Функция активации искусственного нейрона. Активационные функции

Искусственный нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, аналогичный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона. На рис. 1.2 представлена модель, реализующая эту идею. Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта конфигурация. Здесь множество входных сигналов, обозначенных x 1 ,x 2 , …, x n , поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые векторомX , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес w 1 , w 2 , , w n , и поступает на суммирующий блок, обозначенный Σ.Каждый вес соответствует «силе» одной биологической синаптической связи. (Множество весов в совокупности обозначается векторомW .) Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход, который мы будем называть NET.В векторных обозначениях это может быть компактно записано следующим образом:

NET =XW .

Рис. 1.2. Искусственный нейрон

        1. Активационные функции

OUT= K (NET),

где К – постоянная, пороговой функции

OUT = 1, если NET > T, OUT = 0 в остальных случаях,

где Т – некоторая постоянная пороговая величина, или же функцией, более точно моделирующей нелинейную передаточную характеристику биологического нейрона и представляющей нейронной сети большие возможности.

Рис. 1.3. Искусственный нейрон с активационной функцией

На рис. 1.3 блок, обозначенный F, принимает сигналNETи выдает сигнал OUT.Если блокF сужает диапазон изменения величины NETтак, что при любых значениях NET значения OUTпринадлежат некоторому конечному интервалу, тоF называется«сжимающей» функцией. В качестве «сжимающей» функции часто используется логистическая или «сигмоидальная» (S-образная) функция, показанная на рис. 1.4а. Эта функция математически выражается какF(x) = 1/(1 + е - x). Таким образом,

.

По аналогии с электронными системами активационную функцию можно считать нелинейной усилительной характеристикой искусственного нейрона. Коэффициент усиления вычисляется как отношение приращения величины OUTк вызвавшему его небольшому приращению величины NET.Он выражается наклоном кривой при определенном уровне возбуждения и изменяется от малых значений при больших отрицательных возбуждениях (кривая почти горизонтальна) до максимального значения при нулевом возбуждении и снова уменьшается, когда возбуждение становится большим положительным. Гроссберг (1973) обнаружил, что подобная нелинейная характеристика решает поставленную им дилемму шумового насыщения. Каким образом одна и та же сеть может обрабатывать как слабые, так и сильные сигналы? Слабые сигналы нуждаются в большом сетевом усилении, чтобы дать пригодный к использованию выходной сигнал. Однако усилительные каскады с большими коэффициентами усиления могут привести к насыщению выхода шумами усилителей (случайными флуктуациями), которые присутствуют в любой физически реализованной сети. Сильные входные сигналы в свою очередь также будут приводить к насыщению усилительных каскадов, исключая возможность полезного использования выхода. Центральная область логистической функции, имеющая большой коэффициент усиления, решает проблему обработки слабых сигналов, в то время как области с падающим усилением на положительном и отрицательном концах подходят для больших возбуждений. Таким образом, нейрон функционирует с большим усилением в широком диапазоне уровня входного сигнала.

.

Рис. 1.4а. Сигмоидальная логистическая функция

Другой широко используемой активационной функцией является гиперболический тангенс. По форме она сходна с логистической функцией и часто используется биологами в качестве математической модели активации нервной клетки. В качестве активационной функции искусственной нейронной сети она записывается следующим образом:

Рис. 1.4б. Функция гиперболического тангенса

Подобно логистической функции гиперболический тангенс является S-образной функцией, но он симметричен относительно начала координат, и в точке NET= 0 значение выходного сигнала OUTравно нулю (см. рис. 1.4б). В отличие от логистической функции гиперболический тангенс принимает значения различных знаков, что оказывается выгодным для ряда сетей (см. гл. 3).

Рассмотренная простая модель искусственного нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, она не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные из этих нейронов, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что в модели верно схвачены важнейшие черты биологического нейрона.

