесосов, будильников и других несложных бытовых приборов) - этот вид работ до сих с большим трудом поддавался автоматизации. Адаптивные роботы стали важной составной частью многих гибких (быстро перестраивающихся на выпуски новой продукции) автоматизированных производств.

Третье поколение роботов - роботы с искусственным интеллектом - пока еще только проектируется. Их основное назначение - целенаправленное поведение в сложной, плохо организованной среде, притом в таких условиях, когда невозможно предусмотреть все варианты ее изменения. Получив какую‑то общую задачу, такой робот должен будет сам разработать программу ее выполнения для каждой конкретной ситуации (напомним, что адаптивный робот может лишь выбирать одну из предложенных программ). В случае, если операция не удалась, робот с искусственным интеллектом сможет проанализировать неудачу, составить новую программу и повторить попытку.

Совсем небольшой срок отделяет нас от 12 апреля 1961 г., когда легендарный "Восток" Юрия Гагарина штурмовал космос, а там уже побывали десятки космических кораблей. Все они, уже летавшие или только рождающиеся на листах ватмана, во многом похожи друг на друга. Это позволяет нам говорить о космическом корабле вообще, как мы говорим просто об автомобиле или самолете, не имея в виду определенную марку машины.

И автомобиль и самолет не могут обойтись без двигателя, кабины водителя, приборов управления. Аналогичные части есть и у космического корабля.

Посылая человека в космос, конструкторы заботятся о его благополучном возвращении. Спуск корабля на Землю начинается с уменьшения его скорости. Роль космического тормоза выполняет корректирующая тормозная двигательная установка. Она же служит и для проведения маневров на орбите. В приборном отсеке размещаются источники электроэнергии, радиоаппаратура, приборы системы управления и другое оборудование. Путь с орбиты на Землю космонавты проделывают в спускаемом аппарате, или, как его иногда называют, отсеке экипажа.

Кроме "обязательных" частей у космических кораблей появляются новые агрегаты и целые отсеки, растут их размеры и массы. Так, у космического корабля "Союз" появилась вторая "комната" - орбитальный отсек. Здесь космонавты во время многодневных полетов отдыхают и ставят научные эксперименты. Для стыковки в космосе корабли оборудуются специальными стыковочными узлами. Американский корабль "Аполлон" несет лунный модуль - отсек для посадки космонавтов на Луну и возвращения их обратно.

С устройством космического корабля мы познакомимся на примере советского корабля "Союз", пришедшего на смену "Востоку" и "Восходу". На "Союзах" были произведены маневрирование и ручная стыковка в космосе, создана первая в мире экспериментальная космическая станция, осуществлен переход двух космонавтов из корабля в корабль. На этих кораблях отрабатывалась также система управляемого спуска с орбиты и многое другое.

В приборно-агрегатном отсеке "Союза" размещаются корректирующая тормозная двигательная установка, состоящая из двух двигателей (если один двигатель откажет, то включается второй), и приборы, обеспечивающие полет по орбите. Снаружи отсека установлены панели солнечных батарей, антенны и радиатор системы терморегулирования.

В спускаемом аппарате установлены кресла. В них находятся космонавты при выводе корабля на орбиту, маневрировании в космосе и при спуске на Землю. Перед космонавтами пульт управления космическим кораблем. В спускаемом аппарате размещены и системы управления спуском, и системы радиосвязи, жизнеобеспечения, парашютные и др. На корпусе отсека установлены двигатели управления спуском и двигатели мягкой посадки.

Круглый люк ведет из спускаемого аппарата в самый просторный отсек корабля - орбитальный. В нем оборудованы рабочие места космонавтов и места для их отдыха. Здесь же обитатели корабля занимаются спортивными упражнениями.

Теперь мы можем перейти к более подробному рассказу о системах космического корабля.

Космическая электростанция
На орбите "Союз" напоминает парящую птицу. Это сходство придают ему "крылья" раскрытых панелей солнечных батарей. Для работы приборов и устройств космического корабля нужна электрическая энергия. Солнечная батарея подзаряжает установленные на. борту химические аккумуляторы. Даже тогда, когда солнечная батарея находится в тени, приборы и механизмы корабля не остаются без электроэнергии, они получают ее от аккумуляторов.

