Основные черты природы мирового океана. Горизонтальная структура вод мирового океана Вертикальная структура мирового океана

(около 70 %), состоящая из целого ряда отдельных компонентов. Всякий разбор строения М.о. связан с компонентными частными структурами океана.

Гидрологическая структура МО.

Температурная стратификация. В 1928 г. Дефантом было сформулировано теоретическое положение о горизонтальном разделении МО на две толщи вод. Верхнюю часть – океаническую тропосферу, или «Тёплый океан» и океаническую стратосферу или «Холодный океан» Граница между ними проходит наклонно, варьируясь от практически вертикального до горизонтального положения. На экваторе граница находится на глубине около 1 км, в полярных широтах может проходить почти вертикально. Воды «теплого» океана легче полярных вод и располагаются на них как на жидком дне. Несмотря на то, что теплый океан имеется практически везде и, следовательно, граница между ним и холодным океаном имеет значительную протяженность, водообмен между ними происходит только в очень немногих местах, за счет поднятия глубинных вод (апвеллинга), или опускания теплых вод (даунвеллинга).

Геофизическая структура океана (наличие физических полей). Один из факторов ее наличия – термодинамический обмен между океаном и атмосферой. По мнению Шулейкина (1963) океан надо рассматривать как тепловую машину, работающую в меридиональном направлении. Экватор – нагреватель, а полюса – холодильники. За счет циркуляции атмосферы и океанических течений происходит постоянный отток тепла от экватора к полюсам. Экватор делит океаны а 2 части с частично обособленными системами течений , а материки делят М.о. на регионы. Таким образом океанографии подразделяют МО на 7 частей: 1) Северный Ледовитый, 2) Северная часть Атлантического, 3) Северная часть Индийского, 4) Северная часть Тихого, 5) Южная часть Атлантического, 6) Южная часть Тихого, 7) Южная часть Индийского.

В океане, как и везде в географической оболочке есть граничащие поверхности (океан/атмосфера, берег/океан, дно/водная масса, холодная/теплая ВМ, более соленая/менее соленая ВМ и т.д.). Установлено, что наибольшая активность протекания химических процессов происходит именно на пограничных поверхностях (Айзатулин, 1966). Вокруг каждой такой поверхности наблюдается повышенное поле химической активности и физических аномалий. МО делят на активные слои, толщина которых при приближении к границе, которая их порождает уменьшается вплоть до молекулярного, а химическая активность и количество свободной энергии максимально возрастает. Если происходит пересечение нескольких границ, то все процессы происходят еще более активно. Максимальная активность наблюдается на побережьях, на кромке льда, на океанических фронтах (ВМ разного происхождения и характеристик).

Наиболее активны:

  1. экваториальная зона, где контактируют ВМ северной и южной частей океанов, закручивающиеся в противоположных направлениях (по или против часовой стрелки).
  2. зоны контакта океанических вод с разной глубины. В районах апвеллинга к поверхности поднимаются воды стратосферы, в которых растворено большое количество минеральных веществ, являющихся пищей для растений. В районах даунвеллина ко дну океана опускаются богатые кислородом поверхностные воды. В подобных районах биомасса увеличивается в 2 раза.
  3. районы гидротерм (подводных вулканов). Здесь формируются основанные на хемосинтезе «экологические оазисы». В них организмы существуют при температуре до +400ºС и солености до 300 ‰. Здесь обнаружены археобактерии гибнущие при +100ºС от переохлаждения и родственные существовавшим на Земле 3,8 млрд. лет назад, щетинковые черви – живущие в растворах напоминающих серную кислоту при температуре +260ºС.
  4. устья рек.
  5. проливы.
  6. подводные пороги

Наименее активны центральные часть океанов удаленные от дна и берегов.

Биологическая структура.

До середины 60-х гг. бытовало мнение, что океан может прокормить человечество. Но оказалось, что только около 2% водных масс океана насыщено жизнью. В характеристике биологической структуры океана имеется несколько подходов.

  1. Подход связан с выявлением скоплений жизни в океане. Здесь выделяется 4 статических скопления жизни: 2 пленки жизни поверхностная и придонная толщиной приблизительно по 100 м и 2 сгущения жизни: прибрежное и саргассово – скопление организмов в открытом океане, где дно не играет никакой роли, связанные с подъемами и опусканиями вод в океане, фронтальными зонами в океане,
  2. Подход Зенкевича связан с выявлением симметрии в океане существует. Здесь существует 3 плоскости симметрии в явлениях биотической среды: экваториальная, 2 меридиональных проходящих соответственно по центру океана и по центру материка. По отношению к ним происходит изменение в биомассе от берега к центру океана биомасса уменьшается. Широтные пояса в океане выделяют по отношению к экватору.

