История измерения скорости звука. Теперь мы знаем, что такое скорость и что такое звук, так давайте же соединим эти понятия вместе

4800 17280.0 Углекислый газ 259 932.4 Хлор 206 741.6

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

История измерения скорости звука

Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

Расчёт скорости в жидкости и газе

Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

c = \sqrt{\frac{1}{\beta \rho}}

В частных производных:

c = \sqrt{-v^2 \left(\frac{\partial p}{\partial v}\right)_s} = \sqrt{-v^2 \frac{Cp}{Cv} \left(\frac{\partial p}{\partial v}\right)_T}

Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

Твёрдые тела

В многофазных средах из-за явлений неупругого поглощения энергии скорость звука, вообще говоря, зависит от частоты колебаний (то есть наблюдается дисперсия скорости). Например, оценка скорости упругих волн в двухфазной пористой среде может быть выполнена с применением уравнений теории Био-Николаевского . При достаточно высоких частотах (выше частоты Био ) в такой среде возникают не только продольные и поперечные волны, но также и продольная волна II-рода . При частоте колебаний ниже частоты Био , скорость упругих волн может быть приблизительно оценена с использованием гораздо более простых уравнений Гассмана .

При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

Скорость звука в воде

Иногда также пользуются упрощённой формулой Лероя:

c = 1492,9 + 3(T-10) - 0,006(T-10)^2 - 0,04(T-18)^2 + 1,2(S-35) - 0,01(T-18)(S-35) + z/61,

где z - глубина в метрах. Эта формула обеспечивает точность порядка 0,1 м/с для T < 20 °C и z < 8 000 м.

При температуре 24 °C, солёности 35 промилле и нулевой глубине скорость звука равна около 1 532,3 м/c. При T = 4 °C, глубине 100 м и той же солёности скорость звука равна 1 468,5 м/с .

См. также

Напишите отзыв о статье "Скорость звука"

Примечания

Литература

  • Ландау Л. Д., Лифшиц Е. М., Механика сплошных сред, 2 изд., М., 1953;
  • Михайлов И. Г., Соловьев В. А., Сырников Ю. П., Основы молекулярной акустики, М., 1964;
  • Колесников А. Е., Ультразвуковые измерения, М., 1970;
  • Исакович М. А., Общая акустика, М., 1973.

Ссылки

Отрывок, характеризующий Скорость звука

– Дай бог, дай бог, – сказала Анна Павловна. L"homme de beaucoup de merite, еще новичок в придворном обществе, желая польстить Анне Павловне, выгораживая ее прежнее мнение из этого суждения, сказал.
– Говорят, что государь неохотно передал эту власть Кутузову. On dit qu"il rougit comme une demoiselle a laquelle on lirait Joconde, en lui disant: «Le souverain et la patrie vous decernent cet honneur». [Говорят, что он покраснел, как барышня, которой бы прочли Жоконду, в то время как говорил ему: «Государь и отечество награждают вас этой честью».]
– Peut etre que la c?ur n"etait pas de la partie, [Может быть, сердце не вполне участвовало,] – сказала Анна Павловна.
– О нет, нет, – горячо заступился князь Василий. Теперь уже он не мог никому уступить Кутузова. По мнению князя Василья, не только Кутузов был сам хорош, но и все обожали его. – Нет, это не может быть, потому что государь так умел прежде ценить его, – сказал он.
– Дай бог только, чтобы князь Кутузов, – сказала Анпа Павловна, – взял действительную власть и не позволял бы никому вставлять себе палки в колеса – des batons dans les roues.
Князь Василий тотчас понял, кто был этот никому. Он шепотом сказал:
– Я верно знаю, что Кутузов, как непременное условие, выговорил, чтобы наследник цесаревич не был при армии: Vous savez ce qu"il a dit a l"Empereur? [Вы знаете, что он сказал государю?] – И князь Василий повторил слова, будто бы сказанные Кутузовым государю: «Я не могу наказать его, ежели он сделает дурно, и наградить, ежели он сделает хорошо». О! это умнейший человек, князь Кутузов, et quel caractere. Oh je le connais de longue date. [и какой характер. О, я его давно знаю.]
– Говорят даже, – сказал l"homme de beaucoup de merite, не имевший еще придворного такта, – что светлейший непременным условием поставил, чтобы сам государь не приезжал к армии.
Как только он сказал это, в одно мгновение князь Василий и Анна Павловна отвернулись от него и грустно, со вздохом о его наивности, посмотрели друг на друга.