В последнее время на некоторых космических кораблях источниками электроэнергии служат топливные элементы. В этих необычных гальванических элементах химическая энергия топлива без горения преобразуется в электрическую (см. ст. "План ГОЭЛРО и будущее энергетики"). Топливо - водород окисляется кислородом. Реакция рождает электрический ток и воду. Потом эту воду можно использовать для питья. Наряду с высоким коэффициентом полезного действия это - большое достоинство топливных элементов. Энергоемкость топливных элементов в 4-5 раз выше, чем аккумуляторов. Однако топливные элементы не лишены недостатков. Самый серьезный из них - большая масса.

Этот же недостаток пока еще препятствует применению в космонавтике атомных батарей. Защита экипажа от радиоактивного излучения этих энергетических установок будет слишком утяжелять корабль.

Система ориентации
Отделившись от последней ступени ракеты-носителя, стремительно несущийся по инерции корабль начинает медленно и беспорядочно вращаться. Попробуйте в таком положении определить, где Земля и где "небо". В кувыркающейся кабине космонавтам трудно определить местонахождение корабля, нельзя вести наблюдения над небесными телами, невозможна в таком положении и работа солнечной батареи. Поэтому корабль заставляют занимать в пространстве определенное положение - его ориентируют. При астрономических наблюдениях ориентируются на некоторые яркие звезды, Солнце или Луну. Чтобы получить ток от солнечной батареи, надо ее панели направить на Солнце. Сближение двух кораблей требует их взаимной ориентации. Выполнение маневров также можно начинать только в ориентированном положении.

На космическом корабле устанавливается несколько небольших реактивных двигателей системы ориентации. Включая и выключая их в определенном порядке, космонавты поворачивают корабль вокруг любой из выбранных ими осей.

Вспомним простой школьный опыт с водяной вертушкой. Реактивная сила струек воды, брызжущей из изогнутых в разные стороны концов трубочки, подвешенной на нити, заставляет вертушку вращаться. То же происходит и с космическим кораблем. Подвешен он идеально - корабль невесом. Для поворота корабля относительно какой-нибудь оси достаточно пары микродвигателей с противоположно направленными соплами.

Включенные в определенном сочетании, несколько двигателей малой тяги могут не только как угодно поворачивать корабль, но и придавать ему добавочное ускорение или перемещать в сторону от первоначальной траектории. Вот что писали об управлении кораблем "Союз-9" летчики-космонавты А. Г. Николаев и В. И. Севастьянов: "С помощью ручки управления, включая ту или иную группу двигателей ориентации, можно было разворачивать корабль в любом направлении, а пользуясь оптическими приборами, ориентировать корабль относительно Земли с большой точностью. Еще более высокая точность (до нескольких угловых минут) достигалась при ориентации корабля на звезды".

Космический корабль "Союз-4": 1 - орбитальный отсек; 2 - спускаемый аппарат, в нем космонавты возвращаются на Землю; 3 - панель сол-
нечных батарей; 4 - приборно-агрегатный отсек.

Однако "малой тяги" достаточно только для выполнения небольших маневров. Значительные изменения траектории требуют уже включения мощной корректирующей двигательной установки.

Маршруты "Союзов" пролегают в 200-300 км от поверхности Земли. При длительном полете даже в той сильно разреженной атмосфере, какая существует на таких высотах, корабль постепенно тормозится о воздух и снижается. Если не принимать "никаких мер, "Союз" войдет в плотные слои атмосферы значительно раньше заданного срока. Поэтому время от времени корабль переводится на более высокую орбиту включением корректирующей тормозной двигательной установки. Корректирующая установка работает не только при переходе на более высокую орбиту. Двигатель включается во время сближения кораблей при стыковке, а также при различных маневрах на орбите.

На космическом корабле "Союз" "шуба" из экранно-вакуумной изоляции.

