Как решить уравнение 3х. Видеоинструкции по методу Фридрих

Интеллект человека нуждается в постоянных тренировках ничуть не меньше, чем тело в физических нагрузках. Лучший способ развивать, расширять способности этого качества психики - разгадывать кроссворды и решать головоломки, самой известной из которых, конечно, является кубик Рубика. Однако далеко не всем удаётся его собрать. Справиться с этой задачей поможет знание схем и формул решения сборки этой замысловатой игрушки.

Что представляет собой игрушка-головоломка

Механический куб из пластмассы, внешние грани которого состоят из малых кубиков. Размер игрушки определяется количеством малых элементов:

  • 2 х 2;
  • 3 х 3 (первоначальная версия кубика Рубика была именно 3 х 3);
  • 4 х 4;
  • 5 х 5;
  • 6 х 6;
  • 7 х 7;
  • 8 х 8;
  • 9 х 9;
  • 10 х 10;
  • 11 х 11;
  • 13 х 13;
  • 17 х 17.

Любой из малых кубов может вращаться в три стороны по осям, представленным в виде выступов фрагмента одного из трёх цилиндров большого куба. Так конструкция имеет возможность свободно вращаться, но при этом малые детали не выпадают, а держатся друг за друга.

Каждая грань игрушки включает 9 элементов, окрашенных в один из шести цветов, находящиеся друг напротив друга попарно. Классической комбинацией оттенков является:

  • красный напротив оранжевого;
  • белый напротив жёлтого;
  • синий напротив зелёного.

Однако современные версии могут быть окрашены в другие сочетания.

Сегодня можно встретить кубики Рубика разного цвета и форм

Это интересно. Кубик Рубика существует даже в версии для слепых. Там вместо цветовых квадратов есть рельефная поверхность.

Цель сборки головоломки состоит в упорядочивании малых квадратов так, чтобы они образовали грань большого куба одного цвета.

История появления

Идея создания принадлежит венгерскому архитектору Эрне Рубику, который, на самом деле, создавал не игрушку, а наглядное пособие для своих студентов. Таким интересным способом находчивый преподаватель планировал объяснить теорию математических групп (алгебраических структур). Случилось это в 1974 году, а уже через год изобретение было запатентовано как игрушка-головоломка - настолько прикипели душой будущие архитекторы (и не только они) к замысловатому и яркому пособию.

Выпуск первой серии головоломки был приурочен к новому 1978 году, но в мир игрушка вышла благодаря предпринимателям Тибору Лакзи и Тому Кремеру.

Это интересно. С момента появления кубика Рубика («магического куба», «волшебного куба») было продано около 350 миллионов экземпляров по всему миру, что ставит головоломку на первое место по популярности среди игрушек. Не говоря уже о десятках компьютерных игр, основанных на таком принципе сборки.

Кубик Рубика - это знаковая игрушка для многих поколений

В 80-е годы с кубиком Рубика познакомились жители СССР, а в 1982 в Венгрии был организован первый чемпионат мира по сборке головоломки на скорость - спидкубинг. Тогда лучший результат составил 22,95 секунды (для сравнения: в 2017 году установлен новый мировой рекорд: 4,69 секунды).

Это интересно. Любители собирать разноцветную головоломку настолько привязаны к игрушке, что одних соревнований по сборке на скорость им оказывается мало. Поэтому в последние годы появились чемпионаты по решению головоломки с закрытыми глазами, одной рукой, ногами.

Что такое формулы для кубика Рубика

Собрать волшебный куб - это значит составить все маленькие детали так, чтобы получилась целая грань одного цвета, нужно воспользоваться алгоритмом Бога. Этот термин обозначает набор из минимума действий, которые позволят разрешить головоломку, имеющую конечное число ходов и комбинаций.

Это интересно. Кроме кубика Рубика, алгоритм Бога применяется к таким головоломкам, как пирамидка Мефферта, Такен, Ханойская башня и др.

Поскольку магический куб Рубика был создан как математическое пособие, то его сборка раскладывается по формулам.

Сборка кубика Рубика основывается на использовании специальных формул

Важные определения

Для того чтобы научиться понимать схемы решения головоломки, необходимо познакомиться с названиями её частей.

  1. Углом называется сочетание трёх цветов. В кубике 3 х 3 их будет 3, в версии 4 х 4 – 4 и т.д. В игрушке 12 углов.
  2. Ребром обозначают два цвета. Их в кубике 8 штук.
  3. Центр содержит один цвет. Всего их 6.
  4. Грани, как уже было сказано, это одновременно вращающиеся элементы головоломки. Ещё они называются «слоями» или «ломтиками».

Значения в формулах

Следует отметить, что формулы по сборке составлены на латинице - именно такие схемы широко представлены в различных руководствах по работе с головоломкой. Но есть и русифицированные версии. В перечне ниже даны оба варианта.

  1. Фронтальная грань (фронт или фасад) – это передняя грань, которая находится цветом к нам [Ф] (или F - front).
  2. Задняя грань - это грань, которая находится центром от нас [З] (или B - back).
  3. Правая Грань - грань, что находится справа [П] (или R - right).
  4. Левая Грань - грань, которая находится слева [Л] (или L - left).
  5. Нижняя Грань - грань, которая находится внизу [Н] (или D - down).
  6. Верхняя Грань - грань, которая находится вверху [В] (или U - up).

Фотогалерея: части кубика Рубика и их определения

Для разъяснения обозначений в формулах используем русскую версию - так будет понятнее новичкам, но для тех, кто захочет перейти на профессиональный уровень спидкубинга без международной системы обозначений на английском языке не обойтись.

Это интересно. Международная система обозначения принята Всемирной ассоциацией кубика (World Cube Association, WCA).

