Какой газ мы вдыхаем. Давайте теперь определим, что же такое есть кислород

Атмосферный воздух , который вдыхает человек, находясь вне помещения (или в хорошо вентилируемых помещениях), содержит 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В закрытых помещениях, заполненных людьми, процентное содержание углекислого газа в воздухе может быть несколько выше.

Выдыхаемый воздух содержит в среднем 16,3% кислорода, 4% углекислого газа, 79,7% азота (эти цифры приведены в перерасчете на сухой воздух, т. е. за вычетом паров воды, которыми всегда насыщен выдыхаемый воздух).

Состав выдыхаемого воздуха весьма непостоянен; он зависит от интенсивности обмена веществ организма и от объема легочной вентиляции. Стоит сделать несколько глубоких дыхательных движений или, напротив, задержать дыхание, чтобы состав выдыхаемого воздуха изменился.

Азот в газообмене не участвует, однако процентное содержание азота в видимом воздухе на несколько десятых долей процента выше, чем во вдыхаемом. Дело в том, что объем выдыхаемого воздуха несколько меньше, чем объем вдыхаемого, а потому то же самое количество азота, распределяясь в меньшем объеме, дает больший процент. Меньший объем выдыхаемого воздуха по сравнению с объемом вдыхаемого объясняется тем, что углекислого газа выделяется несколько меньше, чем поглощается кислорода (часть поглощаемого кислорода используется в организме на обращение соединений, которые выделяются из организма с мочой и потом).

Альвеолярный воздух отличается от выдыхаемого большим процентом некислоты и меньшим процентом кислорода. В среднем состав альвеолярного воздуха таков: кислорода 14,2-14,0%, углекислого газа 5,5- 5,7%, азота около 80%.

Определение состава альвеолярного воздуха важно для понимания механизма газообмена в легких. Холден предложил простой метод для определения состава альвеолярного воздуха. После нормального вдоха исследуемый делает возможно более глубокий выдох через трубку длиной 1-1,2 м и диаметром 25 мм. Первые порции выдыхаемого воздуха,уходящие через трубку, содержат воздух вредного пространства; последние же порции, остающиеся в трубке, содержат альвеолярный воздух. Для анализа в газоприемник берут воздуха из той части трубки, которая находится ближе всего ко рту.

Состав альвеолярного воздуха несколько различается в зависимости от того, произведён ли забор пробы воздуха для анализа на высоте вдоха или выдоха. Если сделать быстрый, короткий и неполный выдох в конце нормального вдоха, то проба воздуха отразит состав альвеолярного воздуха после наполнения легких дыхательным воздухом, т. е. во время вдоха. Если же сделать глубокий выдох после нормального выдоха, то проба отразит состав альвеолярного воздуха во время выдоха. Понятно, что в первом случае процент углекислого газа будет несколько меньше, а процент кислорода несколько больше, чем во втором. Это видно из результатов опытов Холдена, который установил, что процент углекислого газа в альвеолярном воздухе в конце вдоха составляет в среднем 5,54, а в конце выдоха - 5,72.

Таким оораэом, имеется сравнительно небольшое различие в содержании углекислого газа в альвеолярном воздухе на вдохе и на выдохе: всего на 0,2-0,3%. Это в большой степени объясняется тем, что при нормальном дыхании, как сказано выше, ется всего, обновляется всего 1/7 объема воздуха в легочных альвеолах. Относительное постоянство состава альвеолярного воздуха имеет большое физиологическое значение, что выяснено ниже.

Человек дышит атмосферным воздухом , который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

Альвеолярный воздух по составу отличается от атмосферного. В альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2-14,6% кислорода, 5,2-5,7% углекислого газа , 79,7-80% азота.

СТРОЕНИЕ ЛЕГКИХ.