Рис. 2.2. Структура искусственного нейрона

Нейрон состоит из элементов трех типов: умножителей (синапсов), сумматора и нелинейного преобразователя . Синапсы осуществляют связь между нейронами, умножают входной сигнал на число, характеризующее силу связи (вес синапса). Сумматор выполняет сложение сигналов, поступающих по синаптическим связям от других нейронов, и внешних входных сигналов. Нелинейный преобразователь реализует нелинейную функцию одного аргумента — выхода сумматора. Эта функция называется функцией активации или передаточной функцией нейрона. Нейрон в целом реализует скалярную функцию векторного аргумента.

Математическая модель нейрона:

, (2.1)

где s - результат суммирования (sum); w i - вес (weight) синапса, ; - компонент входного вектора (входной сигнал), ; b — значение смещения (bias); n - число входов нейрона; у - выходной сигнал нейрона; f — нелинейное преобразование (функция активации).

В общем случае входной сигнал, весовые коэффициенты и смещение могут принимать действительные значения, а во многих практических задачах – лишь некоторые фиксированные значения. Выход y определяется видом функции активации и может быть как действительным, так и целым.

Синаптические связи с положительными весами называют возбуждающими , с отрицательными весами — тормозящими . Описанный вычислительный элемент можно считать упрощенной математической моделью биологических нейронов. Чтобы подчеркнуть различие нейронов биологических и искусственных, вторые иногда называют нейроноподобными элементами или формальными нейронами .

На входной сигнал s нелинейный преобразователь отвечает выходным сигналом f (s ), который представляет собой выход y нейрона. Примеры активационных функций представлены в табл. 2.1, а графики наиболее распространенных активационных функций – на рис. 2.2.

Таблица 2.1

Функции активации нейронов

Название

Область значений

Линейная

Полулинейная

Логистическая (сигмоидальная)

Гиперболический тангенс (сигмоидальная)

Экспоненциальная

Синусоидальная

Сигмоидальная (рациональная)

Шаговая (линейная с насыщением)

Пороговая

Модульная

логистическая функция или сигмоид (функция S -образного вида)(рис.


2.3):

. (2.3)

При уменьшении a сигмоид становится более пологим, в пределе при a = 0 вырождаясь в горизонтальную линию на уровне 0,5, при увеличении а сигмоид приближается к виду функции единичного скачка с порогом T . Из выражения для сигмоида очевидно, что выходное значение нейрона лежит в диапазоне (0, 1). Одно из ценных свойств сигмоидальной функции — простое выражение для ее производной, применение которой будет рассмотрено в дальнейшем:

. (2.4)

Рис. 2.3. Графики активационных функций: а – функция единичного скачка; б – линейный порог (гистерезис); в – сигмоид (логистическая функция), формула (3); г – сигмоид (гиперболический тангенс)

Следует отметить, что сигмоидальная функция дифференцируема на всей оси абсцисс, что используется в некоторых алгоритмах обучения. Кроме того, она обладает свойством усиливать слабые сигналы лучше, чем большие, и предотвращает насыщение от больших сигналов, так как они соответствуют областям аргументов, где сигмоид имеет пологий наклон.

Нейрон представляет собой единицу обработки информации в нейронной сети. На рисунке ниже приведена модель нейрона, лежащего в основе искусственных нейронных сетей.

В этой модели нейрона можно выделить три основных элемента:

Модель нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, пропорциональный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона.

Хотя сетевые парадигмы весьма разнообразны, в основе почти всех их лежит эта модель нейрона. Здесь множество входных сигналов, обозначенных поступает на искусственный нейрон. Эти входные сигналы, в совокупности обозначаемые вектором , соответствуют сигналам, приходящим в синапсы биологического нейрона. Каждый сигнал умножается на соответствующий вес и поступает на суммирующий блок, обозначенный . Каждый вес соответствует «силе» одной биологической синаптической связи. Множество весов в совокупности обозначается вектором . Суммирующий блок, соответствующий телу биологического элемента, складывает взвешенные входы алгебраически, создавая выход . Далее поступает на вход функции активации, определяя окончательный сигнал возбуждения или торможения нейрона на выходе. Этот сигнал поступает на синапсы следующих нейронов и т. д.