  1. Центральные кубики обозначены в формулах одной строчной буквой - ф, т, п, л, в, н.
  2. Угловые - тремя буквами по наименованию граней, например, фпв, флни т. д.
  3. Прописными буквами Ф, Т, П, Л, В, Н обозначаются элементарные операции поворота соответствующей грани (слоя, ломтика) куба на 90° по часовой стрелке.
  4. Обозначения Ф", Т", П", Л", В", Н" соответствуют повороту граней на 90° против часовой стрелки.
  5. Обозначения Ф 2 , П 2 и т. д. говорят о двойном повороте соответствующей грани (Ф 2 = ФФ).
  6. Буквой С обозначают поворот среднего слоя. Подстрочный индекс показывает, со стороны какой грани следует смотреть, чтобы проделать этот поворот. Например, С П - со стороны правой грани, С Н - со стороны нижней, С" Л - со стороны левой, против часовой стрелки и т. д. Понятно, что С Н =С" В, С П =С" Л и т. п.
  7. Буква О - поворот (оборот) всего куба вокруг своей оси. О Ф - со стороны фасадной грани по часовой стрелке и т. д.

Запись процесса (Ф" П") Н 2 (ПФ) означает: повернуть фасадную грань против часовой стрелки на 90°, то же - правую грань, повернуть нижнюю грань дважды (то есть на 180°), повернуть правую грань на 90° по часовой стрелке, повернуть фасадную грань на 90° по часовой стрелке.

Неизвестен

http://dedfoma.ru/kubikrubika/kak-sobrat-kubik-rubika-3x3x3.htm

Новичкам важно научиться понимать формулы

Как правило, в инструкциях по сборке головоломки в классических цветах рекомендуется держать головоломку жёлтым центром вверх. Это совет особенно важен для новичков.

Это интересно. Есть сайты, визуализирующие формулы. Причём скорость процесса сборки можно устанавливать самостоятельно. Например, alg.cubing.net

Как решить головоломку Рубика

Существует два типа схем:

  • для новичков;
  • для профессионалов.

Их отличие в сложности формул, а также скорости сборки. Для новичков, конечно, будут более полезны соответствующие их уровню владения головоломкой инструкции. Но и они, потренировавшись, через время смогут складывать игрушку за 2–3 минуты.

Как собрать стандартный куб 3 х 3

Начнём со сборки классического 3 х 3 кубика Рубика с помощью схемы из 7 шагов.

Классической версией головоломки является кубик Рубика 3 х 3

Это интересно. Обратный процесс, применяемый для решения тех или иных неправильно расположенных кубиков, представляет собой обратную последовательность действия, описанного формулой. То есть формулу необходимо прочитать справа налево, а вращать слои против часовой стрелки, если было указано прямое перемещение, и наоборот: прямое, если описано противоположное.

Пошаговая инструкция сборки

  1. Начинаем со сборки креста верхней грани. Нужный кубик опускаем вниз, повернув соответствующую боковую грань (П, Т, Л)и выводим на фасадную грань операцией Н, Н" или Н 2 . Заканчиваем этап выведения зеркальным поворотом (обратным) той же боковой грани, восстанавливающим первоначальное положение затронутого рёберного кубика верхнего слоя. После этого проводим операцию а) или б) первого этапа. В случае а) кубик вышел на фасадную грань так, что цвет его передней грани совпадает с цветом фасада. В случае б) кубик надо не только переместить наверх, но и развернуть его, чтобы он был правильно сориентирован, став на своё место.

    Собираем крест верхней линии

  2. Отыскивается нужный угловой кубик (имеющий цвета граней Ф, В, Л) и тем же приёмом, который описан для первого этапа, выводится в левый угол избранной фасадной грани (или жёлтой). Здесь могут быть три случая ориентации этого кубика. Сравниваем свой случай с рисунком и применяем одну из операций второго этапа а, били в. Точками на схеме отмечено место, на которое должен стать нужный кубик. Отыскиваем на кубе остальные три угловых кубика и повторяем описанный приём для перемещения их на свои места верхней грани. Результат: верхний слой подобран. Первые два этапа почти ни у кого не вызывают затруднений: довольно легко можно следить за своими действиями, так как все внимание обращено на один слой, а что делается в двух оставшихся - совсем неважно.

    Подбираем верхний слой

  3. Наша цель: отыскать нужный кубик и сначала вывести вниз на фасадную грань. Если он внизу - простым поворотом нижней грани до совпадения с цветом фасада, а если он в среднем слое, то его нужно сначала опустить вниз любой из операций а)или б), а потом совместить по цвету с цветом фасадной грани и проделать операцию третьего этапа а) или б). Результат: собрано два слоя. Приведённые здесь формулы являются зеркальными в полном смысле этого слова. Наглядно увидеть это можно, если поставить справа или слева от кубика зеркало (ребром к себе) и проделать любую из формул, в зеркале: увидим вторую формулу. То есть операции с фасадной, нижней, верхней (здесь не участвует), и тыльной (тоже не участвует) гранями меняют знак на противоположный: было по часовой стрелке, стало против часовой, и наоборот. А левая грань меняется с правой, и, соответственно, меняет направление поворота на противоположное.

    Отыскиваем нужный кубик и выводим его вниз на фасадную грань

  4. К цели приводят операции, перемещающие бортовые кубики одной грани, не нарушающие в конечном счёте порядка в собранных слоях. Один из процессов, позволяющий подобрать все бортовые грани, дан на рисунке. Там же показано и что происходит при этом с другими кубиками грани. Повторяя процесс, выбрав другую фасадную грань, можно поставить на место все четыре кубика. Результат: рёберные детали стоят на своих местах, но два из них, или даже все четыре, могут быть неверно ориентированы. Важно: прежде чем приступить к выполнению этой формулы, смотрим, какие кубики уже стоят на своих местах - они могут быть неправильно ориентированы. Если ни одного или один, то пробуем повернуть верхнюю грань так, чтобы два, находящиеся на двух соседних боковых гранях (фв+пв, пв+тв, тв+лв, лв+фв), встали на свои места, после этого ориентируем куб так, как показано на рисунке, и выполняем приведённую на этом этапе формулу. Если не получается поворотом верхней грани совместить детали, принадлежащие соседним граням, то выполняем формулу при любом положении кубиков верхней грани один раз и пробуем ещё раз поворотом верхней грани поставить на свои места 2 детали, находящиеся на двух соседних боковых гранях.