Легкие - парные дыхательные органы, расположенные в герметически замкнутой грудной полости. Ихвоздухоносные пути представлены носоглоткой, гортанью, трахеей. Трахея в грудной полости делится на два бронха - правый и левый, каждый из которых, многократно разветвляясь, образует так называемое бронхиальное дерево. Мельчайшие бронхи - бронхиолы на концах расширяются в слепые пузырьки - легочные альвеолы.

В дыхательных путях газообмен не происходит, и состав воздуха не меняется. Пространство, заключенное в дыхательных путях называется мертвым, или вредным. При спокойном дыхании объем воздуха в мертвом пространстве составляет 140-150 мл .

Строение легких обеспечивает выполнение ими дыхательной функции. Тонкая стенка альвеол состоит из однослойного эпителия, легко проходимого для газов. Наличие эластических элементов и гладких мышечных волокон обеспечивает быстрое и легкое растяжение альвеол, благодаря чему они могут вмещать большие количества воздуха. Каждая альвеола покрыта густой сетью капилляров, на которые разветвляется легочная артерия.

Каждое легкое покрыто снаружи серозной оболочкой -плеврой , состоящей из двух листков: пристеночного и легочного (висцерального). Между листками плевры имеется узкая щель, заполненная серозной жидкостью - плевральная полость .

Расправление и спадение легочных альвеол, а также движение воздуха по воздухоносным путям сопровождается возникновением дыхательных шумов, которые можно исследовать методом выслушивания(аускультации).



Давление в плевральной полости и в средостении в норме всегда отрицательное . За счет этого альвеолы всегда находятся в растянутом состоянии. Отрицательное внутригрудное давление играет значительную роль в гемодинамике, обеспечивая венозный возврат крови к сердцу и улучшая кровообращение в легочном круге, особенно в фазу вдоха.

ДЫХАТЕЛЬНЫЙ ЦИКЛ.

Дыхательный цикл состоит из вдоха, выдоха и дыхательной паузы. Длительность вдоха у взрослого человека от 0,9 до 4,7 с , длительность выдоха - 1,2-6 с . Дыхательная пауза различна по величине и даже может отсутствовать.

Дыхательные движения совершаются с определенным ритмом и частотой , которые определяют по числу экскурсий грудной клетки в 1 мин. У взрослого человека частота дыхательных движений составляет 12-18 в 1 мин.

Глубину дыхательных движений определяют по амплитуде экскурсий грудной клетки и с помощью специальных методов, позволяющих исследовать легочные объемы.

Механизм вдоха. Вдох обеспечивается расширением грудной клетки вследствие сокращения дыхательных мышц – наружных межреберных и диафрагмы. Поступление воздуха в легкие в значительной степени зависит от отрицательного давления в плевральной полости.

Механизм выдоха. Выдох (экспирация) осуществляется в результате расслабления дыхательной мускулатуры, а также вследствие эластической тяги легких, стремящихся занять исходное положение. Эластические силы легких представлены тканевым компонентом и силами поверхностного натяжения, которые стремятся сократить альвеолярную сферическую поверхность до минимума. Однако альвеолы в норме никогда не спадаются. Причина этого – наличие в стенках альвеол поверхностно-активного стабилизирующего вещества – сурфактанта , вырабатываемого альвеолоцитами.

ЛЕГОЧНЫЕ ОБЪЕМЫ. ЛЕГОЧНАЯ ВЕНТИЛЯЦИЯ.

Дыхательный объем - количество воздуха, которое человек вдыхает и выдыхает при спокойном дыхании. Его объем составляет 300 - 700 мл.

Резервный объем вдоха - количество воздуха, которое может быть введено в легкие, если вслед за спокойным вдохом произвести максимальный вдох. Резервный объем вдоха равняется 1500-2000 мл .

Резервный объем выдоха - тот объем воздуха, который удаляется из легких, если вслед за спокойным вдохом и выдохом произвести максимальный выдох. Он составляет 1500-2000 мл.

Остаточный объем - это объем воздуха, который остается в легких после максимально глубокого выдоха. Остаточный объем равняется 1000-1500 мл воздуха.