Рассмотренная простая модель нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, данная модель нейрона не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные на основе этой модели нейрона, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что именно в этой модели нейрона верно схвачены важнейшие черты биологического прототипа.

Разработка искусственных нейронных сетей началась в начале ХХ века, но только в последние 20 лет, когда вычислительные системы стали достаточно мощными, нейронные сети получили широкое распространение. Создание нейронных сетей было вызвано попытками понять принципы работы человеческого мозга и, без сомнения, это будет влиять и на дальнейшее их развитие. Однако, в сравнении с человеческим мозгом нейронная сеть сегодня представляют собой весьма упрощенную модель, но несмотря на это весьма успешно используются при решении самых различных задач. Хотя решение на основе нейронных сетей может выглядеть и вести себя как обычное программное обеспечение, они различны в принципе, поскольку большинство реализаций на основе нейронных сетей «обучается», а «не программируется»: сеть учиться выполнять задачу, а не программируется непосредственно.

На рисунке ниже приведена модель нейрона, лежащего в основе искусственных нейронных сетей.

В этой модели нейрона можно выделить три основных элемента:

· синапсы, каждый из которых характеризуется своим весом или силой. Осуществляют связь между нейронами, умножают входной сигнал на весовой коэффициент синапса, характеризующий силу синаптической связи;

· сумматор, аналог тела клетки нейрона. Выполняет сложение внешних входных сигналов или сигналов, поступающих по синаптическим связям от других нейронов. Определяет уровень возбуждения нейрона;

· функция активации, определяет окончательный выходной уровень нейрона, с которым сигнал возбуждения (торможения) поступает на синапсы следующих нейронов.

Модель нейрон имитирует в первом приближении свойства биологического нейрона. На вход искусственного нейрона поступает некоторое множество сигналов, каждый из которых является выходом другого нейрона. Каждый вход умножается на соответствующий вес, пропорциональный синаптической силе, и все произведения суммируются, определяя уровень активации нейрона.

Таким образом, математическая модель нейрона может быть представлена выражением:

Рассмотренная простая модель нейрона игнорирует многие свойства своего биологического двойника. Например, она не принимает во внимание задержки во времени, которые воздействуют на динамику системы. Входные сигналы сразу же порождают выходной сигнал. И, что более важно, данная модель нейрона не учитывает воздействий функции частотной модуляции или синхронизирующей функции биологического нейрона, которые ряд исследователей считают решающими.

Несмотря на эти ограничения, сети, построенные на основе этой модели нейрона, обнаруживают свойства, сильно напоминающие биологическую систему. Только время и исследования смогут ответить на вопрос, являются ли подобные совпадения случайными или следствием того, что именно в этой модели нейрона верно схвачены важнейшие черты биологического прототипа.

Функция активации (активационная функция, функция возбуждения) – функция, вычисляющая выходной сигнал искусственного нейрона. В качестве аргумента принимает сигнал, получаемый на выходе входного сумматора. Наиболее часто используются следующие функции активации.

1. Единичный скачок или жесткая пороговая функция

Простая кусочно-линейная функция. Если входное значение меньше порогового, то значение функции активации равно минимальному допустимому, иначе – максимально допустимому.

2. Линейный порог

Несложная кусочно-линейная функция. Имеет два линейных участка, где функция активации тождественно равна минимально допустимому и максимально допустимому значению и есть участок, на котором функция строго монотонно возрастает.

3. Логистическая функция (сигмоид)

Монотонно возрастающая всюду дифференцируемая -образная нелинейная функция с насыщением.

Определяется следующим выражением:

где a – параметр наклона сигмоидальной функции активации. Изменяя этот параметр, можно построить функции с различной крутизной.

4. Функция гиперболический тангенс, разновидность сигмоиды, задаваемая следующим выражением:

где a – это также параметр, влияющий на наклон сигмоидальной функции.