В то время как это происходило в Петербурге, французы уже прошли Смоленск и все ближе и ближе подвигались к Москве. Историк Наполеона Тьер, так же, как и другие историки Наполеона, говорит, стараясь оправдать своего героя, что Наполеон был привлечен к стенам Москвы невольно. Он прав, как и правы все историки, ищущие объяснения событий исторических в воле одного человека; он прав так же, как и русские историки, утверждающие, что Наполеон был привлечен к Москве искусством русских полководцев. Здесь, кроме закона ретроспективности (возвратности), представляющего все прошедшее приготовлением к совершившемуся факту, есть еще взаимность, путающая все дело. Хороший игрок, проигравший в шахматы, искренно убежден, что его проигрыш произошел от его ошибки, и он отыскивает эту ошибку в начале своей игры, но забывает, что в каждом его шаге, в продолжение всей игры, были такие же ошибки, что ни один его ход не был совершенен. Ошибка, на которую он обращает внимание, заметна ему только потому, что противник воспользовался ею. Насколько же сложнее этого игра войны, происходящая в известных условиях времени, и где не одна воля руководит безжизненными машинами, а где все вытекает из бесчисленного столкновения различных произволов?
После Смоленска Наполеон искал сражения за Дорогобужем у Вязьмы, потом у Царева Займища; но выходило, что по бесчисленному столкновению обстоятельств до Бородина, в ста двадцати верстах от Москвы, русские не могли принять сражения. От Вязьмы было сделано распоряжение Наполеоном для движения прямо на Москву.
Moscou, la capitale asiatique de ce grand empire, la ville sacree des peuples d"Alexandre, Moscou avec ses innombrables eglises en forme de pagodes chinoises! [Москва, азиатская столица этой великой империи, священный город народов Александра, Москва с своими бесчисленными церквами, в форме китайских пагод!] Эта Moscou не давала покоя воображению Наполеона. На переходе из Вязьмы к Цареву Займищу Наполеон верхом ехал на своем соловом энглизированном иноходчике, сопутствуемый гвардией, караулом, пажами и адъютантами. Начальник штаба Бертье отстал для того, чтобы допросить взятого кавалерией русского пленного. Он галопом, сопутствуемый переводчиком Lelorgne d"Ideville, догнал Наполеона и с веселым лицом остановил лошадь.
– Eh bien? [Ну?] – сказал Наполеон.
– Un cosaque de Platow [Платовский казак.] говорит, что корпус Платова соединяется с большой армией, что Кутузов назначен главнокомандующим. Tres intelligent et bavard! [Очень умный и болтун!]
Наполеон улыбнулся, велел дать этому казаку лошадь и привести его к себе. Он сам желал поговорить с ним. Несколько адъютантов поскакало, и через час крепостной человек Денисова, уступленный им Ростову, Лаврушка, в денщицкой куртке на французском кавалерийском седле, с плутовским и пьяным, веселым лицом подъехал к Наполеону. Наполеон велел ему ехать рядом с собой и начал спрашивать:
– Вы казак?
– Казак с, ваше благородие.
«Le cosaque ignorant la compagnie dans laquelle il se trouvait, car la simplicite de Napoleon n"avait rien qui put reveler a une imagination orientale la presence d"un souverain, s"entretint avec la plus extreme familiarite des affaires de la guerre actuelle», [Казак, не зная того общества, в котором он находился, потому что простота Наполеона не имела ничего такого, что бы могло открыть для восточного воображения присутствие государя, разговаривал с чрезвычайной фамильярностью об обстоятельствах настоящей войны.] – говорит Тьер, рассказывая этот эпизод. Действительно, Лаврушка, напившийся пьяным и оставивший барина без обеда, был высечен накануне и отправлен в деревню за курами, где он увлекся мародерством и был взят в плен французами. Лаврушка был один из тех грубых, наглых лакеев, видавших всякие виды, которые считают долгом все делать с подлостью и хитростью, которые готовы сослужить всякую службу своему барину и которые хитро угадывают барские дурные мысли, в особенности тщеславие и мелочность.