Дыхательный объем, резервные объемы вдоха и выдоха
составляют так называемую жизненную емкость легких .
Жизненная емкость легких у мужчин молодого возраста
составляет 3,5-4,8 л, у женщин - 3-3,5 л.

Общая емкость легких состоит из жизненной емкости легких и остаточного объема воздуха.

Легочная вентиляция - количество воздуха, обмениваемое в 1 мин.

Легочную вентиляцию определяют путем умножения дыхательного объема на число дыханий в 1 мин(минутный объем дыхания). У взрослого человека в состоянии относительного физиологического покоя легочная вентиляция составляет 6-8 л в 1 мин.

Легочные объемы могут быть определены с помощью специальных приборов - спирометра и спирографа .

ТРАНСПОРТ ГАЗОВ КРОВЬЮ.

Кровь доставляет тканям кислород и уносит углекислый газ.

Движение газов из окружающей среды в жидкость и из жидкости в окружающую среду осуществляется благодаря разности их парциального давления. Газ всегда диффундирует из среды, где имеется высокое давление, в среду с меньшим давлением.

Парциальное давление кислорода в атмосферном воздухе 21,1 кПа (158 мм рт. ст .), в альвеолярном воздухе - 14,4-14,7 кПа (108-110 мм рт. ст .) и в венозной крови, притекающей к легким,-5,33 кПа (40 мм рт. ст .). В артериальной крови капилляров большого круга кровообращения напряжение кислорода составляет 13,6-13,9 кПа (102-104 мм рт. ст.), в межтканевой жидкости - 5,33 кПа (40 мм рт. ст.), в тканях - 2,67 кПа (20 мм рт. ст.) . Таким образом, на всех этапах движения кислорода имеется разность его парциального давления, что способствует диффузии газа.

Движение углекислого газа происходит в противоположном направлении. Напряжение углекислого газа в тканях - 8,0 кПа и более (60 и более мм рт. ст.), в венозной крови - 6,13 кПа (46 мм рт. ст.), в альвеолярном воздухе - 0,04 кПа (0,3 мм рт. ст.). Следовательно, разность напряжения углекислого газа по пути его следования является причиной диффузии газа от тканей в окружающую среду.

Транспорт кислорода кровью. Кислород в крови находится в двух состояниях: физическом растворении и в химической связи с гемоглобином. Гемоглобин образует с кислородом очень непрочное, легко диссоциирующее соединение - оксигемоглобин : 1г гемоглобина связывает 1,34 мл кислорода. Максимальное количество кислорода, которое может быть связано 100 мл крови, -кислородная емкость крови (18,76 мл или 19 об%).

Насыщение гемоглобина кислородом колеблется от 96 до 98%. Степень насыщения гемоглобина кислородом и диссоциация оксигемоглобина (образование восстановленного гемоглобина) не находятся в прямой пропорциональной зависимости от напряжения кислорода. Эти два процесса не являются линейными, а совершаются по кривой, которая получила название кривой связывания или диссоциации оксигемоглобина.

Рис. 25. Кривые диссоциации оксигемоглобина в водном растворе (I) и в крови (II) при напряжении углекислого газа 5,33 кПа (40 мм рт. ст.) (по Баркрофту).

При нулевом напряжении кислорода оксигемоглобина в крови нет. При низких значениях парциального давления кислорода скорость образования оксигемоглобина невелика. Максимальное количество гемоглобина (45- 80%) связывается с кислородом при его напряжении 3,47-6,13 кПа (26-46 мм рт. ст.). Дальнейшее повышение напряжения кислорода приводит к снижению скорости образования оксигемоглобина (рис. 25).