В отличие от логистической функции гиперболический тангенс принимает значения различных знаков, что оказывается выгодным для ряда сетей.

Функции активации типа единичного скачка и линейного порога встречаются довольно редко. В практических задачах почти всегда применяется сигмоидальная функция активации – логистическая или (чаще) гиперболический тангенс.

Соединяя между собой математические нейроны с передаточными функциями одного или разных типов в структуры различного вида (слоистые или полносвязные, с обратными связями или без) подобно тому, как соединяются между собой нейроны мозга, можно создавать искусственные нейронные сети , позволяющие решать целый ряд прикладных технических задач.

Таким образом, построение НС для решения конкретной задачи осуществляется в два этапа:

1) Выбор типа (архитектуры) нейронной сети.

2) Подбор весов (обучение) нейронной сети.

Можно выделить два основных подхода к созданию искусственных нейронных сетей:

1) Аппаратный физическое моделирование, создание специализированных микросхем («нейрочипов»), плат расширения, компьютеров, реализующих все необходимые алгоритмы.

Преимущество : высокое быстродействие.

Недостатки : недостаточная гибкость, высокая стоимость аппаратных решений (в основном, в силу малосерийности их производства).

2) Программный – создание программ и инструментариев, рассчитанных на компьютеры традиционной архитектуры. Сети создаются в памяти компьютера, всю работу выполняют его собственные процессоры.

Преимущества : гибкость, невысокая стоимость аппаратных платформ, возможность применения стандартного математического ПО (например, Matlab, в составе которого имеется пакет для проектирования нейронных сетей Neural Networks Toolbox, или свободно распространяемого нейросимулятора NeuroPro).

Недостаток : в некоторых приложениях реального времени (особенно в тех, где требуется адаптивная подстройка весов нейронной сети в процессе ее функционирования на реальном объекте) может ощущаться нехватка быстродействия.

В условиях возрастающей вычислительной мощности современных компьютеров второй подход на сегодняшний день является основным для большинства приложений искусственных нейронных сетей.

Нейроподобные структуры работают с высокой надежностью. Эксперименты показывают, что выход из строя некоторого количества элементов нейронной сети в большинстве случаев не приводит к отказам в работе всей структуры. Как и в биологическом прототипе (мозге человека), отказ отдельных нейронов хотя и ведет теоретически к ухудшению тех или иных функций системы, но при большом общем количестве нейронов это ухудшение настолько мало, что его, как правило, практически невозможно обнаружить. Если же имеется возможность повторно переобучить нейронную сеть с вышедшими из строя нейронами, эффект ухудшения сглаживается еще больше. В последнем случае также прослеживается точная биологическая аналогия – часто люди с серьезными повреждениями областей мозга, выполняющих важные функции, связанные, например, с механизмами речи, памяти и т. п., после длительных тренировок в той или иной степени восстанавливали утраченные способности. При этом, как установили нейрофизиологи, функции поврежденных участков частично брали на себя другие области мозга.

Сложность искусственных нейронных сетей, с которыми имеют дело современные исследователи, пока еще не идет ни в какое сравнение с биологическим прототипом. Количество нейронов в них обычно не превышает сотню (примерно такую же сложность имеет центральный нервный узел дождевого червя), в то время как сознание человека обеспечивается синхронной работой нескольких десятков миллиардов (!) нейронов. Проблема повышения вычислительной мощности искусственных сетей состоит в том, что при увеличении количества нейронов в сети время, необходимое на подстройку их весов (обучение) известными на сегодняшний день методами, возрастает в геометрической прогрессии. Таким образом, эксперимент по созданию нейронной сети, состоящей из тысячи и более нейронов, хотя и возможен технически (модель одного математического нейрона занимает в компьютерной памяти не более 1 килобайта), но не имеет реального смысла, так как период обучения такой сети может оказаться значительно больше времени жизни самого экспериментатора. Совершенно очевидно, что в человеческом мозге существуют некие механизмы «быстрого» обучения (предположительно связанные с динамическими взаимодействиями «нейронных ансамблей»), которые еще только предстоит открыть нейрофизиологам. Открытие таких механизмов несомненно обеспечит прорыв и в создании по-настоящему «разумных» искусственных нейронных сетей.