    1. экваториальная зона протяженностью около 10 0 (от 5 0 с.ш. до 5 0 ю.ш.) – полоса богатая жизнью. Очень много видов при небольшой численности каждого. Рыбопромысел обычно не очень выгоден.
    2. субтропическо-тропические зоны (2) – зоны океанических пустынь. Обитает довольно много видов, фитопланктон активен круглогодично, но биопродуктивность очень низкая. Максимальное количество организмов обитает на коралловых рифах и в мангровых зарослях (прибрежные полузатопленные водой растительные формации).
    3. зоны умеренных широт (2 зоны) имеют наибольшую биопродуктивность. Видовое разнообразие по сравнению с экватором резко уменьшается, но количество особей одного вида резко увеличивается. Это районы активного рыбопромысла. 4) полярные зоны – районы с минимальной биомассой из-за того, что фотосинтез фитопланктона в зимнее время прекращается.
  3. Экологическая классификация. Выделяют экологические группы живых организмов.

    1. планктон (от греч. Planktos – блуждающий), совокупность организмов, обитающих в толще воды и неспособных противостоять переносу течением. Состоит из бактерий, диатомовых и некоторых других водорослей (фитопланктон), простейших, некоторых кишечнополостных, моллюсков, ракообразных, икры и личинок рыб, личинок беспозвоночных (зоопланктон).
    2. нектон (от греч. nektos – плавающий), совокупность активно плавающих животных, обитающих в толще воды, способных противостоять течению и перемещаться на значительные расстояния. К нектону относятся кальмары, рыбы, морские змеи и черепахи, пингвины, киты, ластоногие и др.
    3. бентос (от греч. benthos – глубина), совокупность организмов, обитающих на грунте и в грунте дна водоемов. Часть из них передвигается по дну: морские звезды, крабы, морские ежи. Другие прикрепляются ко дну – кораллы, гребешки, водоросли. Некоторые рыбы плавают у дна или лежат на дне (скаты, камбала), могут закапываться в грунт.
    4. Выделяют и другие, более мелкие экологические группы организмов: плейстон – организмы, плавающие по поверхности; нейстон – организмы, которые прикрепляются к пленке воды сверху или снизу; гипонейстон – живут непосредственно под пленкой воды.
В строении географической оболочки МО выделяют несколько особенностей:
  1. Единство МО
  2. Внутри структуры МО выделяются круговые структуры.
  3. Океан анизотропен, т.е. передает влияние граничащих поверхностей с разной скоростью в разных направлениях. Капля воды от поверхности Атлантического океана ко дну движется 1000 лет, а с востока на запад от 50 суток до 100 лет.
  4. Океан имеет вертикальную и горизонтальную поясность, что приводит к формированию внутри океана внутренних границ более низкого ранга.
  5. Значительные размеры МО сдвигают нижнюю границу ГО в нем до 11 км глубины.
Существуют значительные сложности анализа единой географической среды океана.
  1. малая доступность для человека;
  2. сложности в разработке техники для изучения океана;
  3. малый отрезок времени в который океан изучается.

В процессе планетарного обмена веществами и энергией в атмо- и гидросфере формируются свойства вод Мирового океана. Энергия движения воды, приходящая с солнечной радиацией, в океан поступает сверху. Естественно поэтому, что в вертикальном разрезе толща воды распадается на большие слои, аналогичные слоям атмосферы, их тоже называют сферами. Принято выделять четыре сферы: верхнюю, промежуточную, глубинную и придонную.

Верхняя сфера - слой мощностью 200-300 м, характеризующийся перемешиванием, проникновением света и колебаниями температуры.

Промежуточная сфера простирается до глубин 1500-2000 м. Ее воды образуются из поверхностных при их опускании. При этом они охлаждаются и уплотняются, а затем перемещаются в горизонтальных направлениях, преимущественно с зональной составляющей.

Глубинная сфера не доходит до дна примерно 1000 м. Ей свойственна гомогенность (однородность) воды. В этой сфере толщиной не менее 2000 м заключена почти половина всей воды океана.

Придонная сфера - толщиной около 1000 м от дна. Ее воды образуются в холодных поясах, в Антарктиде и Арктике и перемещаются на огромных пространствах по глубоким (свыше 4000 м) котловинам и желобам. Они воспринимают тепло из недр земли и химически взаимодействуют с дном океана. Поэтому значительно трансформируются.

В верхней сфере существуют водные массы - сравнительно большие объемы воды, формирующиеся в определенной акватории Мирового океана и обладающие в течение длительного времени почти постоянными физическими (температура, свет), химическими (соленость, газы), биологическими (планктон) свойствами и перемещающиеся как единое целое.

В Мировом океане выделяются следующие зональные типы водных масс: экваториальные, тропические и субтропические, умеренные, полярные.

Экваториальные водные массы характеризуются самой высокой в открытом океане температурой, пониженной (до 32-34°/0о) соленостью, минимальной плотностью, большим содержанием кислорода и фосфатов. Тропические и субтропические водные массы образуются в области тропических атмосферных антициклонов, характеризуются повышенной (до 37°/оо и выше) соленостью и большой прозрачностью, бедностью питательными солями и планктоном. Это океанские пустыни.

Умеренные водные массы располагаются в умеренных широтах и отличаются большой изменчивостью свойств как по географическим широтам, так и по сезонам года. Для них характерен интенсивный обмен теплом и влагой с атмосферой.