Сродство гемоглобина к кислороду значительно понижается при сдвиге реакции крови в кислую сторону , что наблюдается в тканях и клетках организма вследствие образования углекислого газа

Переход гемоглобина в оксигемоглобин и из него в восстановленный зависит и от температуры . При одном и том же парциальном давлении кислорода в окружающей среде при температуре 37-38° С в восстановленную форму переходит наибольшее количество оксигемоглобина,

Транспорт углекислого газа кровью. Углекислый газ переносится к легким в форме бикарбонатов и в состоянии химической связи с гемоглобином (карбогемоглобин ).

ДЫХАТЕЛЬНЫЙ ЦЕНТР.

Ритмическая последовательность вдоха и выдоха, а также изменение характера дыхательных движений в зависимости от состояния организма регулируются дыхательным центром , расположенным в продолговатом мозге.

В дыхательном центре имеются две группы нейронов:инспираторные и экспираторные. При возбуждении инспираторных нейронов, обеспечивающих вдох, деятельность экспираторных нервных клеток заторможена, и наоборот.

В верхней части моста головного мозга (варолиев мост ) находится пневмотаксический центр , который контролирует деятельность расположенных ниже центров вдоха и выдоха и обеспечивает правильное чередование циклов дыхательных движений.

Дыхательный центр, расположенный в продолговатом мозге, посылает импульсы к мотонейронам спинного мозга , иннервирующим дыхательные мышцы. Диафрагма иннервируется аксонами мотонейронов, расположенных на уровне III-IV шейных сегментов спинного мозга. Мотонейроны, отростки которых образуют межреберные нервы, иннервирующие межреберные мышцы, расположены в передних рогах (III-XII) грудных сегментов спинного мозга.

Дыхание - это неотъемлемый признак жизни. Мы дышим постоянно с момента рождения и до самой смерти. Дышим днем и ночью во время глубокого сна, в состоянии здоровья и болезни.

В организме человека и животных запасы кислорода ограничены. Поэтому организм нуждается в непрерывном поступлении кислорода из окружающей среды. Так же постоянно и непрерывно из организма должен удаляться углекислый газ, который всегда образуется в процессе обмена веществ и в больших количествах является токсичным соединением.

Дыхание - сложный непрерывный процесс, в результате которого постоянно обновляется газовый состав крови. В этом заключается его сущность.

Нормальное функционирование организма человека возможно только при условии пополнения энергией, которая непрерывно расходуется. Организм получает энергию за счет окисления сложных органических веществ - белков, жиров, углеводов. При этом освобождается скрытая химическая энергия, которая является источником жизнедеятельности клеток тела, их развития и роста. Таким образом, значение дыхания состоит в поддержании в организме оптимального уровня окислительно-восстановительных процессов.

В процессе дыхания принято различать три звена: внешнее, или легочное, дыхание, транспорт газов кровью и внутреннее, или тканевое, дыхание.

Внешнее дыхание - это газообмен между организмом и окружающим его атмосферным воздухом. Внешнее дыхание может быть разделено на два этапа - обмен газов между атмосферным и альвеолярным воздухом и газообмен между кровью легочных капилляров и альвеолярным воздухом. Внешнее дыхание осуществляется за счет активности аппарата внешнего дыхания.

Аппарат внешнего дыхания включает в себя дыхательные пути, легкие, плевру, скелет грудной клетки и ее мышцы, а также диафрагму. Основной функцией аппарата внешнего дыхания является обеспечение организма кислородом и освобождение его от избытка углекислого газа. О функциональном состоянии аппарата внешнего дыхания можно судить по ритму, глубине, частоте дыхания, по величине легочных объемов, по показателям поглощения кислорода и выделения углекислого газа и т. д.

Транспорт газов осуществляется кровью. Он обеспечивается разностью парциального давления (напряжения) газов по пути их следования: кислорода от легких к тканям, углекислого газа от клеток к легким.

Внутреннее или тканевое дыхание также может быть разделено на два этапа. Первый этап - обмен газов между кровью и тканями. Второй - потребление кислорода клетками и выделение ими углекислого газа (клеточное дыхание).