    Важно проверить ориентацию кубиков на этом этапе

  5. Учитываем, что разворачиваемый кубик должен быть на правой грани, на рисунке он помечен стрелками (кубик пв). На рисунках а, б,и в представлены возможные случаи расположения неверно ориентированных кубиков (помечены точками). Используя формулу в случае а), выполняем промежуточный поворот В", чтобы вывести второй кубик на правую грань, и завершающий поворот В, который вернёт верхнюю грань в исходное положение, в случае б) промежуточный поворот В 2 и завершающий тоже В 2 , а в случае в) промежуточный поворот В нужно выполнять три раза, после переворота каждого кубика и завершить также поворотом В. Многих смущает то, что после первой части процесса (ПС Н) 4 нужный кубик разворачивается как надо, но порядок в собранных слоях нарушается. Это сбивает с толку и некоторых заставляет бросить на полпути почти собранный куб. Выполнив промежуточный поворот, не обращая внимания на «поломку» нижних слоёв, выполняем операции (ПС Н) 4 со вторым кубиком (вторая часть процесса), и всё становится на свои места. Результат: собран крест.

    Результатом этого этапа будет собранный крест

  6. Углы последней грани ставим на свои места, используя 8-ходовый процесс, удобный для запоминания,- прямой, переставляющий три угловых детали в направлении по часовой стрелке, и обратный, переставляющий три кубика в направлении против часовой стрелки. После пятого этапа, как правило, хотя бы один кубик да сядет на своё место, пусть и неправильно ориентированно. (Если после пятого этапа ни один из угловых кубиков не сел на своё место, то применяем любой из двух процессов для любых трёх кубиков, после этого точно один кубик будет на своём месте.). Результат: все угловые кубики заняли свои места, но два из них (а может, и четыре) могут быть ориентированы неправильно.

    Угловые кубики сидят на своих местах

  7. Многократно повторяем последовательность поворотов ПФ"П"Ф. Поворачиваем куб так, чтобы кубик, который хотим развернуть, был в правом верхнем углу фасада. 8-ходовый процесс (2 х 4 хода) повернёт его на 1 / 3 оборота по часовой стрелке. Если при этом кубик ещё не сориентировался, повторяем 8-ходовку ещё раз (в формуле это отражено индексом «N»). Не обращаем внимания на то, что нижние слои при этом придут в беспорядок. На рисунке показаны четыре случая расположения неправильно ориентированных кубиков (они помечены точками). В случае а) требуется промежуточный поворот В и завершающий В", в случае б) - промежуточный и завершающий поворот В 2 , в случае в)- поворот В выполняется после разворота каждого кубика до правильной ориентации, а завершающий В 2 , в случае г) - промежуточный поворот В также выполняется после разворота каждого кубика до правильной ориентации, и завершающим в этом случае тоже будет поворот В. Результат: последняя грань собрана.

    Возможные ошибки показаны точками

Формулы для исправления располжения кубиков могут быть показаны так.

Формулы для исправления неправильно ориентированных кубиков на последнем этапе

Суть метода Джессики Фридрих

Способов сборки головоломки существует несколько, но одним из самых запоминающихся является вариант, разработанный Джессикой Фридрих - профессором университета в Бингемтоне (штат Нью-Йорк), занимающейся разработки методик скрытия данных в цифровых изображениях. Ещё будучи подростком, Джессика настолько увлеклась кубиком, что 1982 году стала чемпионкой мира по спидкубингу и впоследствии не оставила своего хобби, разработав формулы для быстрой сборки «магического куба». Один из самых популярных вариантов складывания куба называется CFOP - по первым буквам четырёх шагов сборки.

Инструкция:

  1. Собираем крест на верхней грани, который составлен из кубиков на рёбрах нижней грани. Этот этап называется Cross - крест.
  2. Собираем нижний и средний слои, то есть грань, на которой расположен крест, и промежуточный слой, состоящий из четырёх боковых деталей. Название этого шага F2L (First two layers) – первые два слоя.
  3. Собираем оставшуюся грань, не обращая внимания на то, что не все детали на своих местах. Этап носит название OLL (Orient the last layer), что переводится как «ориентация последнего слоя».
  4. Последний уровень - PLL (Permute the last layer) - заключается в правильной расстановке кубиков верхнего слоя.

Видеоинструкции по методу Фридрих

Способ, который был предложен Джессикой Фридрих, настолько понравился спидкуберам, что наиболее продвинутые любители разрабатывают собственные методики по ускорению сборки каждого из этапов, предложенных автором.

Видео: ускорение сборки креста

Видео: собираем первые два слоя

Видео: работаем с последним слоем

Видео: последний уровень сборки по Фридрих

2 х 2

Кубик Рубика 2 х 2 или мини-кубик Рубика также складывается послойно, начиная с нижнего уровня.

Мини-кубик - это облегчённая версия классической головоломки

Инструкция для начинающих по лёгкой сборке

  1. Собираем нижний слой так, чтобы цвета четырёх последних кубиков совпали, а оставшиеся два цвета были такими же, как и цвета соседних деталей.
  2. Приступаем к упорядочиванию верхнего слоя. Обращаем внимание, что на данном этапе цель не совместить цвета, а поставить кубики по местам. Начинаем с определения цвета верха. Здесь всё просто: это будет тот цвет, который не появился в нижнем слое. Вращаем любой из верхних кубиков так, чтобы он попал в положение, когда пересекаются три цвета элемента. Зафиксировав угол, располагаем элементы оставшихся. Используем для этого две формулы: одна для изменения диагональных кубиков, другая - для соседних.
  3. Завершаем верхний слой. Все операции проводим попарно: вращаем один угол, а затем другой, но в противоположном направлении (например, первый по часовой стрелке, второй - против). Можно работать сразу с тремя углами, но в этом случае комбинация будет только одна: либо по часовой, либо против часовой стрелки. Между вращениями углов, поворачиваем верхнюю грань, чтобы отрабатываемый угол оказался в правом верхнем углу. Если работаем с тремя углами, то правильно ориентированный из них ставим сзади слева.

