Деление уголком. Деление многочленов

Сегодня мы узнаем, как выполняется деление многочленов друг на друга, причем выполнять деление мы будем уголком по аналогии с обычными числами. Это очень полезный прием, который, к сожалению, не изучают в большинстве школ. Поэтому внимательно прослушайте данный видеоурок. Ничего сложного в таком делении нет.

Для начала давайте разделим друг на друга два числа:

Как можно это сделать? В первую очередь, мы отсекаем столько разрядов, чтобы полученное числовое значение было больше чем то, на которое мы делим. Если мы отсечем один разряд, то получим пять. Очевидно, семнадцать в пять не вмещается, поэтому этого недостаточно. Берем два разряда — у нас выйдет 59 — оно уже больше, чем семнадцать, поэтому мы можем выполнить операцию. Итак, сколько раз семнадцать помещается в 59? Давайте возьмем три. Перемножаем и записываем результат под 59. Итого у нас получилось 51. Вычитаем и у нас вышло «восемь». Теперь сносим следующий разряд — пять. Делим 85 на семнадцать. Берем пять. Перемножим семнадцать на пять и получаем 85. Вычитаем и у нас получается ноль.

Решаем реальные примеры

Задача № 1

Теперь выполним те же самые шаги, но не с числами, а с многочленами. Для примера возьмем такое:

\[\frac{{{x}^{2}}+8x+15}{x+5}=x+3\]

Обратите внимание, если при делении чисел друг на друга мы подразумевали, что делимое всегда больше делителя, то в случае деления полиномов уголком, необходимо, чтобы степень делимого была больше, чем делителя. В нашем случае все в порядке — мы работаем с конструкциями второй и первой степени.

Итак, первый шаг: сравниваем первые элементы. Вопрос: на что нужно домножить $x$, чтобы получилось ${{x}^{2}}$? Очевидно, что на еще один $x$. Умножаем $x+5$ на только что найденное число $x$. У нас есть ${{x}^{2}}+5$, которое вычитаем из делимого. Остается $3x$. Теперь сносим следующее слагаемое — пятнадцать. Снова посмотрим на первые элементы: $3x$ и $x$. На что следует домножить $x$, чтобы вышло$3x$? Очевидно, что на три. Домножаем почленно $x+5$ на три. Когда мы вычтем, то получим ноль.

Как видите, вся операция деления уголком свелась к сравнению старших коэффициентов при делимом и делителе. Это даже проще, чем когда вы делите числа. Тут не требуется выделять какое-то количество разрядов — мы просто на каждом шаге сравниваем старшие элементы. Вот и весь алгоритм.

Задача № 2

Давайте попробуем еще:

\[\frac{{{x}^{2}}+x-2}{x-1}=x+2\]

Первый шаг: посмотрим на старшие коэффициенты. На сколько нужно домножить $x$, чтобы записать${{x}^{2}}$? Домножаем почленно. Обратите внимание, при вычитании у нас получится именно $2x$, потому что

Сносим -2 и снова сравним первый полученный коэффициент со старшим элементом делителя. Итого у нас вышел «красивый» ответ.

Переходим ко второму примеру:

\[\frac{{{x}^{3}}+2{{x}^{2}}-9x-18}{x+3}={{x}^{2}}-x-6\]

В этот раз в качестве делимого выступает полином третьей степени. Сравним между собой первые элементы. Для того чтобы получилось ${{x}^{3}}$, необходимо $x$ домножить на ${{x}^{2}}$. После вычитания сносим $9x$. Домножаем делитель на $-x$ и вычитаем. В итоге наше выражение полностью разделилось. Записываем ответ.

Задача № 3

Переходим к последней задаче:

\[\frac{{{x}^{3}}+3{{x}^{2}}+50}{x+5}={{x}^{2}}-2x+10\]

Сравниваем ${{x}^{3}}$ и $x$. Очевидно, нужно домножить на ${{x}^{2}}$. В итоге мы видим, что мы получили очень «красивый» ответ. Записываем его.

Вот и весь алгоритм. Ключевых моментов здесь два:

  1. Всегда сравнивайте первую степень делимого и делителя — повторяем это на каждом шаге;
  2. Если в исходном выражении пропущены какие-либо степени, при делении уголком их обязательно следует добавить, но с нулевыми коэффициентами, иначе ответ будет неправильным.