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Человек дышит атмосферным воздухом, который имеет следующий состав: 20,94% кислорода, 0,03% углекислого газа, 79,03% азота. В выдыхаемом воздухе обнаруживается 16,3% кислорода, 4% углекислого газа, 79,7% азота.

Состав выдыхаемого воздуха непостоянен и зависит от интенсивности обмена веществ, а также от частоты и глубины дыхания. Стоит задержать дыхание или сделать несколько глубоких дыхательных движений, как состав выдыхаемого воздуха изменяется.

Сравнение состава вдыхаемого и выдыхаемого воздуха служит доказательством существования внешнего дыхания.

Альвеолярный воздух по составу отличается от атмосферного, что вполне закономерно. В альвеолах происходит обмен газов между воздухом и кровью, при этом в кровь диффундирует кислород, а из крови - углекислый газ. В результате в альвеолярном воздухе резко уменьшается содержание кислорода и возрастает количество углекислого газа. Процентное содержание отдельных газов в альвеолярном воздухе: 14,2-14,6% кислорода, 5,2-5,7% углекислого газа, 79,7-80% азота. Альвеолярный воздух отличается по составу и от выдыхаемого воздуха. Это объясняется тем, что выдыхаемый воздух содержит смесь газов из альвеол и вредного пространства.

Значение дыхания

Дыхание - жизненно необходимый процесс постоянного обмена газами между организмом и окружающей его внешней средой. В процессе дыхания человек поглощает из окружающей среды кислород и выделяет углекислый газ.

Почти все сложные реакции превращения веществ в организме идут с обязательным участием кислорода. Без кислорода невозможен обмен веществ, и для сохранения жизни необходимо постоянное поступление кислорода. В клетках и тканях в результате обмена веществ образуется углекислый газ, который должен быть удален из организма. Накопление значительного количества углекислого газа внутри организма опасно. Углекислый газ выносится кровью к органам дыхания и выдыхается. Кислород, поступающий в органы дыхания при вдохе, диффундирует в кровь и кровью доставляется к органам и тканям.

В организме человека и животных нет запасов кислорода, и поэтому непрерывное поступление его в организм является жизненной необходимостью. Если человек в необходимых случаях может прожить без пищи более месяца, без воды до 10 дней, то при отсутствии кислорода необратимые изменения наступают уже через 5-7 мин.

Состав вдыхаемого, выдыхаемого и альвеолярного воздуха

Производя попеременно вдох и выдох, человек вентилирует легкие, поддерживая в легочных пузырьках (альвеолах) относительно постоянный газовый состав. Человек дышит атмосферным воздухом с большим содержанием кислорода (20,9%) и низким содержанием углекислого газа (0,03%), а выдыхает воздух, в котором кислорода 16,3%, углекислого газа 4% (табл. 8).

Состав альвеолярного воздуха значительно отличается от состава атмосферного, вдыхаемого воздуха. В нем меньше кислорода (14,2%) и большое количество углекислого газа (5,2%).

Азот и инертные газы, входящие в состав воздуха, в дыхании участия не принимают, и их содержание во вдыхаемом, выдыхаемом и альвеолярном воздухе практически одинаково.

Почему в выдыхаемом воздухе кислорода содержится больше, чем в альвеолярном? Объясняется это тем, что при выдохе к альвеолярному воздуху примешивается воздух, который находится в органах дыхания, в воздухоносных путях.

Парциальное давление и напряжение газов

В легких кислород из альвеолярного воздуха переходит в кровь, а углекислый газ из крови поступает в легкие. Переход газов из воздуха в жидкость и из жидкости в воздух происходит за счет разницы парциального давления этих газов в воздухе и жидкости. Парциальным давлением называют часть общего давления, которая приходится на долю данного газа в газовой смеси. Чем выше процентное содержание газа в смеси, тем соответственно выше его парциальное давление. Атмосферный воздух, как известно, является смесью газов. Давление атмосферного воздуха 760 мм рт. ст. Парциальное давление кислорода в атмосферном воздухе составляет 20,94% от 760 мм, т. е. 159 мм; азота - 79,03% от 760 мм, т. е. около 600 мм; углекислого газа в атмосферном воздухе мало - 0,03%, поэтому и парциальное давление его составляет 0,03% от 760 мм - 0,2 мм рт. ст.