Попав в общество Наполеона, которого личность он очень хорошо и легко признал. Лаврушка нисколько не смутился и только старался от всей души заслужить новым господам.
Он очень хорошо знал, что это сам Наполеон, и присутствие Наполеона не могло смутить его больше, чем присутствие Ростова или вахмистра с розгами, потому что не было ничего у него, чего бы не мог лишить его ни вахмистр, ни Наполеон.
Он врал все, что толковалось между денщиками. Многое из этого была правда. Но когда Наполеон спросил его, как же думают русские, победят они Бонапарта или нет, Лаврушка прищурился и задумался.
Он увидал тут тонкую хитрость, как всегда во всем видят хитрость люди, подобные Лаврушке, насупился и помолчал.
– Оно значит: коли быть сраженью, – сказал он задумчиво, – и в скорости, так это так точно. Ну, а коли пройдет три дня апосля того самого числа, тогда, значит, это самое сражение в оттяжку пойдет.
Наполеону перевели это так: «Si la bataille est donnee avant trois jours, les Francais la gagneraient, mais que si elle serait donnee plus tard, Dieu seul sait ce qui en arrivrait», [«Ежели сражение произойдет прежде трех дней, то французы выиграют его, но ежели после трех дней, то бог знает что случится».] – улыбаясь передал Lelorgne d"Ideville. Наполеон не улыбнулся, хотя он, видимо, был в самом веселом расположении духа, и велел повторить себе эти слова.
Лаврушка заметил это и, чтобы развеселить его, сказал, притворяясь, что не знает, кто он.
– Знаем, у вас есть Бонапарт, он всех в мире побил, ну да об нас другая статья… – сказал он, сам не зная, как и отчего под конец проскочил в его словах хвастливый патриотизм. Переводчик передал эти слова Наполеону без окончания, и Бонапарт улыбнулся. «Le jeune Cosaque fit sourire son puissant interlocuteur», [Молодой казак заставил улыбнуться своего могущественного собеседника.] – говорит Тьер. Проехав несколько шагов молча, Наполеон обратился к Бертье и сказал, что он хочет испытать действие, которое произведет sur cet enfant du Don [на это дитя Дона] известие о том, что тот человек, с которым говорит этот enfant du Don, есть сам император, тот самый император, который написал на пирамидах бессмертно победоносное имя.
Известие было передано.
Лаврушка (поняв, что это делалось, чтобы озадачить его, и что Наполеон думает, что он испугается), чтобы угодить новым господам, тотчас же притворился изумленным, ошеломленным, выпучил глаза и сделал такое же лицо, которое ему привычно было, когда его водили сечь. «A peine l"interprete de Napoleon, – говорит Тьер, – avait il parle, que le Cosaque, saisi d"une sorte d"ebahissement, no profera plus une parole et marcha les yeux constamment attaches sur ce conquerant, dont le nom avait penetre jusqu"a lui, a travers les steppes de l"Orient. Toute sa loquacite s"etait subitement arretee, pour faire place a un sentiment d"admiration naive et silencieuse. Napoleon, apres l"avoir recompense, lui fit donner la liberte, comme a un oiseau qu"on rend aux champs qui l"ont vu naitre». [Едва переводчик Наполеона сказал это казаку, как казак, охваченный каким то остолбенением, не произнес более ни одного слова и продолжал ехать, не спуская глаз с завоевателя, имя которого достигло до него через восточные степи. Вся его разговорчивость вдруг прекратилась и заменилась наивным и молчаливым чувством восторга. Наполеон, наградив казака, приказал дать ему свободу, как птице, которую возвращают ее родным полям.]