Больше никаких премудростей и хитростей в таком делении нет.

Материал сегодняшнего урока нигде и никогда не встречается в «чистом» виде. Его редко изучают в школах. Однако умение делить многочлены друг на друга очень поможет вам при решении уравнений высших степеней, а также всевозможных задач «повышенной трудности». Без данного приема вам придется раскладывать многочлены на множители, подбирать коэффициенты — и результат при этом отнюдь не гарантирован. Однако многочлены можно делить и уголком — так же, как и обычные числа! К сожалению, данный прием не изучают в школах. Многие учителя считают, что деление многочленов уголком — это что-то безумно сложное, из области высшей математики. Спешу вас заверить: это не так. Более того, делить многочлены даже проще, чем обычные числа! Посмотрите урок — и убедитесь в этом сами.:) В общем, обязательно возьмите этот прием на вооружение. Умение делить многочлены друг на друга очень пригодится вам при решении уравнений высших степеней и в других нестандартных задачах.

Я надеюсь, этот ролик поможет тем, кто работает с полиномами, особенно высших степеней. Это относится и к старшеклассникам, и к студентам университетов. А у меня на этом все. До встречи!

Пусть требуется

(2x 3 – 7x 2 + x + 1) ÷ (2x – 1).

Здесь дано произведение (2x 3 – 7x 2 + x + 1) и один множитель (2x – 1), – надо найти другой множитель. В данном примере сразу ясно (но вообще этого установить нельзя), что и другой, искомый, множитель, или частное, есть многочлен. Это ясно потому, что данное произведение имеет 4 члена, а данный множитель лишь 2. Однако, сказать заранее, сколько членов у искомого множителя – нельзя: может быть 2 члена, 3 члена и т. д. Вспоминая, что старший член произведения всегда получается от умножения старшего члена одного множителя на старший член другого (см. умножение многочлена на многочлен) и что членов, подобных этому, быть не может, мы уверены, что 2x 3 (старший член данного произведения) получится от умножения 2x (старший член данного множителя) на неизвестный старший член искомого множителя. Чтобы найти последний, придется, следовательно, разделить 2x 3 на 2x – получим x 2 . Это и есть старший член частного.

Вспомним затем, что при умножении многочлена на многочлен приходится каждый член одного многочлена умножать на каждый член другого. Поэтому данное произведение (2x 3 – 7x 2 + x + 1) представляет собою произведение делителя (2x – 1) на все члены частного. Но мы можем теперь найти произведение делителя на первый (старший) член частного, т. е. (2x – 1) ∙ x 2 ; получим 2x 3 – x 2 . Зная произведение делителя на все члены частного (оно = 2x 3 – 7x 2 + x + 1) и зная произведение делителя на 1-ый член частного (оно = 2x 3 – x 2), вычитанием мы можем найти произведение делителя на все остальные, кроме 1-го, члены частного. Получим

(2x 3 – 7x 2 + x + 1) – (2x 3 – x 2) = 2x 3 – 7x 2 + x + 1 – 2x 3 + x 2 = –6x 2 + x + 1.

Старший член (–6x 2) этого оставшегося произведения должен представлять собою произведение старшего члена делителя (2x) на старший член остального (кроме 1-го члена) частного. Отсюда найдем старший член остального частного. Надо –6x 2 ÷ 2x, получим –3x. Это и есть второй член искомого частного. Мы можем опять найти произведение делителя (2x – 1) на второй, только что найденный, член частного, т. е. на –3x.

Получим (2x – 1) ∙ (–3x) = –6x 2 + 3x. Из всего данного произведения мы уже вычли произведение делителя на 1-ый член частного и получили остаток –6x 2 + x + 1, представляющий собою произведение делителя на остальные, кроме 1-го, члены частного. Вычитая из него только что найденное произведение –6x 2 + 3x, получим остаток, представляющий собою произведение делителя на все остальные, кроме 1-го и 2-го, члены частного:

–6x 2 + x + 1 – (–6x 2 + 3x) = –6x 2 + x + 1 + 6x 2 – 3x = –2x + 1.