Формулы для вращения углов:

  • (ВФПВ · П"В"Ф")² (5);
  • В²Ф·В²Ф"·В"Ф·В"Ф"(6);
  • ФВФ² · ЛФЛ² · ВЛВ² (7).

Для поворота сразу трёх углов:

  • (ФВПВ"П"Ф"В")² (8);
  • ФВ·Ф"В·ФВ²·Ф"В² (9);
  • В²Л"В"Л²Ф"Л"Ф²В"Ф" (10).

Фотогалерея: сборка кубика 2 х 2

Видео: метод Фридрих для кубика 2 х 2

Собираем самые сложные версии кубика

К таким относятся игрушки с количеством деталей от 4 х 4 и вплоть до 17 х 17.

Модели кубика на много элементов обычно имеют скруглённые углы для удобства манипуляций с игрушкой

Это интересно. В настоящий момент идёт разработка версии 19 х 19.

При этом следует помнить: что созданы они были на основе кубика 3 х 3, поэтому и сборка выстраивается по двум направлениям.

  1. Собираем центр, так чтобы остались элементы кубика 3 х 3.
  2. Работаем по схемам для сборки первоначального варианта игрушки (чаще всего куберы пользуются способом Джессики Фридрих).

4 х 4

Эта версия называется «Месть Рубика».

Инструкция:

Сборка моделей 5 х 5, 6 х 6 и 7 х 7 аналогична предыдущей, только за основу центра берём большее количество кубиков.

Видео: сборка кубика Рубика 5 х 5

Работаем над решением головоломки 6 х 6

Этот кубик довольно неудобен в работе: большое количество маленьких деталей требует особого внимания. Поэтому видеоинструкции разделим на четыре части: для каждого этапа сборки.

Видео: как собрать центр в кубике 6 х 6, часть 1

Видео: спаривание рёберных элементов в кубике 6 х 6, часть 2

Видео: спаривание четырёх элементов головоломке 6 х 6, часть 3

Видео: окончательная сборка кубика Рубика 6 х 6, часть 4

Видео: собираем головоломку 7 х 7

Как решить головоломку-пирамиду

Эта головоломка ошибочно считается разновидностью кубика Рубика. Но на самом деле игрушка Мефферта, которая ещё называется «Японский тетраэдр» или «Молдавская пирамидка», появилась на несколько лет раньше наглядного пособия преподавателя-архитектора.

Пирамидка Мефферта ошибочно называется головоломкой Рубика

Для работы с этой головоломкой важно знать её устройство, ведь механизм работы играет ключевую роль для сборки. Японский тетраэдр состоит из:

  • четырёх элементов оси;
  • шести рёберных;
  • четырёх угловых.

Каждая деталь оси имеет обращённые на три соседствующие грани маленькие треугольники. То есть каждый элемент можно вращать без угрозы его выпадения из конструкции.

Это интересно. Существует 75 582 720 вариантов расположения элементов пирамидки. В отличие от кубика Рубика, это не так уж и много. Классический вариант головоломки насчитывает 43 252 003 489 856 000 возможных вариантов конфигураций.

Инструкция и схема

Видео: простая методика сборки пирамидки полностью

Метод для детей

Использование формул и применение способов ускорения сборки для детей, только начинающих знакомство с головоломкой, будет слишком сложным заданием. Поэтому задача взрослых состоит в том, чтобы максимально упростить объяснение.

Кубик Рубика это не только возможность занять ребёнка полезным и интересным занятием, но и способ развития терпения, усидчивости

Это интересно. Обучение детей лучше начинать с модели 3 х 3.

Инструкция (куб 3 х 3):

  1. Определяемся с цветом верхней грани и берём игрушку так, чтобы центральный кубик нужного цвета был вверху.
  2. Собираем верхний крест, но при этом второй цвет среднего слоя был таким же, как и цвет боковых граней.
  3. Выставляем углы верхней грани. Приступаем ко второму слою.
  4. Собираем последний слой, но начинаем с восстановления последовательности первых. Затем углы ставим так, чтобы они совпадали с центральными деталями граней.
  5. Проверяем расположение средних деталей последней грани, меняя при необходимости их расположение.

Сборка кубика Рубика в любой его вариации - отличная тренировка для ума, способ снять стресс и отвлечься. Решать головоломку способен научиться даже ребёнок, используя доступное возрасту объяснение. Постепенно можно осваивать более замысловатые способы сборки, улучшать собственные показатели времени, а там и до соревнований по спидкубингу недалеко. Главное, упорство и терпение.

Поделитесь с друзьями!

Решение показательных уравнений. Примеры.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Что такое показательное уравнение ? Это уравнение, в котором неизвестные (иксы) и выражения с ними находятся в показателях каких-то степеней. И только там! Это важно.

Вот вам примеры показательных уравнений :

3 х ·2 х = 8 х+3

Обратите внимание! В основаниях степеней (внизу) - только числа . В показателях степеней (вверху) - самые разнообразные выражения с иксом. Если, вдруг, в уравнении вылезет икс где-нибудь, кроме показателя, например:

это будет уже уравнение смешанного типа. Такие уравнения не имеют чётких правил решения. Мы их пока рассматривать не будем. Здесь мы будем разбираться с решением показательных уравнений в чистом виде.

Вообще-то, даже чистые показательные уравнения чётко решаются далеко не всегда. Но существуют определённые типы показательных уравнений, которые решать можно и нужно. Вот эти типы мы и рассмотрим.

Решение простейших показательных уравнений.

Для начала решим что-нибудь совсем элементарное. Например:

Даже безо всяких теорий, по простому подбору ясно, что х=2. Больше-то никак, верно!? Никакое другое значение икса не катит. А теперь глянем на запись решения этого хитрого показательного уравнения:

Что мы сделали? Мы, фактически, просто выкинули одинаковые основания (тройки). Совсем выкинули. И, что радует, попали в точку!