Скорость звука - скорость распространения упругих волн в среде: как продольных (в газах, жидкостях или твёрдых телах), так и поперечных, сдвиговых (в твёрдых телах). Определяется упругостью и плотностью среды: как правило, в газах скорость звука меньше, чем в жидкостях , а в жидкостях - меньше, чем в твёрдых телах. Также, в газах скорость звука зависит от температуры данного вещества , в монокристаллах - от направления распространения волны. Обычно не зависит от частоты волны и её амплитуды ; в тех случаях, когда скорость звука зависит от частоты, говорят о дисперсии звука.

Энциклопедичный YouTube

  • 1 / 5

    Уже у античных авторов встречается указание на то, что звук обусловлен колебательным движением тела (Птолемей , Евклид). Аристотель отмечает, что скорость звука имеет конечную величину, и правильно представляет себе природу звука . Попытки экспериментального определения скорости звука относятся к первой половине XVII в. Ф.Бэкон в «Новом органоне » указал на возможность определения скорости звука путём сравнения промежутков времени между вспышкой света и звуком выстрела. Применив этот метод, различные исследователи (М.Мерсенн , П.Гассенди , У.Дерхам , группа учёных Парижской академии наук - Д.Кассини , Ж.Пикар , Гюйгенс , Рёмер) определили значение скорости звука (в зависимости от условий экспериментов, 350-390 м/с). Теоретически вопрос о скорости звука впервые рассмотрел И.Ньютон в своих «Началах ». Ньютон фактически предполагал изотермичность распространения звука, поэтому получил заниженную оценку. Правильное теоретическое значение скорости звука было получено Лапласом .

    Расчёт скорости в жидкости и газе

    Скорость звука в однородной жидкости (или газе) вычисляется по формуле:

    c = 1 β ρ {\displaystyle c={\sqrt {\frac {1}{\beta \rho }}}}

    В частных производных:

    c = − v 2 (∂ p ∂ v) s = − v 2 C p C v (∂ p ∂ v) T {\displaystyle c={\sqrt {-v^{2}\left({\frac {\partial p}{\partial v}}\right)_{s}}}={\sqrt {-v^{2}{\frac {C_{p}}{C_{v}}}\left({\frac {\partial p}{\partial v}}\right)_{T}}}}

    где β {\displaystyle \beta } - адиабатическая сжимаемость среды; ρ {\displaystyle \rho } - плотность; C p {\displaystyle C_{p}} - изобарная теплоемкость; C v {\displaystyle C_{v}} - изохорная теплоемкость; p {\displaystyle p} , v {\displaystyle v} , T {\displaystyle T} - давление, удельный объём и температура среды; s {\displaystyle s} - энтропия среды.

    Для растворов и других сложных физико-химических систем (например, природный газ, нефть) данные выражения могут давать очень большую погрешность.

    Твёрдые тела

    При наличии границ раздела, упругая энергия может передаваться посредством поверхностных волн различных типов, скорость которых отличается от скорости продольных и поперечных волн. Энергия этих колебаний может во много раз превосходить энергию объемных волн.

    Большинство людей прекрасно понимают, что такое звук. Он ассоциируется со слухом и связан с физиологическими и психологическими процессами. В головном мозге осуществляется переработка ощущений, которые поступают через органы слуха. Скорость звука зависит от многих факторов.

    Звуки, различаемые людьми

    В общем смысле слова звук - это физическое явление, которое вызывает воздействие на органы слуха. Он имеет вид продольных волн различной частоты. Люди могут слышать звук, частота которого колеблется в пределах 16-20000 Гц. Эти упругие продольные волны, которые распространяются не только в воздухе, но и в других средах, достигая уха человека, вызывают звуковые ощущения. Люди могут слышать далеко не все. Упругие волны частотой меньше 16 Гц называют инфразвуком, а выше 20000 Гц - ультразвуком. Их человеческое ухо не может слышать.

    Характеристики звука

    Различают две основные характеристики звука: громкость и высоту. Первая из них связана с интенсивностью упругой звуковой волны. Существует и другой важный показатель. Физической величиной, которая характеризует высоту, является частота колебаний упругой волны. При этом действует одно правило: чем она больше, тем звук выше, и наоборот. Еще одной важнейшей характеристикой является скорость звука. В разных средах она бывает различной. Она представляет собой скорость распространения упругих звуковых волн. В газовой среде этот показатель будет меньше, чем в жидкостях. Скорость звука в твердых телах самая высокая. При этом для волн продольных она всегда больше, чем для поперечных.

    Скорость распространения звуковых волн

    Этот показатель зависит от плотности среды и ее упругости. В газовых средах на него действует температура вещества. Как правило, скорость звука не зависит от амплитуды и частоты волны. В редких случаях, когда эти характеристики оказывают влияние, говорят о так называемой дисперсии. Скорость звука в парах или газах колеблется в пределах 150-1000 м/с. В жидких средах она составляет уже 750-2000 м/с, а в твердых материалах - 2000-6500 м/с. В нормальных условиях скорость звука в воздухе достигает 331 м/с. В обычной воде - 1500 м/с.