Разделив старший член этого оставшегося произведения (–2x) на старший член делителя (2x), получим старший член остального частного, или его третий член, (–2x) ÷ 2x = –1, – это и есть 3-й член частного.

Умножив на него делителя, получим

(2x – 1) ∙ (–1) = –2x + 1.

Вычтя это произведение делителя на 3-й член частного из всего оставшегося до сих пор произведения, т. е.

(–2x + 1) – (–2x + 1) = –2x + 1 + 2x – 1 = 0,

мы увидим, что в нашем примере произведение делится на остальные, кроме 1-го, 2-го и 3-го, члены частного = 0, откуда заключаем, что у частного больше членов нет, т. е.

(2x 3 – 7x 2 + x + 1) ÷ (2x – 1) = x 2 – 3x – 1.

Из предыдущего мы видим: 1) удобно располагать члены делимого и делителя по нисходящим степеням, 2) необходимо установить какой-либо порядок для выполнения вычислений. Таким удобным порядком можно считать тот, который употребляется в арифметике при делении многозначных чисел. Следуя ему, все предыдущие вычисления расположим так (сбоку даны еще краткие пояснения):

Те вычитания, какие здесь нужны, выполняются переменою знаков у членов вычитаемого, причем эти переменные знаки пишутся сверху.

Так, написано

Это значит: вычитаемое было 2x 3 – x 2 , а после перемены знаков получили –2x 3 + x 2 .

Благодаря принятому расположению вычислений, благодаря тому, что члены делимого и делителя расположены по нисходящим степеням и благодаря тому, что степени буквы x в обоих многочленах идут, понижаясь всякий раз на 1, оказалось, что подобные члены приходятся написанными друг под другом (напр.: –7x 2 и +x 2), почему легко выполнить их приведение. Можно подметить, что не все члены делимого нужны во всякий момент вычисления. Напр., член +1 не нужен в тот момент, где был найден 2-й член частного, и эту часть вычислений можно упростить.


Еще примеры:

1. (2a 4 – 3ab 3 – b 4 – 3a 2 b 2) ÷ (b 2 + a 2 + ab).

Расположим по нисходящим степеням буквы a и делимое и делитель:


(Заметим, что здесь, благодаря отсутствию в делимом члена с a 3 , в первом вычитании оказалось, что подписаны друг под другом не подобные члены –a 2 b 2 и –2a 3 b. Конечно, они не могут быть приведены в один член и написаны под чертою оба по старшинству).


В обоих примерах надо внимательнее относиться к подобным членам: 1) друг под другом часто оказываются написанными не подобные члены и 2) иногда (как, напр., в последнем примере, члены –4a n и –a n при первом вычитании) подобные члены выходят написанными не друг под другом.

Возможно выполнять деление многочленов в ином порядке, а именно: всякий раз разыскивать младший член или всего или остающегося частного. Удобно в этом случае располагать данные многочлены по восходящим степеням какой-либо буквы. Напр.:


Приводится доказательство, что неправильную дробь, составленную из многочленов, можно представить в виде суммы многочлена и правильной дроби. Подробно разобраны примеры деления многочленов уголком и умножения столбиком.

Теорема

Пусть P k (x) , Q n (x) - многочлены от переменной x степеней k и n , соответственно, причем k ≥ n . Тогда многочлен P k (x) можно представить единственным способом в следующем виде:
(1) P k (x) = S k-n (x) Q n (x) + U n-1 (x) ,
где S k-n (x) - многочлен степени k-n , U n-1 (x) - многочлен степени не выше n-1 , или нуль.

Доказательство

По определению многочлена:
;
;
;
,
где p i , q i - известные коэффициенты, s i , u i - неизвестные коэффициенты.

Введем обозначение:
.
Подставим в (1) :
;
(2) .
Первый член в правой части - это многочлен степени k . Сумма второго и третьего членов - это многочлен степени не выше k - 1 . Приравняем коэффициенты при x k :
p k = s k-n q n .
Отсюда s k-n = p k / q n .