Ориентация - очень важная часть космического полета. Но только сориентировать корабль недостаточно. Его еще нужно удержать в этом положении -стабилизировать. В безопорном космическом пространстве сделать это не так просто. Один из самых простых методов стабилизации - стабилизация вращением. При этом используется свойство вращающихся тел сохранять направление оси вращения и сопротивляться его изменению. (Все вы видели детскую игрушку - волчок, упрямо не желающий упасть до полной остановки.) Приборы, основанные на этом принципе,- гироскопы, широко применяются в системах автоматического управления движением космических аппаратов (см. статьи "Техника помогает водить самолеты" и "Автоматы помогают судоводителям"). Вращающийся корабль подобен массивному гироскопу: ось его вращения практически не меняет своего положения в пространстве. Если солнечные лучи падают на панель солнечной батареи перпендикулярно ее поверхности, батарея вырабатывает электрический ток наибольшей силы. Поэтому во время подзарядки аккумуляторов солнечная батарея должна "смотреть" прямо на Солнце. Для этого на корабле проводится закрутка. Вначале космонавт, поворачивая корабль, ищет Солнце. Появление светила в центре шкалы специального прибора означает, что корабль сориентирован правильно. Теперь включаются микродвигатели, и корабль закручивается вокруг оси корабль - Солнце. Изменяя наклон оси вращения корабля, космонавты могут менять освещенность батареи и таким образом регулировать силу получаемого от нее тока. Управление космическим кораблем Стабилизация вращением не единственный способ сохранить положение корабля в пространстве. Выполняя другие операции и маневры, корабль стабилизируется тягой двигателей системы ориентации. Делается это следующим образом. Вначале космонавты, включая соответствующие микродвигатели, разворачивают корабль в нужное положение. По окончании ориентации начинают вращаться гироскопы системы управления. Они "запоминают" положение корабля. Пока космический аппарат остается в заданном положении, гироскопы "молчат", т. е. не выдают сигналов двигателям ориентации. Однако при каждом повороте корабля его корпус смещается относительно осей вращения гироскопов. При этом гироскопы подают необходимые команды двигателям. Микродвигатели включаются и своей тягой возвращают корабль в исходное положение.

Однако прежде чем "повернуть руль", космонавт должен точно представить себе, где находится сейчас его корабль. Водитель наземного транспорта ориентируется по различным неподвижным предметам. В космическом пространстве космонавты ориентируются по ближайшим небесным телам и далеким звездам.

Штурман "Союза" все время видит перед собой на пульте управления космического корабля "Землю" -навигационный глобус. Эта "Земля" никогда не бывает укрыта облачным покрывалом, как настоящая планета. Это не просто объемное изображение земного шара. В полете два электродвигателя вращают глобус одновременно вокруг двух осей. Одна из них параллельна оси вращения Земли, а другая перпендикулярна плоскости орбиты космического корабля. Первое движение моделирует суточное вращение Земли, а второе - полет корабля. На неподвижном стекле, под которым установлен глобус, нанесен небольшой крестик. Это наш "космический корабль". В любое время космонавт, посмотрев на поверхность глобуса под перекрестием, видит, над каким районом Земли он сейчас находится.

На вопрос "Где я?" звездоплавателям, как и морякам, помогает ответить давно известный навигационный прибор - секстант. Космический секстант несколько отличается от морского: им можно пользоваться в кабине корабля, не выходя на его "палубу".

Настоящую Землю космонавты видят в иллюминатор и через оптический визир. Этот прибор, установленный на одном из иллюминаторов, помогает определить угловое положение корабля относительно Земли. С его же помощью экипаж "Союза-9" производил ориентацию по звездам.

Не жарко и не холодно
Обращаясь вокруг Земли, корабль погружается то в ослепительные раскаленные лучи Солнца, то в темноту морозной космической ночи. А космонавты работают в легких спортивных костюмах, не испытывая ни жары и ни холода, потому что в кабине постоянно поддерживается привычная человеку комнатная температура. Отлично чувствуют себя в этих условиях и приборы корабля - ведь человек создавал их для работы в нормальных земных условиях.