    Скорость звуковых волн в разных химических средах

    Скорость распространения звука в разных химических средах неодинакова. Так, в азоте она составляет 334 м/с, в воздухе - 331, в ацетилене - 327, в аммиаке - 415, в водороде - 1284, в метане - 430, в кислороде - 316, в гелии - 965, в угарном газе - 338, в углекислоте - 259, в хлоре - 206 м/с. Скорость звуковой волны в газообразных средах возрастает с повышением температуры (Т) и давления. В жидкостях она чаще всего уменьшается при увеличении Т на несколько метров за секунду. Скорость звука (м/с) в жидких средах (при температуре 20°С):

    Вода - 1490;

    Этиловый спирт - 1180;

    Бензол - 1324;

    Ртуть - 1453;

    Углерод четыреххлористый - 920;

    Глицерин - 1923.

    Из вышеуказанного правила исключением является только вода, в которой с ростом температуры увеличивается и скорость звука. Своего максимума она достигает при нагревании этой жидкости до 74°С. При дальнейшем повышении температуры скорость звука уменьшается. При увеличении давления она будет увеличиваться на 0,01%/1 Атм. В соленой морской воде с ростом температуры, глубины и солености будет повышаться и скорость звука. В других средах этот показатель изменяется по-разному. Так, в смеси жидкости и газа скорость звука зависит от концентрации ее составляющих. В изотопном твердом теле она определяется его плотностью и модулями упругости. В неограниченных плотных средах распространяются поперечные (сдвиговые) и продольные упругие волны. Скорость звука (м/с) в твердых веществах (продольной/поперечной волны):

    Стекло - 3460-4800/2380-2560;

    Плавленый кварц - 5970/3762;

    Бетон - 4200-5300/1100-1121;

    Цинк - 4170-4200/2440;

    Тефлон - 1340/*;

    Железо - 5835-5950/*;

    Золото - 3200-3240/1200;

    Алюминий - 6320/3190;

    Серебро - 3660-3700/1600-1690;

    Латунь - 4600/2080;

    Никель - 5630/2960.

    В ферромагнетиках скорость звуковой волны зависит от величины напряженности магнитного поля. В монокристаллах скорость звуковой волны (м/с) зависит от направления ее распространения:

    • рубин (продольная волна) - 11240;
    • сульфид кадмия (продольная/поперечная) - 3580/4500;
    • ниобат лития (продольная) - 7330.

    Скорость звука в вакууме равняется 0, поскольку в такой среде он просто не распространяется.

    Определение скорости звука

    Все то, что связано со звуковыми сигналами, интересовало наших предков еще тысячи лет назад. Над определением сущности этого явления работали практически все выдающиеся ученые древнего мира. Еще античные математики установили, что звук обуславливается колебательными движениями тела. Об этом писали Евклид и Птолемей. Аристотель установил, что скорость звука отличается конечной величиной. Первые попытки определения данного показателя были предприняты Ф. Бэконом в XVII в. Он пытался установить скорость путем сравнения временных промежутков между звуком выстрела и вспышкой света. На основании этого метода группа физиков Парижской Академии наук впервые определила скорость звуковой волны. В различных условиях эксперимента она составляла 350-390 м/с. Теоретическое обоснование скорости звука впервые в своих «Началах» рассмотрел И. Ньютон. Произвести правильное определение этого показателя получилось у П.С. Лапласа.

    Формулы скорости звука

    Для газообразных сред и жидкостей, в которых звук распространяется, как правило, адиабатически, изменение температуры, связанное с растяжениями и со сжатиями в продольной волне, не может быстро выравниваться за короткий период времени. Очевидно, что на этот показатель влияет несколько факторов. Скорость звуковой волны в однородной газовой среде или жидкости определяется по следующей формуле:

    где β - адиабатическая сжимаемость, ρ - плотность среды.

    В частных производных данная величина считается по такой формуле:

    c 2 = -υ 2 (δρ/δυ) S = -υ 2 Cp/Cυ (δρ/δυ) T ,

    где ρ, T, υ - давление среды, ее температура и удельный объем; S - энтропия; Cp - изобарная теплоемкость; Cυ - изохорная теплоемкость. Для газовых сред эта формула будет выглядеть таким образом:

    c 2 = ζkT/m= ζRt/M = ζR(t + 273,15)/M = ά 2 T,

    где ζ - величина адиабаты: 4/3 для многоатомных газов, 5/3 для одноатомных, 7/5 для двухатомных газов (воздух); R - газовая постоянная (универсальная); T - абсолютная температура, измеряемая в кельвинах; k - постоянная Больцмана; t - температура в °С; M - молярная масса; m - молекулярная масса; ά 2 = ζR/ M.