Преобразуем уравнение (2) :
.
Введем обозначение: .
Поскольку s k-n = p k / q n , то коэффициент при x k равен нулю. Поэтому - это многочлен степени не выше k - 1 , . Тогда предыдущее уравнение можно переписать в виде:
(3) .

Это уравнение имеет тот же вид, что и уравнение (1) , только значение k стало на 1 меньше. Повторяя эту процедуру k-n раз, получаем уравнение:
,
из которого определяем коэффициенты многочлена U n-1 (x) .

Итак, мы определили все неизвестные коэффициенты s i , u l . Причем s k-n ≠ 0 . Лемма доказана.

Деление многочленов

Разделив обе части уравнения (1) на Q n (x) , получим:
(4) .
По аналогии с десятичными числами, S k-n (x) называется целой частью дроби или частным, U n-1 (x) - остатком от деления. Дробь многочленов, у которой степень многочлена в числителе меньше степени многочлена в знаменателе называется правильной дробью. Дробь многочленов, у которой степень многочлена в числителе больше или равна степени многочлена в знаменателе называется неправильной дробью.

Уравнение (4) показывает, что любую неправильную дробь многочленов можно упростить, представив ее в виде суммы целой части и правильной дроби.

По своей сути, целые десятичные числа являются многочленами, у которых переменная равна числу 10 . Например, возьмем число 265847. Его можно представить в виде:
.
То есть это многочлен пятой степени от 10 . Цифры 2, 6, 5, 8, 4, 7 являются коэффициентами разложения числа по степеням числа 10.

Поэтому к многочленам можно применить правило деления уголком (иногда его называют делением в столбик), применяемое к делению чисел. Единственное отличие заключается в том, что, при делении многочленов, не нужно переводить числа больше девяти в старшие разряды. Рассмотрим процесс деления многочленов уголком на конкретных примерах.

Пример деления многочленов уголком


.

Решение

Здесь в числителе стоит многочлен четвертой степени. В знаменателе - многочлен второй степени. Поскольку 4 ≥ 2 , то дробь неправильная. Выделим целую часть, разделив многочлены уголком (в столбик):



Приведем подробное описание процесса деления. Исходные многочлены записываем в левый и правый столбики. Под многочленом знаменателя, в правом столбике, проводим горизонтальную черту (уголок). Ниже этой черты, под уголком, будет целая часть дроби.

1.1 Находим первый член целой части (под уголком). Для этого разделим старший член числителя на старший член знаменателя: .

1.2 Умножаем 2 x 2 на x 2 - 3 x + 5 :
. Результат записываем в левый столбик:

1.3 Берем разность многочленов в левом столбике:

.



Итак, мы получили промежуточный результат:
.

Дробь в правой части неправильная, поскольку степень многочлена в числителе (3 ) больше или равна степени многочлена в знаменателе (2 ). Повторяем вычисления. Только теперь числитель дроби находится в последней строке левого столбика.
2.1 Разделим старший член числителя на старший член знаменателя: ;

2.2 Умножаем на знаменатель: ;

2.3 И вычитаем из последней строки левого столбика: ;


Промежуточный результат:
.

Снова повторяем вычисления, поскольку в правой части стоит неправильная дробь.
3.1 ;
3.2 ;
3.3 ;


Итак, мы получили:
.
Степень многочлена в числителе правой дроби меньше степени многочлена знаменателя, 1 < 2 . Поэтому дробь - правильная.

Ответ

;
2 x 2 - 4 x + 1 - это целая часть;
x - 8 - остаток от деления.

Пример 2

Выделить целую часть дроби и найти остаток от деления:
.

Решение

Выполняем те же действия, что и в предыдущем примере:

Здесь остаток от деления равен нулю:
.

Ответ

Умножение многочленов столбиком

Также можно умножать многочлены столбиком, аналогично умножению целых чисел. Рассмотрим конкретные примеры.

Пример умножения многочленов столбиком

Найти произведение многочленов:
.

Решение

1

2.1
.

2.2
.

2.3
.
Результат записываем в столбик, выравнивая степени x .

3
;
;
;
.

Заметим, что можно было записывать только коэффициенты, а степени переменной x можно было опустить. Тогда умножение столбиком многочленов будет выглядеть так:

Ответ

Пример 2

Найти произведение многочленов столбиком:
.