Для газов, растворенных в жидкости, употребляют термин "напряжение", соответствующий термину "парциальное давление", применяемому для свободных газов. Напряжение газов выражается в тех же единицах, что и давление (в мм рт. ст.). Если парциальное давление газа в окружающей среде выше, чем напряжение этого газа в жидкости, то газ растворяется в жидкости.

Парциальное давление кислорода в альвеолярном воздухе 100-105 мм рт. ст., а в притекающей к легким крови напряжение кислорода в среднем 60 мм рт. ст., поэтому в легких кислород из альвеолярного воздуха переходит в кровь.

Движение газов происходит по законам диффузии, согласно которым газ распространяется из среды с высоким парциальным давлением в среду с меньшим давлением.

Газообмен в легких

Переход в легких кислорода из альвеолярного воздуха в кровь и поступление углекислого газа из крови в легкие подчиняются описанным выше закономерностям.

Благодаря работам великого русского физиолога Ивана Михайловича Сеченова стало возможно изучение газового состава крови и условий газообмена в легких и тканях.

Газообмен в легких совершается между альвеолярным воздухом и кровью путем диффузии. Альвеолы легких оплетены густой сетью капилляров. Стенки альвеол и капилляров очень тонкие, что способствует проникновению газов из легких в кровь и наоборот. Газообмен зависит от величины поверхности, через которую осуществляется диффузия газов, и разности парциального давления (напряжения) диффундирующих газов. При глубоком вдохе альвеолы растягиваются, и их поверхность достигает 100-105 м 2 . Так же велика и поверхность капилляров в легких. Есть, и достаточная, разница между парциальным давлением газов в альвеолярном воздухе и напряжением этих газов в венозной крови (табл. 9).

Из таблицы 9 следует, что разность между напряжением газов в венозной крови и их парциальным давлением в альвеолярном воздухе составляет для кислорода 110 - 40 = 70 мм рт. ст., а для углекислого газа 47 - 40 = 7 мм рт. ст.

Опытным путем удалось установить, что при разнице напряжения кислорода в 1 мм рт. ст. у взрослого человека, находящегося в покое, в кровь может поступить 25-60 мл кислорода в 1 мин. Человеку в покое нужно примерно 25-30 мл кислорода в 1 мин. Следовательно, разность давлений кислорода в 70 мм рт. ст, достаточна для обеспечения организма кислородом при разных условиях его деятельности: при физической работе, спортивных упражнениях и др.

Скорость диффузии углекислого газа из крови в 25 раз больше, чем кислорода, поэтому при разности давлений в 7 мм рт. ст., углекислый газ успевает выделиться из крови.

Перенос газов кровью

Кровь переносит кислород и углекислый газ. В крови, как и во всякой жидкости, газы могут находиться в двух состояниях: в физически растворенном и химически связанном. И кислород и углекислый газ в очень небольшом количестве растворяются в плазме крови. Большая часть кислорода и углекислого газа переносится в химически связанном виде.

Основной переносчик кислорода - гемоглобин крови. 1 г гемоглобина связывает 1,34 мл кислорода. Гемоглобин обладает способностью вступать в соединение с кислородом, образуя оксигемоглобин. Чем выше парциальное давление кислорода, тем больше образуется оксигемоглобина. В альвеолярном воздухе парциальное давление кислорода 100-110 мм рт. ст. При таких условиях 97% гемоглобина крови связывается с кислородом. Кровь приносит к тканям кислород в виде оксигемоглобина. Здесь парциальное давление кислорода низкое, и оксигемоглобин - соединение непрочное - высвобождает кислород, который используется тканями. На связывание кислорода гемоглобином оказывает влияние и напряжение углекислого газа. Углекислый газ уменьшает способность гемоглобина связывать кислород и способствует диссоциации оксигемоглобина. Повышение температуры также уменьшает возможности связывания гемоглобином кислорода. Известно, что температура в тканях выше, чем в легких. Все эти условия помогают диссоциации оксигемоглобина, в результате чего кровь отдает высвободившийся из химического соединения кислород в тканевую жидкость.