Однако многочисленные эксперименты показали, что даже на существующем примитивном уровне внутренней организации искусственные нейронные сети способны справляться с рядом задач, считавшихся до последнего времени трудными или вообще не поддающимися решению при помощи компьютеров традиционной архитектуры. Ниже приведены общие классы задач, в которых применение искусственных нейронных сетей представляется наиболее перспективным.

Адаптивные информационные системы

Потребность в адаптивных информационных системах возникает в тех случаях, когда поддерживаемые ими проблемные области постоянно развиваются. В связи с этим адаптивные системы должны удовлетворять ряду специфических требований, а именно:

Адекватно отражать знания проблемной области в каждый момент времени;

Быть пригодными для легкой и быстрой реконструкции при изменении проблемной среды.

Адаптивные свойства информационных систем обеспечиваются за счет интеллектуализации их архитектуры. Ядром таких систем является постоянно развиваемая модель проблемной области, поддерживаемая в специальной базе знаний – репозитории. Ядро системы управляет процессами генерации или переконфигурирования программного обеспечения.

В процессе разработки адаптивных информационных систем применяется оригинальное или типовое проектирование. Оригинальное проектирование предполагает разработку информационной системы с «чистого листа» на основе сформулированных требований. Реализация этого подхода основана на использовании систем автоматизированного проектирования, или CASE-технологий (Designer2000, SilverRun, Natural Light Storm и др.).

При типовом проектировании осуществляется адаптация типовых разработок к особенностям проблемной области. Для реализации этого подхода применяются инструментальные средства компонентного (сборочного) проектирования информационных систем (R/3, BAAN IV, Prodis и др.).

Главное отличие подходов состоит в том, что при использовании CASE-технологии каждый раз при изменении проблемной области выполняется генерация программного обеспечения в целом, а при использовании сборочной технологии – конфигурирование модулей и только в редких случаях – их переработка.

Тема 2. Искусственные нейронные сети. Архитектура и классификация нейронных сетей.

Представление о детальном устройстве головного мозга появилось только около ста лет назад. В 1888 г. испанский доктор Рамони Кайал экспериментально показал, что мозговая ткань состоит из большого числа связанных друг с другом однотипных узлов – нейронов. Более поздние исследования при помощи электронного микроскопа показали, что все нейроны, независимо от типа, имеют схожую организационную структуру (рис. 2.1). Естественная нервная клетка (нейрон) состоит из тела (сомы), содержащего ядро, и отростков – дендритов, по которым в нейрон поступают входные сигналы. Один из отростков, ветвящийся на конце, служит для передачи выходных сигналов данного нейрона другим нервным клеткам. Он называется аксоном. Соединение аксона с дендритом другого нейрона называется синапсом. Нейрон возбуждается и передает сигнал через аксон, если число пришедших по дендритам возбуждающих сигналов больше, чем число тормозящих.


Рисунок 2.1 – Строение биологического нейрона.

В 1943 г. В. Маккаллох и В. Питтс предложили систему обработки информации в виде сети, состоящей из простых вычислителей, созданных по принципу биологического нейрона. Искусственная нейронная сеть (ИНС) представляет собой совокупность простых вычислительных элементов (процессоров) – искусственных нейронов, соединенных некоторым образом так, чтобы между ними обеспечивалось взаимодействие. Искусственные нейроны характеризуются правилом комбинирования входных сигналов и передаточной функцией, позволяющим вычислить выходной сигнал.

Рисунок 2.2 – Кибернетическая модель нейрона.

Информация, поступающая на вход нейрона, суммируется с учетом весовых коэффициентов сигналов:

, (2.1)

где w 0 – сдвиг (порог, смещение) нейрона.