Действительно, если в показательном уравнении слева и справа стоят одинаковые числа в каких угодно степенях, эти числа можно убрать и приравнять показатели степеней. Математика позволяет. Остаётся дорешать куда более простое уравнение. Здорово, правда?)

Однако, запомним железно: убирать основания можно только тогда, когда слева и справа числа-основания находятся в гордом одиночестве! Безо всяких соседей и коэффициентов. Скажем, в уравнениях:

2 х +2 х+1 = 2 3 , или

двойки убирать нельзя!

Ну вот, самое главное мы и освоили. Как переходить от злых показательных выражений к более простым уравнениям.

"Вот те раз!" - скажете вы. "Кто ж даст такой примитив на контрольных и экзаменах!?"

Вынужден согласиться. Никто не даст. Но теперь вы знаете, куда надо стремиться при решении замороченных примеров. Надо приводить его к виду, когда слева - справа стоит одно и то же число-основание. Дальше всё будет легче. Собственно, это и есть классика математики. Берём исходный пример и преобразовываем его к нужному нам виду. По правилам математики, разумеется.

Рассмотрим примеры, которые требуют некоторых дополнительных усилий для приведения их к простейшим. Назовём их простыми показательными уравнениями.

Решение простых показательных уравнений. Примеры.

При решении показательных уравнений, главные правила - действия со степенями. Без знаний этих действий ничего не получится.

К действиям со степенями надо добавить личную наблюдательность и смекалку. Нам требуются одинаковые числа-основания? Вот и ищем их в примере в явном или зашифрованном виде.

Посмотрим, как это делается на практике?

Пусть нам дан пример:

2 2х - 8 х+1 = 0

Первый зоркий взгляд - на основания. Они... Они разные! Два и восемь. Но впадать в уныние - рано. Самое время вспомнить, что

Двойка и восьмёрка - родственнички по степени.) Вполне можно записать:

8 х+1 = (2 3) х+1

Если вспомнить формулку из действий со степенями:

(а n) m = a nm ,

то вообще отлично получается:

8 х+1 = (2 3) х+1 = 2 3(х+1)

Исходный пример стал выглядеть вот так:

2 2х - 2 3(х+1) = 0

Переносим 2 3 (х+1) вправо (элементарных действий математики никто не отменял!), получаем:

2 2х = 2 3(х+1)

Вот, практически, и всё. Убираем основания:

Решаем этого монстра и получаем

Это правильный ответ.

В этом примере нас выручило знание степеней двойки. Мы опознали в восьмёрке зашифрованную двойку. Этот приём (шифровка общих оснований под разными числами) - очень популярный приём в показательных уравнениях! Да и в логарифмах тоже. Надо уметь узнавать в числах степени других чисел. Это крайне важно для решения показательных уравнений.

Дело в том, что возвести любое число в любую степень - не проблема. Перемножить, хоть на бумажке, да и всё. Например, возвести 3 в пятую степень сможет каждый. 243 получится, если таблицу умножения знаете.) Но в показательных уравнениях гораздо чаще надо не возводить в степень, а наоборот... Узнавать, какое число в какой степени скрывается за числом 243, или, скажем, 343... Здесь вам никакой калькулятор не поможет.

Степени некоторых чисел надо знать в лицо, да... Потренируемся?

Определить, какими степенями и каких чисел являются числа:

2; 8; 16; 27; 32; 64; 81; 100; 125; 128; 216; 243; 256; 343; 512; 625; 729, 1024.

Ответы (в беспорядке, естественно!):

5 4 ; 2 10 ; 7 3 ; 3 5 ; 2 7 ; 10 2 ; 2 6 ; 3 3 ; 2 3 ; 2 1 ; 3 6 ; 2 9 ; 2 8 ; 6 3 ; 5 3 ; 3 4 ; 2 5 ; 4 4 ; 4 2 ; 2 3 ; 9 3 ; 4 5 ; 8 2 ; 4 3 ; 8 3 .

Если приглядеться, можно увидеть странный факт. Ответов существенно больше, чем заданий! Что ж, так бывает... Например, 2 6 , 4 3 , 8 2 - это всё 64.

Предположим, что вы приняли к сведению информацию о знакомстве с числами.) Напомню ещё, что для решения показательных уравнений применим весь запас математических знаний. В том числе и из младших-средних классов. Вы же не сразу в старшие классы пошли, верно?)

Например, при решении показательных уравнений очень часто помогает вынесение общего множителя за скобки (привет 7 классу!). Смотрим примерчик:

3 2х+4 -11·9 х = 210

И вновь, первый взгляд - на основания! Основания у степеней разные... Тройка и девятка. А нам хочется, чтобы были - одинаковые. Что ж, в этом случае желание вполне исполнимое!) Потому, что:

9 х = (3 2) х = 3 2х

По тем же правилам действий со степенями:

3 2х+4 = 3 2х ·3 4

Вот и отлично, можно записать:

3 2х ·3 4 - 11·3 2х = 210

Мы привели пример к одинаковым основаниям. И что дальше!? Тройки-то нельзя выкидывать... Тупик?

Вовсе нет. Запоминаем самое универсальное и мощное правило решения всех математических заданий:

Не знаешь, что нужно - делай, что можно!

Глядишь, всё и образуется).

Что в этом показательном уравнении можно сделать? Да в левой части прямо просится вынесение за скобки! Общий множитель 3 2х явно намекает на это. Попробуем, а дальше видно будет:

3 2х (3 4 - 11) = 210

3 4 - 11 = 81 - 11 = 70

Пример становится всё лучше и лучше!

Вспоминаем, что для ликвидации оснований нам необходима чистая степень, безо всяких коэффициентов. Нам число 70 мешает. Вот и делим обе части уравнения на 70, получаем:

Оп-па! Всё и наладилось!

Это окончательный ответ.