Свойство гемоглобина связывать кислород имеет жизненно важное значение для организма. Иногда люди гибнут от недостатка кислорода в организме, окруженные самым чистым воздухом. Это может случиться с человеком, оказавшимся в условиях пониженного давления (на больших высотах), где в разреженной атмосфере очень низкое парциальное давление кислорода. 15 апреля 1875 г. воздушный шар "Зенит", на борту которого находились три воздухоплавателя, достиг высоты 8000 м. Когда шар приземлился, то в живых остался только один человек. Причиной гибели людей было резкое снижение парциального давления кислорода на большой высоте. На больших высотах (7-8 км) артериальная кровь по своему газовому составу приближается к венозной; все ткани тела начинают испытывать острый недостаток в кислороде, что и приводит к тяжелым последствиям. Подъем на высоту более 5000 м обычно требует пользования особыми кислородными приборами.

При специальной тренировке организм может приспосабливаться к пониженному содержанию кислорода в атмосферном воздухе. У тренированного человека углубляется дыхание, увеличивается количество эритроцитов в крови за счет усиленного образования их в кроветворных органах и поступления из депо крови. Кроме того, усиливаются сердечные сокращения, что приводит к увеличению минутного объема крови.

Для тренировки широко применяют барокамеры.

Углекислый газ переносится кровью в виде химических соединений - бикарбонатов натрия и калия. Связывание углекислого газа и отдача его кровью зависят от его напряжения в тканях и крови.

Кроме того, в переносе углекислого газа участвует гемоглобин крови. В капиллярах тканей гемоглобин вступает в химическое соединение с углекислым газом. В легких это соединение распадается с освобождением углекислого газа. Около 25-30% выделяемого в легких углекислого газа переносит гемоглобин.

Состав вдыхаемого и выдыхаемого воздуха

Наименование параметра Значение
Тема статьи: Состав вдыхаемого и выдыхаемого воздуха
Рубрика (тематическая категория) Спорт

Физиология дыхания

Жизнедеятельность живого организма связана с поглощением им О 2 и выделœением СО 2 . По этой причине в понятие дыхание входят всœе процессы, связанные с доставкой О 2 из внешней среды внутрь клеток и выделœением СО 2 из клетки в окружающую среду.

Под физиологией дыхания понимают следующие процессы: внешнее дыхание, газообмен в легких, транспорт газов кровью, тканевое и клеточное дыхание.

Внешнее дыхание осуществляется дыхательным аппаратом человека. К нему относятся грудная клетка с мышцами, приводящими ее в движение и легкие с воздухоносными путями. Главными дыхательными мышцами являются диафрагма и межреберные мышцы – внутренние и наружные.

При вдохе происходит сокращение мышечных волокон диафрагмы, она уплощается и опускается вниз. При этом грудная клетка увеличивается в вертикальном направлении. Сокращение наружных реберных мышц поднимает ребра и отодвигает их в стороны, а грудину – вперед. При этом грудная клетка расширяется в поперечном и переднезаднем направлениях. При расширении грудной полости пассивно расширяются и легкие за счёт атмосферного давления, действующего через воздухоносные пути на внутреннюю поверхность легких. При расширении легких воздух в них распределяется в большем объёме и давление в полости легких становится ниже атмосферного (на 3-4мм.рт.ст.). Разность давления является причиной того, что атмосферный воздух начинает поступать в легкие – происходит вдох.