Решение

При умножении многочленов столбиком важно записывать одинаковые степени переменной x друг под другом. Если некоторые степени x пропущены, то их следует записывать явно, умножив на нуль, либо оставлять пробелы.

В этом примере некоторые степени пропущены. Поэтому запишем их явно, умноженными на нуль:
.
Умножаем многочлены столбиком.

1 Записываем исходные многочлены друг под другом в столбик и проводим черту.

2.1 Умножаем младший член второго многочлена на первый многочлен:
.
Результат записываем в столбик.

2.2 Следующий член второго многочлена равен нулю. Поэтому его произведение на первый многочлен также равно нулю. Нулевую строку можно не записывать.

2.3 Умножаем следующий член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

2.3 Умножаем следующий (старший) член второго многочлена на первый многочлен:
.
Результат записываем в столбик, выравнивая степени x .

3 После того, как все члены второго многочлена умножили на первый, проводим черту и складываем члены с одинаковыми степенями x :

Деление многочленов на многочлен «столбиком» (или «углом»)

Проиллюстрируем этот метод на примере деления многочлена 2x 4 -3x 3 +4x 2 +1 на многочлен x 2 -1:

В общем случае при делении многочлена P n (x) на многочлен T m (x) «столбиком» многочлены P n (x) и T m (x) располагают по убывающим степеням x. Затем старший член многочлена P n (x) делят на старший член многочлена T m (x) и получают старший член частного-многочлена q(x) умножают затем на делитель-многочлен T m (x) и полученный многочлен вычитают из многочлена P n (x). В результате вычитания получается некоторый многочлен D 1 (x), степень которого меньше n.

Если степень многочлена D 1 (x) меньше m, то процесс деления окончен, при этом многочлен D 1 (x) - остаток. Если степень многочлена D 1 (x), больше или равна m, то описанная процедура деления повторяется для многочлена D 1 (x), т.е. старший член многочлена D 1 (x) делят на старший член многочлена T m (x) и полученный многочлен вычитают из многочлена D 1 (x). В результате вычитания получается многочлен D 2 (x), степень которого меньше n-1. Если степень многочлена D 2 (x) меньше m, то процесс деления окончен, при этом многочлен D 2 (x) - остаток. Если же степень многочлена D 2 (x) больше или равна m, то описанная процедура деления повторяется для многочлена D 2 (x). Процесс продолжается до тех пор, пока степень полученного на k-м шаге многочлена D k (x) станет меньше степени многочлена T m (x), т.е. меньше m. При этом многочлен D k (x) - остаток.

При делении многочлена P n (x)=a 0 x n +a 1 x n-1 + … +a n-1 x+a n , расположенного по убывающим степеням x, на двучлен применяется метод сокращённого деления, называемой схемой Горнера . Этот метод есть непосредственное следствие метода неопределённых коэффициентов. Заметим, что при делении многочлена P n (x) степени n на двучлен в частном получается многочлен Q n-1 (x)=a 0· x n-1 +b 1· x n-2 + … +b n-1 степени n-1, а в остатке - число (в частности, нуль). По методу неопределённых коэффициентов имеем

Приравнивая коэффициенты при одинаковых степенях в левой и правой части равенства (4), находим

Откуда получаем рекуррентные формулы для нахождения коэффициентов частного b1, b2, …, bn-1 и остатка r:

Практически вычисление коэффициентов частного Q n-1 (x) и остатка r проводится по следующей схеме (схема Горнера):

В этой схеме, начиная с коэффициента b 1 , каждое число третьей строки получается из предыдущего числа этой строки умножением на число и прибавлением к полученному результату соответствующего числа первой строки, стоящего над искомым числом.

При делении многочлена P n (x) на x- имеем тождественное равенство

P n (x) =(x -)· Q n-1 (x)+r.

Оно справедливо, в частности, при x =, т.е. P n () = r

Следующая теорема позволяет найти остаток от деления многочлена на двучлен, не находя частного.

Деление «уголком» - это, на мой взгляд, самая тяжелая, самая нудная тема во всей школьной математике. Тут нам придется всерьез поднапрячься. Пусть, однако, нас вдохновляет мысль, что весь последующий материал будет значительно легче и приятнее.