Космический корабль нагревают не только прямые солнечные лучи. Около половины всего солнечного тепла, падающего на Землю, отражается ею обратно в космос. Эти отраженные лучи дополнительно подогревают корабль. На температуру отсеков влияют и работающие внутри корабля приборы и агрегаты. Ббльшую часть потребляемой ими энергии они не используют по прямому назначению, а выделяют в виде тепла. Если не отводить это тепло от корабля, то жара в герметичных отсеках скоро станет нестерпимой.

Защита космического корабля от внешних тепловых потоков, сброс избыточного тепла в космос -вот основные задачи системы терморегулирования.

Перед полетом корабль одевают в шубу экранно-вакуумной изоляции. Такая изоляция состоит из многих чередующихся слоев тонкой металлизированной пленки - экранов, между которыми в полете образуется вакуум. Это надежная преграда на пути жарких солнечных лучей. В промежутках между экранами проложены слои стеклоткани или других пористых материалов.

На все части корабля, которые по тем или иным причинам не укрываются экранно-вакуумным одеялом, наносятся покрытия, способные большую часть лучистой энергии отражать обратно в космос. Например, поверхности, покрытые окисью магния, поглощают всего лишь четвертую часть падающего на них тепла.

И все-таки, используя только такие пассивные средства защиты, невозможно уберечь корабль от перегрева. Поэтому на пилотируемых космических аппаратах применяются более действенные активные средства терморегулирования.

На внутренних стенках герметичных отсеков путаница металлических трубок. В них циркулирует специальная жидкость - теплоноситель. Снаружи корабля устанавливается радиатор-холодильник, поверхность которого не закрыта экранно-вакуумной изоляцией. С ним соединяются трубки активной системы терморегулирования. Нагретая внутри отсека жидкость-теплоноситель перекачивается в радиатор, который "выбрасывает", излучает ненужное тепло в космическое пространство. Затем охлажденная жидкость вновь возвращается в корабль, чтобы начать все сначала.

Теплый воздух легче холодного. Нагреваясь, он поднимается вверх; вытесняя вниз холодные, более тяжелые слои. Происходит естественное перемешивание воздуха - конвекция. Благодаря этому явлению термометр в вашей квартире, в какой бы угол вы его ни поставили, покажет почти одну и ту же температуру.

В невесомости такое перемешивание невозможно. Поэтому для равномерного распределения тепла по всему объему кабины космического корабля в ней приходится устраивать принудительную конвекцию с помощью обыкновенных вентиляторов.

В космосе как на Земле
На Земле мы не думаем о воздухе. Мы им просто дышим. В космосе дыхание становится проблемой. Вокруг корабля космический вакуум, пустота. Чтобы дышать, космонавты должны брать с собой запасы воздуха с Земли.

Человек в сутки потребляет около 800 л кислорода. Хранить его на корабле можно в баллонах либо в газообразном состоянии под большим давлением, либо в жидком виде. Однако 1 кг такой жидкости "тащит" за собой в космос 2 кг металла, из которого изготовлены кислородные баллоны, а сжатый газ и того больше - до 4 кг на 1 кг кислорода.

Но можно обойтись и без баллонов. В этом случае на борт космического корабля загружают не чистый кислород, а химические вещества, содержащие его в связанном виде. Много кислорода в окислах и солях некоторых щелочных металлов, в известной всем перекиси водорода. Причем у окислов есть еще одно очень существенное достоинство: одновременно с выделением кислорода они очищают атмосферу кабины, поглощая вредные для человека газы.

Организм человека беспрерывно потребляет кислород, вырабатывая при этом углекислый газ, окись углерода, водяной пар и много других веществ. Накопившись в замкнутом объеме отсеков корабля, окись углерода и углекислый газ могут вызвать отравление космонавтов. Воздух кабины постоянно пропускается через сосуды с окислами щелочных металлов. При этом происходит химическая реакция: выделяется кислород, а вредные примеси поглощаются. Например, 1 кг надперекиси лития содержит 610 г кислорода и может поглотить 560 г углекислого газа. Для очистки воздуха герметичных кабин применяют также испытанный еще в первых противогазах активированный уголь.