Случается, однако, что выруливание на одинаковые основания получается, а вот их ликвидация - никак. Такое бывает в показательных уравнениях другого типа. Освоим этот тип.

Замена переменной в решении показательных уравнений. Примеры.

Решим уравнение:

4 х - 3·2 х +2 = 0

Сначала - как обычно. Переходим к одному основанию. К двойке.

4 х = (2 2) х = 2 2х

Получаем уравнение:

2 2х - 3·2 х +2 = 0

А вот тут и зависнем. Предыдущие приёмы не сработают, как ни крутись. Придётся доставать из арсенала ещё один могучий и универсальный способ. Называется он замена переменной.

Суть способа проста до удивления. Вместо одного сложного значка (в нашем случае - 2 х) пишем другой, попроще (например - t). Такая, казалось бы, бессмысленная замена приводит к потрясным результатам!) Просто всё становится ясным и понятным!

Итак, пусть

Тогда 2 2х = 2 х2 = (2 х) 2 = t 2

Заменяем в нашем уравнении все степени с иксами на t:

Ну что, осеняет?) Квадратные уравнения не забыли ещё? Решаем через дискриминант, получаем:

Тут, главное, не останавливаться, как бывает... Это ещё не ответ, нам икс нужен, а не t. Возвращаемся к иксам, т.е. делаем обратную замену. Сначала для t 1:

Стало быть,

Один корень нашли. Ищем второй, из t 2:

Гм... Слева 2 х, справа 1... Неувязочка? Да вовсе нет! Достаточно вспомнить (из действий со степенями, да...), что единичка - это любое число в нулевой степени. Любое. Какое надо, такое и поставим. Нам нужна двойка. Значит:

Вот теперь всё. Получили 2 корня:

Это ответ.

При решении показательных уравнений в конце иногда получается какое-то неудобное выражение. Типа:

Из семёрки двойка через простую степень не получается. Не родственники они... Как тут быть? Кто-то, может и растеряется... А вот человек, который прочитал на этом сайте тему "Что такое логарифм?" , только скупо улыбнётся и запишет твёрдой рукой совершенно верный ответ:

Такого ответа в заданиях "В" на ЕГЭ быть не может. Там конкретное число требуется. А вот в заданиях "С" - запросто.

В этом уроке приведены примеры решения самых распространённых показательных уравнений. Выделим основное.

Практические советы:

1. Первым делом смотрим на основания степеней. Соображаем, нельзя ли их сделать одинаковыми. Пробуем это сделать, активно используя действия со степенями. Не забываем, что числа без иксов тоже можно превращать в степени!

2. Пробуем привести показательное уравнение к виду, когда слева и справа стоят одинаковые числа в каких угодно степенях. Используем действия со степенями и разложение на множители. То что можно посчитать в числах - считаем.

3. Если второй совет не сработал, пробуем применить замену переменной. В итоге может получиться уравнение, которое легко решается. Чаще всего - квадратное. Или дробное, которое тоже сводится к квадратному.

4. Для успешного решения показательных уравнений надо степени некоторых чисел знать "в лицо".

Как обычно, в конце урока вам предлагается немного порешать.) Самостоятельно. От простого - к сложному.

Решить показательные уравнения:

Посложнее:

2 х+3 - 2 х+2 - 2 х = 48

9 х - 8·3 х = 9

2 х - 2 0,5х+1 - 8 = 0

Найти произведение корней:

2 3-х + 2 х = 9

Получилось?

Ну, тогда сложнейший пример (решается, правда, в уме...):

7 0.13х + 13 0,7х+1 + 2 0,5х+1 = -3

Что, уже интереснее? Тогда вот вам злой пример. Вполне тянет на повышенную трудность. Намекну, что в этом примере спасает смекалка и самое универсальное правило решения всех математических заданий.)

2 5х-1 · 3 3х-1 · 5 2х-1 = 720 х

Пример попроще, для отдыха):

9·2 х - 4·3 х = 0

И на десерт. Найти сумму корней уравнения:

х·3 х - 9х + 7·3 х - 63 = 0

Да-да! Это уравнение смешанного типа! Которые мы в этом уроке не рассматривали. А что их рассматривать, их решать надо!) Этого урока вполне достаточно для решения уравнения. Ну и, смекалка нужна... И да поможет вам седьмой класс (это подсказка!).

Ответы (в беспорядке, через точку с запятой):

1; 2; 3; 4; решений нет; 2; -2; -5; 4; 0.

Всё удачно? Отлично.

Есть проблемы? Не вопрос! В Особом разделе 555 все эти показательные уравнения решаются с подробными объяснениями. Что, зачем, и почему. Ну и, конечно, там имеется дополнительная ценная информация по работе со всякими показательными уравнениями. Не только с этими.)

Последний забавный вопрос на соображение. В этом уроке мы работали с показательными уравнениями. Почему я здесь ни слова не сказал про ОДЗ? В уравнениях - это очень важная штука, между прочим...

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

Решение уравнений и неравенств с модулем часто вызывает затруднения. Однако, если хорошо понимать, что такое модуль числа , и как правильно раскрывать выражения, содержащие знак модуля , то наличие в уравнении выражения, стоящего под знаком модуля , перестает быть препятствием для его решения.

Немного теории. Каждое число имеет две характеристики: абсолютное значение числа, и его знак.

Например, число +5, или просто 5 имеет знак "+" и абсолютное значение 5.

Число -5 имеет знак "-" и абсолютное значение 5.

Абсолютные значения чисел 5 и -5 равны 5.

Абсолютное значение числа х называется модулем числа и обозначается |x|.

Как мы видим, модуль числа равен самому числу, если это число больше или равно нуля, и этому числу с противоположным знаком, если это число отрицательно.

Это же касается любых выражений, которые стоят под знаком модуля.

Правило раскрытия модуля выглядит так:

|f(x)|= f(x), если f(x) ≥ 0, и

|f(x)|= - f(x), если f(x) < 0

Например |x-3|=x-3, если x-3≥0 и |x-3|=-(x-3)=3-x, если x-3<0.