Выдох осуществляется в результате расслабления дыхательных мышц. Когда прекращается их сокращение грудная клетка опускается и возвращается в исходное положение. Расслабившаяся диафрагма поднимается вверх и принимает форму купола. Растянутые легкие уменьшаются в объёме. Все вместе взятое приводит к повышению внутрилегочного давления. Воздух выходит из легких наружу – происходит выдох.

Газообмен или вентиляция легких - ϶ᴛᴏ объём воздуха, проходящий через легкие в одну минуту – минутный объём дыхания. В покое он равен – 5-8 л/мин, при мышечной работе увеличивается.

Человек вдыхает атмосферный воздух, в котором содержится 20,94% кислорода, 78,03% азота͵ 0,03% углекислого газа. Выдыхаемый воздух содержит кислорода меньше (16,3%) и 4% углекислого газа. За счёт разности парционального давления О 2 во вдыхаемом и выдыхаемом воздухе, кислород из воздуха поступает в альвеолы легких. Парциональное давление СО 2 в капиллярах венозной крови равно 47мм.рт.ст., а парциональное давление СО 2 в альвеолах равно 40. За счёт разности парционального давления СО 2 из венозной крови выходит в воздух. Азот в газообмене не участвует. Условия газообмена в легких настолько благоприятны, что, не смотря на то, что время прохождения крови через капилляры легких составляет около 1 секунды, напряжение газов в альвеолярной крови, оттекающих от легких таково, каким оно было бы и после длительного контакта.

В случае если вентиляция легких недостаточна и в альвеолах повышается содержание СО 2 ,то повышается уровень СО 2 и в крови, что немедленно приводит к усилению дыхания – одышке.

Перенос газов кровью.

Газы очень слабо растворяются в жидкости: 100мл крови могут физически растворить около 2% кислорода и 3-4% углекислого газа. Но в эритроцитах крови содержится гемоглобин, который способен химически связывать О 2 и СО 2 . Соединœение гемоглобина с кислородом принято называть оксигемоглобин Hb+О 2 ®HbО 2 , который содержится в артериальной крови. Оксигемоглобин – не прочное соединœение если учесть, что в крови человека содержится около 15% гемоглобина, то 100мл крови могут принœести до 21мл О 2 . Это так называемая кислородная емкость крови. Оксигемоглобин с артериальной кровью направляется к тканям и клеткам, где в результате непрерывно идущих окислительных процессов потребляется О 2 . Гемоглобин подхватывает выделившийся из тканей углекислый газ и образуется непрочное соединœение HbСО 2 – карбгемоглобин. В такое соединœение вступает около 10% выделившегося углекислого газа. Остальная часть соединяется с водой и превращается в угольную кислоту. Эта реакция ускоряется в тысячи раз особым ферментом – карбоангидразой, находящийся в эритроцитах. Далее угольная кислота в тканевых капиллярах реагирует с ионами натрия и калия, образуя бикарбонаты (NaHСО 3 , KHСО 3). Все эти соединœения транспортируются к легким.

Гемоглобин особенно легко соединяется с угарным газом СО 2 (оксид углерода) с образованием карбоксигемоглобина, неспособного к переносу кислорода. Его химическая сродство к гемоглобину почти в 300 раз выше, чем к О 2 . Так при концентрации СО в воздухе, равной 0,1%, около 80% гемоглобина крови оказывается в связи не с кислородом, а с угарным газом. Вследствие этого в организме человека возникают симптомы кислородного голодания (рвота͵ головная боль, потеря сознания). Легкая степень отравления угарным газом является обратимым процессом: СО постепенно отщепляется от гемоглобина и выводится при дыхании свежим воздухом. В тяжелых случаях наступает гибель организма.

Состав вдыхаемого и выдыхаемого воздуха - понятие и виды. Классификация и особенности категории "Состав вдыхаемого и выдыхаемого воздуха" 2017, 2018.