Кроме кислорода космонавты берут в полет запасы воды и пищи. Обычная водопроводная вода хранится в прочных емкостях из полиэтиленовой пленки. Чтобы вода не портилась и не теряла вкуса, в нее добавляют небольшое количество специальных веществ - так называемых консервантов. Так, 1 мг ионного серебра, растворенного в 10 л воды, сохраняет ее пригодной для питья в течение полугода.

От бачка с водой отходит трубка. Она оканчивается мундштуком с запирающим устройством. Космонавт берет мундштук в рот, нажимает на кнопку запирающего устройства и всасывает воду. Только так можно пить в космосе. В невесомости вода выскальзывает из открытых сосудов и, распадаясь на мелкие шарики, плавает по кабине.

Вместо пастообразных пюре, которые брали с собой первые космонавты, экипаж "Союза" питается обычной "земной" пищей. Корабль имеет даже миниатюрную кухню, где разогревают готовый обед.

На предстартовых фотографиях Юрий Гагарин, Герман Титов и другие первооткрыватели космоса одеты в скафандры, улыбающиеся лица смотрят на нас сквозь стекла гермошлемов. И сейчас человек не может выйти в открытый космос или на поверхность другой планеты без скафандра. Поэтому системы скафандров все время совершенствуются.

Скафандр часто сравнивают с уменьшенной до размеров тела человека герметичной кабиной. И это справедливо. Скафандр не один костюм, а несколько, надеваемых друг на друга. Верхняя теплостойкая одежда окрашена в белый цвет, хорошо отражающий тепловые лучи. Под верхней одеждой - костюм из экранно-вакуумной теплоизоляции, а под ним -многослойная оболочка. Это обеспечивает скафандру полную герметичность.

Кто хоть раз надевал резиновые перчатки или сапоги, знает, как неудобен костюм, не пропускающий воздуха. Но космонавты не испытывают таких неудобств. От них избавляет человека система вентиляции скафандра. Перчатки, ботинки, шлем завершают "наряд" космонавта, выходящего в открытый космос. Иллюминатор шлема снабжен светофильтром, защищающим глаза от ослепляющих солнечных лучей.

На спине у космонавта ранец. В нем запас кислорода на несколько часов и система очистки воздуха. Ранец соединен со скафандром гибкими шлангами. Провода связи и страховочный канат - фал соединяют космонавта с кораблем. "Плавать" в космосе космонавту помогает небольшой реактивный двигатель. Таким газовым двигателем в виде пистолета пользовались американские космонавты.

Корабль продолжает полет. Но космонавты не чувствуют одиночества. Сотни невидимых нитей связывают их с родной Землей.

Как только космический корабль или орбитальная станция отделяются от последней ступени ракеты, выносящей их в космос, они становятся объектами работы для специалистов в Центре управления полетом.

Главный зал управления - просторное помещение, уставленное рядами пультов, за которыми разместились специалисты, - поражает сосредоточенной тишиной. Нарушает ее лишь голос оператора, ведущего связь с космонавтами. Вся передняя стена зала занята тремя экранами и несколькими цифровыми табло. На самом большом, центральном экране - красочная карта мира. Синей синусоидой пролегла на ней дорога космонавтов - так выглядит развернутая на плоскости проекция орбиты космического корабля. Медленно движется по синей линии красная точка - корабль на орбите. На правом и левом экранах видим телевизионное изображение космонавтов, перечень основных операций, выполняемых в космосе, параметры орбиты, планы работы экипажа на ближайшее время. Над экранами светятся цифры. Они показывают московское время и время на борту корабля, номер очередного витка, сутки полета, время очередного сеанса связи с экипажем.

Над одним из пультов табличка: «Руководитель баллистической группы». Баллистики ведают движением космического аппарата. Это они рассчитывают точное время старта, траекторию выведения на орбиту, по их данным совершаются маневры космических кораблей, стыковки их с орбитальными станциями и спуск на Землю. Руководитель баллистиков следит за информацией, поступающей из космоса. Перед ним на небольшом телеэкране колонки цифр. Это сигналы с корабля, прошедшие сложную обработку на электронных вычислительных машинах (ЭВМ) Центра.