Чтобы решить уравнение, содержащее выражение, стоящее под знаком модуля, нужно сначала раскрыть модуль по правилу раскрытия модуля .

Тогда наше уравнение или неравенство преобразуется в два различных уравнения, существующих на двух различных числовых промежутках.

Одно уравнение существует на числовом промежутке, на котором выражение, стоящее под знаком модуля неотрицательно.

А второе уравнение существует на промежутке, на котором выражение, стоящее под знаком модуля отрицательно.

Рассмотрим простой пример.

Решим уравнение:

|x-3|=-x 2 +4x-3

1. Раскроем модуль.

|x-3|=x-3, если x-3≥0, т.е. если х≥3

|x-3|=-(x-3)=3-x, если x-3<0, т.е. если х<3

2. Мы получили два числовых промежутка: х≥3 и х<3.

Рассмотрим, в какие уравнения преобразуется исходное уравнение на каждом промежутке:

А) При х≥3 |x-3|=x-3, и наше уранение имеет вид:

Внимание! Это уравнение существует только на промежутке х≥3!

Раскроем скобки, приведем подобные члены:

и решим это уравнение.

Это уравнение имеет корни:

х 1 =0, х 2 =3

Внимание! поскольку уравнение x-3=-x 2 +4x-3 существует только на промежутке х≥3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 2 =3.

Б) При x<0 |x-3|=-(x-3) = 3-x, и наше уравнение приобретает вид:

Внимание! Это уравнение существует только на промежутке х<3!

Раскроем скобки, приведем подобные члены. Получим уравнение:

х 1 =2, х 2 =3

Внимание! поскольку уравнение 3-х=-x 2 +4x-3 существует только на промежутке x<3, нас интересуют только те корни, которые принадлежат этому промежутку. Этому условию удовлетворяет только х 1 =2.

Итак: из первого промежутка мы берем только корень х=3, из второго - корень х=2.

для решения математики. Быстро найти решение математического уравнения в режиме онлайн . Сайт www.сайт позволяет решить уравнение почти любого заданного алгебраического , тригонометрического или трансцендентного уравнения онлайн . При изучении практически любого раздела математики на разных этапах приходится решать уравнения онлайн . Чтобы получить ответ сразу, а главное точный ответ, необходим ресурс, позволяющий это сделать. Благодаря сайту www.сайт решение уравнений онлайн займет несколько минут. Основное преимущество www.сайт при решении математических уравнений онлайн - это скорость и точность выдаваемого ответа. Сайт способен решать любые алгебраические уравнения онлайн , тригонометрические уравнения онлайн , трансцендентные уравнения онлайн , а также уравнения с неизвестными параметрами в режиме онлайн . Уравнения служат мощным математическим аппаратом решения практических задач. C помощью математических уравнений можно выразить факты и соотношения, которые могут показаться на первый взгляд запутанными и сложными. Неизвестные величины уравнений можно найти, сформулировав задачу на математическом языке в виде уравнений и решить полученную задачу в режиме онлайн на сайте www.сайт. Любое алгебраическое уравнение , тригонометрическое уравнение или уравнения содержащие трансцендентные функции Вы легко решите онлайн и получите точный ответ. Изучая естественные науки, неизбежно сталкиваешься с необходимостью решения уравнений . При этом ответ должен быть точным и получить его необходимо сразу в режиме онлайн . Поэтому для решения математических уравнений онлайн мы рекомендуем сайт www.сайт, который станет вашим незаменимым калькулятором для решения алгебраических уравнений онлайн , тригонометрических уравнений онлайн , а также трансцендентных уравнений онлайн или уравнений с неизвестными параметрами. Для практических задач по нахождению корней различных математических уравнений ресурса www.. Решая уравнения онлайн самостоятельно, полезно проверить полученный ответ, используя онлайн решение уравнений на сайте www.сайт. Необходимо правильно записать уравнение и моментально получите онлайн решение , после чего останется только сравнить ответ с Вашим решением уравнения. Проверка ответа займет не более минуты, достаточно решить уравнение онлайн и сравнить ответы. Это поможет Вам избежать ошибок в решении и вовремя скорректировать ответ при решении уравнений онлайн будь то алгебраическое , тригонометрическое , трансцендентное или уравнение с неизвестными параметрами.

Цели:

  1. Систематизировать и обобщить знания и умения по теме: Решения уравнений третьей и четвертой степени.
  2. Углубить знания, выполнив ряд заданий, часть из которых не знакома или по своему типу, или способу решения.
  3. Формирование интереса к математике через изучение новых глав математики, воспитание графической культуры через построение графиков уравнений.

Тип урока : комбинированный.

Оборудование: графопроектор.

Наглядность: таблица «Теорема Виета».

Ход урока

1. Устный счет

а) Чему равен остаток от деления многочлена р n (х) = а n х n + а n-1 х n-1 + ... + а 1 х 1 + a 0 на двучлен х-а?

б) Сколько корней может иметь кубическое уравнение?

в) С помощью чего мы решаем уравнение третьей и четвертой степени?

г) Если b четное число в квадратном уравнение, то чему равен Д и х 1 ;х 2

2. Самостоятельная работа (в группах)

Составить уравнение, если известны корни (ответы к заданиям закодированы) Используется «Теорема Виета»

1 группа

Корни: х 1 = 1; х 2 = -2; х 3 = -3; х 4 = 6

Составить уравнение:

B=1 -2-3+6=2; b=-2

с=-2-3+6+6-12-18= -23; с= -23

d=6-12+36-18=12; d= -12

е=1(-2)(-3)6=36

х 4 - 2 х 3 - 23х 2 - 12 х + 36 = 0 (это уравнение решает потом 2 группа на доске)

Решение . Целые корни ищем среди делителей числа 36.