    Определение скорости звука в твердом теле

    В твердом теле, обладающем однородностью, существует два вида волн, различающихся поляризацией колебаний по отношению направления их распространения: поперечная (S) и продольная (P). Скорость первой (C S) всегда будет ниже, чем второй (C P):

    C P 2 = (K + 4/3G)/ρ = E(1 - v)/(1 + v)(1-2v)ρ;

    C S 2 = G/ρ = E/2(1 + v)ρ,

    где K, E, G - модули сжатия, Юнга, сдвига; v - коэффициент Пуассона. Во время расчета скорости звука в твердом теле используются адиабатические модули упругости.

    Скорость звука в многофазных средах

    В многофазных средах благодаря неупругому поглощению энергии скорость звука находится в прямой зависимости от частоты колебаний. В двухфазной пористой среде она рассчитывается по уравнениям Био-Николаевского.

    Заключение

    Измерение скорости звуковой волны используется при определении различных свойств веществ, таких как модули упругости твердого тела, сжимаемость жидкостей и газа. Чувствительным методом определения примесей является измерение малых изменений скорости звуковой волны. В твердых телах колебание этого показателя позволяет проводить исследования зонной структуры полупроводников. Скорость звука является очень важной величиной, измерение которой позволяет узнать многое о самых разных средах, телах и других объектах научных исследований. Без умения ее определять были бы невозможны многие научные открытия.

    Многочисленные измерения скорости звука в различных газо­образных, жидких и однородных твердых телах показывают, что она не зависит от частоты (или длины волны), т. е. для звуковых волн дисперсия отсутствует. Лишь для многоатомных газов и жидкостей при ультразвуковых частотах была обнаружена дис­персия. Мы ограничимся изучением распространения звуковых волн в средах без дисперсии. Тогда для расчетов скорости распро­странения звуковой волны мы можем, пользоваться зависимостя­ми, полученными нами для скоростей распространения в упругих средах отдельных импульсов. Для твердых сред:

    (1)

    В жидких и газообразных средах распространение звука про­исходит адиабатически, так как вследствие быстрой смены сжатий и разрежений теплообмен между возмущенной и невозмущенной частями среды не успевает установиться.

    Для жидких сред:

    (2)

    где k - модуль объемного сжатия, - адиабатический коэффи­циент объемного сжатия. Для газообразных сред:

    С =
    (3)

    -адиабатический модуль объемного сжатия. В жид­ких и газообразных телах скорость звука меняется с изменением температуры.

    Для газа имеет место известный из элементарной физики за­кон Бойля - Мариотта и Гей-Люссака:

    Vp =

    V -- объем газа, p - давление, - коэффициент термического расширения.

    Если масса газа при изменении объема остается постоянной, то плотность его обратно пропорциональна объему. И тогда

    Вместо соотношения (3) получим:

    C =
    (4)

    Зависимость скорости звука от температуры для жидкостей более сложная.

    Скорость звука в твердых телах для продольных и поперечных волн резко различается. (Это обстоятельство используется, в частности, при обработке сейсмограмм, для нахождения эпицентра землетрясения и для исследования вну­треннего строения Земли.)

    Измерение скорости звука в воздухе может быть произведено с помощью эха. Для этого измеряют интервал времени t между посылкой сигнала (крик, выстрел и т. п.) и его возвращением после отражения от препятствия (горы, опушки густого леса, берега реки и т. п.).

    Зная расстояние от места посылки сигнала до препятствия, легко подсчитать скорость звука:

    C = (5)

    Достаточно точно определяется скорость звука в воздухе и воде, если одновременно со звуковым послать из пункта А и световой сигнал - вспышку, видимую из пункта В, где производится при­ем звука. Так как скорость света имеет порядок 3-10 8 м/сек, а скорость звука 3-10 2 м/сек, т. е. составляет 0,0001% от скорости света, то в таком опыте можно считать свет распространяющимся мгновенно. Тогда, измерив в пункте В время t между приходом в него светового и звукового сигналов и зная расстояние
    легко вычислить скорость звука:

    C =(6)

    Если мы располагаем источником звука, посылающим волны с известной частотой , и можем каким-либо способом измерить длину волны в среде, то скорость распространения звука легко подсчитать по формуле:

    C =
    (7)

    Скорость звука в воздухе может быть измерена с помощью ус­тановки, изображенной на рисунке1.