Прежде всего, рассмотрим деление на однозначное число. Допустим, мы хотим вычислить значение выражения

Пользуясь свойствами умножения, мы можем расписать делимое таким образом:

6 ∙ 100 + 4 ∙ 10 + 8 =

3 ∙ 2 ∙ 100 + 2 ∙ 2 ∙ 10 + 4 ∙ 2 =

( 3 ∙ 100 + 2 ∙ 10 + 4 ) ∙ 2 =

3 2 4 ∙ 2 .

После этого становится очевидно, что частное от деления равно

Но это мы взяли самый что ни на есть простейший случай, когда каждую отдельно взятую цифру делимого можно поделить на делитель. А вот пример несколько посложнее:

Здесь первая цифра оказалась меньше делителя. Поэтому, расписывая делимое, мы не будем отрывать ее от второй цифры:

15 ∙ 10 + 6 .

Поскольку число 15 не делится нацело на 2, придется нам прибегнуть к делению с остатком. Представим результат такого деления в виде:

15 = 7 ∙ 2 + 1 = 14 + 1 .

Теперь мы можем продолжать расписывать наше делимое дальше:

15 ∙ 10 + 6 =

( 14 + 1 ) ∙ 10 + 6 =

14 ∙ 10 + 1 ∙ 10 + 6 =

14 ∙ 10 + 16 =

7 ∙ 2 ∙ 10 + 8 ∙ 2 =

( 7 ∙ 10 + 8 ) ∙ 2 =

7 8 ∙ 2 .

Отсюда моментально получаем ответ:

Такого рода расчеты можно проводить в уме и сразу же писать ответ. Но мы сейчас перепишем их в виде краткой таблицы. Умение составлять такие таблицы нам пригодится, когда мы займемся делением на многозначные числа, когда всё окажется не так просто. Делимое и делитель запишем так:

При делении первых двух разрядов ( 15 ) на двойку получается 7 плюс еще какой-то остаток. С этим остатком мы разберемся чуть позже, а пока запишем семерку под чертой снизу от делителя (здесь у нас со временем будет выписан полный ответ):

Умножаем на эту семерку наш делитель ( 2 ) и записываем ответ ( 14 ) под первыми двумя разрядами делимого ( 15 ):

Теперь настало время вычислить остаток от деления 15-ти на 2 . Он равен, очевидно,

15 − 2 ∙ 7 = 15 − 14 .

У нас уже всё подготовлено, чтобы выполнить это вычитание «столбиком»:

У нас получается единица , к которой мы приписываем шестерку из следующего разряда делимого:

В результате такого приписывания у нас получается число 16 . Мы делим его на наш делитеть ( 2 ) и получаем 8 . Эту восьмерку пишем в строке ответа, под чертой снизу от делителя:

Ответ мы получили, однако правила составления таблицы таковы, что нам надо добавить в нее еще две строки. Мы должны формальным образом убедиться, что не потеряли остаток от деления. Умножаем делитель ( 2 ) на последнюю цифру ответа ( 8 ), приписываем результат ( 16 ) снизу к нашей таблице в последние два разряда делимого:

Вычитаем последнюю строку из предпоследней и получаем 0:

Этот последний нуль есть не что иное, как остаток от деления, который образовался бы в том случае, если бы мы рассматривали деление с остатком:

156: 2 = 78 (ост. 0).

Чтобы получше это понять, возьмем похожий пример, в котором, однако, остаток не равен нулю:

157: 2 = 78 (ост. 1).

Таблица для этого примера выглядит так:

Здесь, опять-таки, остаток стоит в последней строке. Для полноты картины распишем наше делимое в таком виде:

14 ∙ 10 + 17 =

7 ∙ 2 ∙ 10 + 8 ∙ 2 + 1 =

( 7 ∙ 10 + 8 ) ∙ 2 + 1 =

7 8 ∙ 2 + 1

Теперь мы готовы к тому, чтобы делить (нацело или с остатком) на многозначные числа. Это делается при помощи подобной же таблицы (именно из-за ее особого вида данная процедура получила название деление «уголком» ). Допустим, требуется выполнить деление с остатком:

Приступаем к заполнению таблицы:

В данном случае, чтобы найти первую цифру частного, надо взять первые четыре цифры делимого ( 1356 ) и получившееся число поделить (с остатком) на делитель ( 259 ). Почему надо взять именно первые четыре цифры делимого? Потому что если бы мы взяли хотя бы на одну цифру меньше, то получившееся число ( 135 ) оказалось бы меньше делителя ( 259 ), а это совсем не то, из чего можно было бы извечь полезную информацию. Итак, возьмем первые четыре цифры делимого и рассмотрим следующее деление с остатком:

1356 : 259 = ?