р = ±1;±2;±3;±4;±6…

р 4 (1)=1-2-23-12+36=0 Число 1 удовлетворяет уравнению, следовательно, =1 корень уравнения. По схеме Горнера

р 3 (x) = х 3 -х 2 -24x -36

р 3 (-2) = -8 -4 +48 -36=0, х 2 =-2

р 2 (x) = х 2 -3х -18=0

х 3 =-3, х 4 =6

Ответ: 1;-2;-3;6 сумма корней 2 (П)

2 группа

Корни: х 1 = -1; х 2 = х 3 =2; х 4 =5

Составить уравнение:

B=-1+2+2+5-8; b= -8

с=2(-1)+4+10-2-5+10=15; с=15

D=-4-10+20-10= -4; d=4

е=2(-1)2*5=-20;е=-20

8+15+4х-20=0 (это уравнение решает на доске 3 группа)

р = ±1;±2;±4;±5;±10;±20.

р 4 (1)=1-8+15+4-20=-8

р 4 (-1)=1+8+15-4-20=0

р 3 (x) = х 3 -9х 2 +24x -20

р 3 (2) = 8 -36+48 -20=0

р 2 (x) = х 2 -7х +10=0 х 1 =2; х 2 =5

Ответ: -1;2;2;5 сумма корней 8(Р)

3 группа

Корни: х 1 = -1; х 2 =1; х 3 =-2; х 4 =3

Составить уравнение:

В=-1+1-2+3=1;в=-1

с=-1+2-3-2+3-6=-7;с=-7

D=2+6-3-6=-1; d=1

е=-1*1*(-2)*3=6

х 4 - х 3 - 7х 2 + х + 6 = 0 (это уравнение решает потом на доске 4 группа)

Решение. Целые корни ищем среди делителей числа 6.

р = ±1;±2;±3;±6

р 4 (1)=1-1-7+1+6=0

р 3 (x) = х 3 - 7x -6

р 3 (-1) = -1+7-6=0

р 2 (x) = х 2 -х -6=0; х 1 =-2; х 2 =3

Ответ:-1;1;-2;3 Сумма корней 1(О)

4 группа

Корни: х 1 = -2; х 2 =-2; х 3 =-3; х 4 =-3

Составить уравнение:

B=-2-2-3+3=-4; b=4

с=4+6-6+6-6-9=-5; с=-5

D=-12+12+18+18=36; d=-36

е=-2*(-2)*(-3)*3=-36;е=-36

х 4 + 4х 3 – 5х 2 – 36х -36 = 0 (это уравнение решает потом 5 группа на доске)

Решение. Целые корни ищем среди делителей числа -36

р = ±1;±2;±3…

р(1)= 1 + 4-5-36-36 = -72

р 4 (-2) = 16 -32 -20 + 72 -36 = 0

р 3 (х) = х 3 +2х 2 -9х-18 = 0

р 3 (-2)= -8 + 8 + 18-18 = 0

р 2 (х) = х 2 -9 = 0; x=±3

Ответ: -2; -2; -3; 3 Сумма корней-4 (Ф)

5 группа

Корни: х 1 = -1; х 2 =-2; х 3 =-3; х 4 =-4

Составить уравнение

х 4 + 10х 3 + 35х 2 + 50х + 24 = 0 (это уравнение решает потом 6группа на доске)

Решение . Целые корни ищем среди делителей числа 24.

р = ±1;±2;±3

р 4 (-1) = 1 -10 + 35 -50 + 24 = 0

р 3 (х) = x- 3 + 9х 2 + 26x+ 24 = 0

p 3 (-2) = -8 + 36-52 + 24 = О

р 2 (х) = x 2 + 7x+ 12 = 0

Ответ:-1;-2;-3;-4 сумма-10 (И)

6 группа

Корни: х 1 = 1; х 2 = 1; х 3 = -3; х 4 = 8

Составить уравнение

B=1+1-3+8=7;b=-7

с=1 -3+8-3+8-24= -13

D=-3-24+8-24= -43; d=43

х 4 - 7х 3 - 13х 2 + 43 x - 24 = 0 (это уравнение решает потом 1 группа на доске)

Решение . Целые корни ищем среди делителей числа -24.

р 4 (1)=1-7-13+43-24=0

р 3 (1)=1-6-19+24=0

р 2 (x)= х 2 -5x - 24 = 0

х 3 =-3, х 4 =8

Ответ: 1;1;-3;8 сумма 7 (Л)

3. Решение уравнений с параметром

1. Решить уравнение х 3 + 3х 2 + mх - 15 = 0; если один из корней равен (-1)

Ответ записать в порядке возрастания

R=Р 3 (-1)=-1+3-m-15=0

х 3 + 3х 2 -13х - 15 = 0; -1+3+13-15=0

По условию х 1 = - 1; Д=1+15=16

Р 2 (х) = х 2 +2х-15 = 0

х 2 =-1-4 = -5;

х 3 =-1 + 4 = 3;

Ответ:- 1;-5; 3

В порядке возрастания: -5;-1;3. (Ь Н Ы)

2. Найти все корни многочлена х 3 - 3х 2 + ах - 2а + 6, если остатки от его деления на двучлены х-1 и х +2 равны.

Решение: R=Р 3 (1) = Р 3 (-2)

Р 3 (1) = 1-3 + а- 2а + 6 = 4-а

Р 3 (-2) = -8-12-2а-2а + 6 = -14-4а

x 3 -Зх 2 -6х + 12 + 6 = х 3 -Зх 2 -6х + 18

x 2 (x-3)-6(x-3) = 0

(х-3)(х 2 -6) = 0

3) а=0, х 2 -0*х 2 +0 = 0; х 2 =0; х 4 =0

а=0; х=0; х=1

а>0; х=1; х=а ± √а

2. Составить уравнение

1 группа . Корни: -4; -2; 1; 7;

2 группа . Корни: -3; -2; 1; 2;

3 группа . Корни: -1; 2; 6; 10;

4 группа . Корни: -3; 2; 2; 5;

5 группа . Корни: -5; -2; 2; 4;

6 группа . Корни: -8; -2; 6; 7.