В зависимости от значения весового коэффициента w i , входной сигнал x i или усиливается, или подавляется. Взвешенную сумму входных сигналов также называют потенциалом или комбинированным входом нейрона.

Сдвиг обычно интерпретируется как связь, исходящая от элемента, активность которого всегда равна 1. Обычно, для удобства входной вектор расширяется добавлением этого сигнала до х = (1,х 0 ,...,x n) и порог w 0 вносится под знак суммы:

Передаточная функция, или функция активации нейрона, является правилом, согласно которому взвешенная сумма поступивших сигналов P преобразуется в выходной сигнал нейрона Y, который передается другим нейронам сети, т. е. Y=f(P). На рисунке 2.3 показаны графики наиболее распространённых функций активации нейронов.

Пороговая функция пропускает информа­цию только в том случае, если алгебраическая сумма входных сигналов превышает некоторую постоянную величину Р*, на­пример:

Пороговая функция не обеспечивает достаточной гибкости ИНС при обучении. Если значение вычисленного потенциала не достигает заданного порога, то выходной сигнал не формируется и нейрон «не срабатывает». Это приводит к снижению интенсив­ности выходного сигнала нейрона и, как следствие, к формиро­ванию невысокого значения потенциала взвешенных входов в следующем слое нейронов.

Линейная функция дифференцируема и легко вычисля­ется, что в ряде случаев позволяет уменьшить ошибки выходных сигналов в сети, так как передаточная функция сети также явля­ется линейной. Однако она не универсальна и не обеспечивает решения многих задач.

Определенным компромиссом между линейной и ступенча­той функциями является сигмоидальная функция активации Y = 1/(1+exp(-kP)), которая удачно моделирует передаточную харак­теристику биологического нейрона (рис. 3.3, в).

Рисунок 2.3 – Функции переноса искусственных нейронов:

а) линейная; б) ступенчатая; в) сигмоидальная.

Коэффициент k определяет крутизну нелинейной функции: чем больше k, тем ближе сигмоидальная функция к пороговой; чем меньше k, тем она ближе k линейной. Тип функции переноса выбирается с учетом конкретной зада­чи, решаемой с применением нейронных сетей. Например, в за­дачах аппроксимации и классификации предпочтение отдают сигмоидальной кривой.

Архитектура и классификация ИНС

С каждым нейроном связывается набор входящих связей, по которым к данному элементу поступают сигналы от других элементов сети, и набор исходящих связей, по которым сигналы данного элемента передаются другим нейронам. Некоторые нейроны предназначены для получения сигналов из внешней среды (входные элементы), а некоторые – для вывода во внешнюю среду результатов вычислений (выходные элементы).

В 1958 г. Фрэнк Розенблатт предложил следующую модель нейронной сети – персептрона. Персептрон Розенблатта (рис. 2.4) состоит из k нейронов, имеет d входов, k выходов и только один слой настраиваемых весов w ij .

Рисунок 2.4 – Персептрон Розенблатта.

Входные нейроны обычно предназначены для распределения вводимых сигналов между другими нейронами сети, поэтому для них требуется, чтобы исходящий от элемента сигнал был таким же, как и входящий. В отличие от других нейронов сети, входные имеют только по одному входу. Иными словами, каждый входной элемент может получать сигнал от одного соответствующего ему датчика. Поскольку входные элементы предназначены исключительно для того, чтобы распределять сигналы, получаемые из внешней среды, многие исследователи вообще не считают входные элементы частью нейронной сети.

Персептрон способен решать линейные задачи. Число входов сети определяет размерность пространства, из которого выбираются входные данные: для двух признаков пространство оказывается двумерным, для трех – трехмерным, а для d признаков – d-мерным. Если прямая или гиперплоскость в пространстве входных данных может разделить все образцы на соответствующие им классы, то проблема является линейной, в противном случае – нелинейной. На рисунке 2.5 показаны множества точек на плоскости, причём в случае а) граница линейная, в случае – б) нелинейная.