Тут нам помогут приближенные вычисления, для которых, как мы знаем, вовсе необязательно, чтобы числа делились друг на друга нацело:

1356 / 259 ≈ 1356 / 300 ≈ 1500 / 300 = 15 / 3 = 5 .

Зная результат приближенного деления, мы можем предположить, что, скорее всего,

1356 : 259 = 5 (остаток - пока неважно какой).

Конечно, абсолютной уверенности у нас нет. Здесь вместо пятерки вполне может стоять четверка или шестерка , однако вряд ли мы ошиблись больше, чем на одну единицу. Имея это в виду, тем не менее берем эту пятерку и заносим ее в нашу таблицу в строку ответа. После этого умножаем на нее делитель ( 259 ) и при этом записываем ответ под делимым в подходящие разряды:

259 ∙ 5 =

Здесь «маленькие» цифры - это побочный продукт процедуры умножения: мы познакомились с ними, когда учились умножать «в столбик». После того как умножение выполнено, они становятся больше не нужны: на них можно просто не обращать внимания. Выражение 259 ∙ 5 , написанное слева от таблицы, помещено сюда только ради пояснения того, что мы делаем. К таблице оно, собственно, не принадлежит, и в будущем мы такие пояснения выписывать не будем. Тут важно отметить, что результат нашего умножения ( 1295 ) оказался меньше записанного над ним числа 1356 , составленного из первых четырех цифр делимого. Если бы это было не так, то это означало бы, что приближенное деление дало нам завышенный результат. Нам надо было бы тогда зачеркнуть пятерку в строке ответа, на ее место поставить четверку - после чего зачеркнуть и переделать все наши последующие вычисления. Но нам на этот раз повезло, и ничего переделывать не требуется.

Теперь выполняем вычитание в столбик и получаем:

259 ∙ 5 =

Внимательно приглядимся к полученной разности ( 61 ). Очень важно, что она оказалась меньше делителя ( 259 ). В противном случае мы пришли бы к выводу, что приближенное деление дало нам заниженный результат и нам пришлось бы теперь исправлять в строке ответа пятерку на шестерку , а также переделывать все последующие вычисления. К счастью, этого не случилось. Приближенное вычисление нас не подвело, и мы теперь совершенно точно знаем, что,

1356 : 259 = 5 (ост. 61 ).

Возвращаемся к таблице. К нашему остатку ( 61 ) приписываем семерку из следующего разряда делимого и приступаем к нахождению второй цифры ответа. Это делается с помощью точно такой же процедуры, что и раньше. Потом - очередь за третьей цифрой. В конце концов таблица принимает такой вид:

259 ∙ 5 =

259 ∙ 2 =

259 ∙ 3 =

Можно выписывать окончательный ответ:

135674: 259 = 523 (ост. 217).

Самая большая неприятность в делении «уголком» состоит в том, что приближенные вычисления, к которым приходится прибегать по ходу дела, не дают сразу гарантированно правильного результата и нуждаются иногда в последующей коррекции. Впрочем, по мере тренировки, у нас выработается особое чутье и мы будем уже сразу почти наверняка знать, какие цифры следует писать в строке ответа, чтобы потом ничего больше не надо было исправлять и переделывать.

Разумеется, нам будут попадаться случаи, когда частное содержит нули. Каждый такой нуль позволит сделать в таблице небольшие сокращения. Вот пример такой таблицы:

Как и в случае умножения «в столбик», для того чтобы было удобнее писать «маленькие» цифры, нам может понадобиться

Теперь остается только тренироваться, тренироваться и тренироваться.