ЭВМ разных моделей составляют в Центре целый вычислительный комплекс. Они сортируют информацию, оценивают достоверность каждого измерения, обрабатывают и анализируют телеметрические показатели (см. Телемеханика). Каждую секунду в Центре выполняются миллионы математических операций, и каждые 3 секунды ЭВМ обновляют информацию на пультах.

В Главном зале находятся люди, принимающие непосредственное участие в управлении полетом. Это руководители полета и отдельных групп специалистов. В других помещениях Центра работают так называемые группы поддержки. Они планируют полет, находят наилучшие пути для выполнения принятых решений, консультируют сидящих в зале. В группы поддержки входят специалисты по баллистике, конструкторы различных систем космического аппарата, врачи и психологи, ученые, разработавшие научную программу полета, представители командно-измерительного комплекса и поисково-спасательной службы, а также люди, организующие досуг космонавтов, готовящие для них музыкальные передачи, радиовстречи с семьями, известными деятелями науки и культуры.

Центр управления не только руководит деятельностью экипажа, следит за функционированием систем и агрегатов космических аппаратов, но и координирует работу многочисленных наземных и корабельных станций слежения.

Зачем нужно много станций связи с космосом? Дело в том, что каждая станция может поддерживать связь с летящим космическим кораблем очень недолго, так как корабль быстро выходит из зоны радиовидимости данной станции. А между тем объем информации, которой обмениваются через станции слежения корабль и Центр управления полетом, очень велик.

На любом космическом аппарате установлены сотни датчиков. Они измеряют температуру и давление, скорости и ускорения, напряжения и вибрацию в отдельных узлах конструкции. Регулярно измеряются несколько сотен параметров, характеризующих состояние бортовых систем. Датчики преобразуют значения тысяч различных показателей в электрические сигналы, которые затем по радио автоматически передаются на Землю.

Всю эту информацию нужно обработать и проанализировать как можно быстрее. Естественно, что специалисты станций не могут обойтись без помощи ЭВМ. На станциях слежения обрабатывается меньшая часть данных, а основная масса по проводам и по радио - через искусственные спутники Земли «Молния» - передается в Центр управления.

Когда космические аппараты проходят над станциями слежения, определяются параметры их орбит и траекторий. Но в это время напряженно работают не только радиопередатчики корабля или спутника, но и их радиоприемники. Они принимают многочисленные команды с Земли, из Центра управления. По этим командам включаются или выключаются различные системы и механизмы космического аппарата, изменяются программы их работы.

Представим себе, как работает станция слежения.

В небе над станцией слежения появляется и медленно движется маленькая звездочка. Плавно вращаясь, следит за ней многотонная чаша приемной антенны. Еще одна антенна - передающая - установлена в нескольких километрах отсюда: на таком расстоянии передатчики уже не мешают приему сигналов из космоса. И так происходит на каждой следующей станции слежения.

Все они расположены в местах, над которыми пролегают космические трассы. Зоны радиовидимости соседних станций частично перекрываются друг другом. Еще не полностью выйдя из одной зоны, корабль уже попадает в другую. Каждая станция, закончив разговор с кораблем, «передает» его другой. Космическая эстафета продолжается и за пределами нашей страны.

Задолго до полета космического аппарата выходят в море плавучие станции слежения - специальные суда экспедиционного флота Академии наук СССР. В разных океанах несут вахту суда «космического» флота. Его возглавляет научный корабль «Космонавт Юрий Гагарин», 231,6 м в длину, 11 палуб, 1250 помещений. Четыре огромные чаши антенн корабля посылают и принимают сигналы из космоса.

Благодаря станциям слежения мы не только слышим, но и видим обитателей космического дома. Космонавты регулярно проводят телерепортажи, показывают землянам их планету, Луну, россыпи ярко сияющих на черном небе звезд...