Рисунок 2.5 – Геометрическое представление линейной (а) и

нелинейной (б) задач.

Для решения нелинейных проблем предложены модели многослойных персептронов (MLP), способные строить ломаную границу между распознаваемыми обра­зами. В многослойных сетях каждый нейрон может посылать выходной сигнал только в следующий слой и принимать входные сигналы только с предыдущего слоя, как показано на рисунке 2.6. Слои нейронов, расположенные между входным и выходным называются скрытыми, так как не получают и не передают данные непосредственно из внешней среды. Такая сеть позволяет выделять глобальные свойства данных за счет наличия дополнительных синаптических связей и повышения уровня взаимодействия нейронов.

Рисунок 2.6 – Схема многослойного персептрона.

Определение числа скрытых слоев и числа нейронов в каждом слое для конкретной задачи является неформальной проблемой, при решении которой можно использовать эвристическое правило: число нейронов в следующем слое в два раза меньше, чем в предыдущем

В настоящее время кроме многослойного персептрона существует множество способов задания структур нейронных сетей. Все виды нейронных сетей можно условно разделить на сети прямого распространения и сети с обратными связями. Как следует из названия, в сетях первого типа сигналы от нейрона к нейрону распространяются в четко заданном направлении – от входов сети к ее выходам. В сетях второго типа выходные значения любого нейрона сети могут передаваться к его же входам. Это позволяет нейронной сети моделировать более сложные процессы, например временные, но делает выходы подобной сети нестабильными, зависящими от состояния сети на предыдущем цикле. На рисунке 2.7. представлена классификация наиболее распространенных типов нейронных сетей.

Рисунок 2.7 – Классификация распространённых видов ИНС.

Тема 3. Сети типа персептрон

Задача классификации образов. Обучение с учителем

Ф. Розенблатт предложил использовать персептрон для задач классификации. Многие приложения можно интерпретировать, как проблемы классификации. Например, оптическое распознавании символов. Отсканированные символы ассоциируются с соответствующими им классами. Имеется немало вариантов изображения буквы "Н" даже для одного конкретного шрифта – символ может оказаться, например, смазанным, – но все эти изображения должны принадлежать классу "Н".

Когда известно, к какому классу относится каждый из учебных примеров, можно использовать стратегию обучения с учителем. Задачей для сети является ее обучение тому, как сопоставить предъявляемый сети образец с контрольным целевым образцом, представляющим нужный класс. Иными словами, знания об окружающей среде представляются нейронной сети в виде пар "вход-выход". Например, сети можно предъявить изображение буквы "Н" и обучить сеть тому, что при этом соответствующий "Н" выходной элемент должен быть включен, а выходные элементы, соответствующие другим буквам – выключены. В этом случае входной образец может быть набором значений, характеризующих пиксели изображения в оттенках серого, а целевой выходной образец – вектором, значения всех координат которого должны быть равными 0, за исключением координаты, соответствующей классу "Н", значение которой должно быть равным.

На рисунке 3.1 показана блочная диаграмма, иллюстриру­ющая эту форму обучения. Предположим, что учителю и обучаемой сети подается обучающий вектор из окружающей среды. На основе встроенных знаний учитель может сформировать и передать обучаемой ней­ронной сети желаемый отклик, соответствующий данному входному вектору. Параметры сети корректируются с учетом обучающего век­тора и сигнала ошибки. Сигнал ошибки – это разность между желаемым сигналом и текущим откликом нейронной сети. После окончания обучения учителя можно отключить и позволить нейронной сети работать со средой самостоятельно.

Рисунок 3.1 – Концепция обучения ИНС с учителем.

Алгоритм обучения перцептрона включает следующие шаги:

· Системе предъявляется эталонный образ.

· Если результат распознавания совпадает с заданным, весовые коэффициенты связей не изменяются.

· Если ИНС неправильно распознает результат, то весовым коэффициентам дается приращение в сторону повышения качества распознавания.