    Часть стеклянного цилин­дра, соединенного с резервуаром, заполнена водой, уровень кото­рой можно менять. К открытому концу цилиндра подносят телефонную трубку, мембрана которой колеблется с известной частотой. Частота колебаний мембраны за­дается электрическим генератором звуковых частот (ламповый при­бор, вырабатывающий переменные токи с частотами звукового диапа­зона). Волна, идущая от мембраны, и волна, отраженная от поверхно­сти воды, интерферируют в столбе воздуха над водой. Если высота столба воздуха такова, что на ней укладывается нечетное число чет­вертей волн, то в нем возникают стоячие волны с узлом на поверх­ности воды и с пучностью у от­крытого конца цилиндра. В этот момент столб в цилиндре звучитнаиболее интенсивно, так как у открытого конца лежит пучность смещений и скоростей частиц и условия отдачи энергии в окру­жающее пространство наивыгоднейшие. При изменении уровня воды в трубке звук ослабляется. Звук вновь усиливается до максимума, когда уровень воды смещается на расстояние полуволны и в воздуш­ном столбе опять укладывается нечетное число четвертей волн. Зная частоту колебаний мембраны, заданную генератором, и длину

    полуволны
    находим по уравнению (7) скоростьC =2

    Поле звуковых волн можно сделать видимым, применяя так называемый метод Теплера. Установка для этих целей изображена на рисунке2.

    Щель S освещается источником света I через лин­зу L, фокус которой совпадает с S. Линза , фокус которой также совпадает сS, посылает параллельный пучок лучей; в плоскости А с помощью объектива получают изображение щели. Изобра­жение щели закрывают шторкойD так, чтобы свет не попадал на экран. Если теперь в кювете К создать неоднородность среды, то лучи, проходя ее, отклонятся от первоначального пути и, пройдя мимо шторы, дадут на экране изображение неоднородности. Если неоднородность среды создана чередованием сжатий и разрежений в стоячей звуковой волне, то на изображении звукового поля от­четливо видны светлые и темные полосы.

    Измерение скорости звука с помощью эха используется в одном из так называемых импульсных методов. Впервые ультраакусти­ческие импульсы в практике исследований применил С. Я. Соколов для изучения распространения звука в твердых телах. Колеба­ние кварца возбуждается генератором, посылающим не непрерыв­ную волну, а кратковременный импульс, состоящий из нескольких быстро затухающих электромагнитных волн. Импульс, поданный на кварц, одновременно подается на вертикальные пластины осцил­лографа Е, и в момент возникновения колебаний кварца на экране осциллографа появляется резкий «всплеск». Импульс распростра­няется от кварца через исследуемую среду до отражателя (рис. 2) и возвращается обратно к кварцу. Работа генератора рассчитывается так, чтобы к моменту возвращения отраженного импульса кварц находился в покое. Тогда вернувшийся импульс возбуж­дает колебания кварца, который в этот момент соединяется с осциллографом, и на экране появляется второй «всплеск». На экранe, таким образом, видны два «всплеска»: один, соответствующий моменту посылки импульса, другой - моменту возвращения его после отражения. На пластины осциллографа подаются от специ­ального генератора импульсы высокой частоты, создающие на экране осциллографа невысокие «всплески», отстоящие друг от друга на равных расстояниях. Они служат отметками времени. Зная их частоту, можно отсчитать время t пробега импульса. Тогда скорость звука рассчитывается по формуле (5), где - расстояние между кварцем и отражателем.

    Так, упругие свойства металлического стержня неодинаковы при кручении, сжатии и изгибе. И соответствующие волновые колебания распространяются с разной скоростью.

    Упругой называется среда, в которой деформация , будь то кручение, сжатие или изгиб, пропорциональна силе, вызывающей деформацию .

    Скорость звука V для данного типа упругой деформации дается выражением

    где С - модуль упругости, зависящий от материала и типа деформации.
    r - плотность материала (масса единицы объема).

    Скорость звука в твердом стержне

    Длинный стержень можно растянуть или сжать силой, приложенной к концу. Пусть длина стержня равна L , прикладываемая растягивающая сила - F , а увеличение длины - DL . Величину DL/L будем называть относительной деформацией , а силу, приходящуюся на единицу площади поперечного сечения стержня, - напряжением. Таким образом, напряжение равно F/A , где А - площадь сечения стержня. В применении к такому стержню закон Гука имеет вид

    где Y - модуль Юнга, т.е. модуль упругости стержня для растяжения или сжатия, характеризующий материал стержня. Модуль Юнга мал для легко растяжимых материалов, таких, как резина, и велик для жестких материалов, например для стали .

    Если теперь ударом молотка по торцу стержня возбудить в нем волну сжатия, то она будет распространяться со скоростью , где r , как и прежде, - плотность материала, из которого изготовлен стержень. Значения скоростей волн для некоторых типовых материалов приведены в таблице.

    Скорость звука для разных типов волн в твердых материалах
    Материал Продольные волны в протяженных твердых образцах (м/с) Волны сдвига и кручения (м/с) Волны сжатия в стержнях (м/с)
    Алюминий 6420 3040 5000
    Латунь 4700 2110 3480
    Свинец 5950 3240 5120
    Железо 1960 690 1210
    Серебро 3650 1610 2680
    Нержавеющая сталь 5790 3100 5000
    Флинтглас 3980 2380 3720
    Кронглас 5100 2840 4540
    Оргстекло 2680 1100 1840
    Полиэтилен 1950 540 920
    Полистирол 2350 1120 2240

    Рассмотренная волна в стержне является волной сжатия. Но ее нельзя считать строго продольной, так как со сжатием связано движение боковой поверхности стержня.

    Типы волнового движения

    В стержне возможны и два других типа волн - волна изгиба и волна кручения. Деформациям изгиба соответствует волна, не являющаяся ни чисто продольной, ни чисто поперечной. Деформации же кручения, т.е. вращения вокруг оси стержня, дают чисто поперечную волну.

    Скорость волны изгиба в стержне зависит от длины волны. Такую волну называют "дисперсионной".

    Волны кручения в стержне - чисто поперечные и недисперсионные. Их скорость дается формулой

    где m - модуль сдвига, характеризующий упругие свойства материала по отношению к сдвигу. Некоторые типичные скорости волн сдвига приведены в таблице.

    Скорость в протяженных твердых средах

    В твердых средах большого объема, где влиянием границ можно пренебречь, возможны упругие волны двух типов: продольные и поперечные.

    Деформация в продольной волне - это плоская деформация , т.е. одномерное сжатие (или разрежение) в направлении распространения волны. Деформация , соответствующая поперечной волне, - это сдвиговое смещение, перпендикулярное направлению распространения волны.

    Скорость продольных волн в твердых материалах дается выражением

    где C L - модуль упругости для простой плоской деформации . Он связан с модулем объемной деформации В (определение которого дается ниже) и модулем сдвига m материала соотношением C L = B + 4/3m . В таблице приводятся значения скоростей продольных волн для различных твердых материалов.

    Скорость волн сдвига в протяженных твердых средах та же, что и скорость волн кручения в стержне из того же материала. Поэтому она дается выражением. Ее значения для обычных твердых материалов даны в таблице приведенной выше.

    Скорость в газах

    В газах возможен только один тип деформации : сжатие - разрежение. Соответствующий модуль упругости В называется модулем объемной деформации. Он определяется соотношением

    -DP = B(DV/V)

    Здесь DP - изменение давления , DV/V - относительное изменение объема. Знак "минус" показывает, что при увеличении давления объем уменьшается.

    Скорость в жидкостях

    Звуковые волны в жидкостях являются волнами сжатия - разрежения, как и в газах . Скорость дается той же формулой . Однако жидкость гораздо менее сжимаема, чем газ , и поэтому для нее во много раз больше величина В , больше и плотность r . Скорость звука в жидкостях ближе к скорости в твердых материалах, чем в газах. Она гораздо меньше, чем в газах , зависит от температуры . Например, скорость в пресной воде равна 1460 м/с при 15,6°С. В морской воде нормальной солености она при той же температуре составляет 1504 м/с. Скорость звука возрастает с повышением