Полярные водные массы Арктики и Антарктики характеризуются самой низкой температурой, наибольшей плотностью, повышенным содержанием кислорода. Воды Антарктики интенсивно погружаются в придонную сферу и снабжают ее кислородом. Арктическая вода, обладающая низкой соленостью и потому небольшой плотностью, не выходит за пределы верхней промежуточной сферы. Водная масса квазистационарна. Каждая водная масса имеет свой очаг формирования Перемещаясь, массы воды смешиваются, изменяют свойства. При встречах водных масс возникают фронтальные зоны, отличающиеся градиентами температуры, солености, а значит и плотности (рис. 8).

Фронтальные зоны - это зоны конвергенции (сходимости). При конвергенции вода накапливается, уровень океана повышается, увеличивается давление и плотность воды, и она опускается.

Так как в океане не может происходить только опускание воды, а должен существовать и компенсационный подъем вод, то наряду с зонами конвергенции отмечаются и зоны дивергенции (расходимости) течений, где осуществляется подъем вод. Средняя скорость непериодических вертикальных движений в океане всего несколько сантиметров в сутки Поэтому подъем холодных вод из глубины океана к поверхности у восточных берегов океанов со скоростью несколько десятков сантиметров в сутки называют мощным (апвелинг). Поднимающаяся из глубин океана холодная вода содержит много питательных веществ, поэтому такие районы более богаты рыбой.

Холодные глубинные воды, попадая в поверхностный слой, постепенно нагреваются и под влиянием ветровой циркуляции перемещаются в системе дрейфовых течений в высокие широты, перенося тепло. В результате океан переносит из низких широт больше тепла, чем атмосфера.

Мировой океан и атмосфера образуют единую систему. Океан - главный аккумулятор тепла на Земле, гигантский преобразователь лучистой энергии в тепловую. Почти все тепло, получаемое нижними слоями атмосферы, является скрытым теплом конденсации, заложенным в водяном паре. При этом более половины этого тепла поступает из тропических районов. Скрытая энергия, поступающая в атмосферу с водяными парами, частично преобразуется в механическую энергию, обеспечивающую перемещение воздушных масс и возникновение ветра Ветер передает энергию водной поверхности, вызывая волнения и океанические течения, переносящие тепло из низких широт в более высокие.

Наряду с энергетическим обменом, взаимодействие океана и атмосферы сопровождается и обменом веществами (водяные пары, газы, соли) Процессы взаимодействия двух подвижных оболочек Земли чрезвычайно сложны, и изучение их очень важно Это прежде всего необходимо для понимания сложной картины формирования погоды и климатов на Земле, для удовлетворения практических требований специалистов по прогнозу погоды, промысловой океанологии, навигации, подводной, акустике и т. д.

Структурой Мирового океана называется его строение – вертикальная стратификация вод, горизонтальная (географическая) поясность, характер водных масс и океанических фронтов.

Вертикальная стратификация Мирового океана. В вертикальном разрезе толща воды распадается на большие слои, аналогичны слоям атмосферы. Их также называют сферами. Выделяются следующие четыре сферы (слоя):

Верхняя сфера формируется непосредственным обменом энергией и веществом с тропосферой в форме микроциркуляционных систем. Она охватывает слой в 200-300 м мощности. Эта верхняя сфера характеризуется интенсивным перемешиванием, проникновением света и значительными колебаниями температуры.

Верхняя сфера распадается на следующие частные слои:

а) самый верхний слой толщиной в несколько десятков сантиметров;

б) слой воздействия ветра глубиной 10-40 см; он участвует в волнении, реагирует на погоду;

в) слой скачка температур, в котором она резко падает от верхнего нагретого к нижнему, не затронутому волнением и не прогретому слою;

г) слой проникновения сезонной циркуляции и изменчивости температур.

Океанские течения обычно захватывают водные массы только верхней сферы.

Промежуточная сфера простирается до глубин 1 500 – 2000 м; ее воды образуются из поверхностных вод при их опускании. При этом они охлаждаются и уплотняются, а затем перемешиваются в горизонтальных направлениях, преимущественно с зональной составляющей. Преобладают горизонтальные переносы водных масс.

Глубинная сфера не доходит до дна примерно на 1 000 м. Этой сфере свойственна определенная однородность. Ее мощность составляет около 2 000 м и она концентрирует более 50 % всей воды Мирового океана.

Придонная сфера занимает самый нижний слой толщи океана и простирается на расстояние примерно 1 000 м от дна. Воды этой сферы образуются в холодных поясах, в Арктике и Антарктике и перемещаются на огромных пространствах по глубоким котловинам и желобам. Они воспринимают тепло из недр Земли и взаимодействуют с дном океана. Поэтому при своем движении они значительно трансформируются.

Водные массы и океанские фронты верхней сферы океана. Водной массой называется сравнительно большой объем воды, формирующийся в определенной акватории Мирового океана и обладающий в течение длительного времени почти постоянными физическими (температура, свет), химическими (газы) и биологическими (планктон) свойствами. Водная масса перемещается как единое целое. Одна масса от другой отделяется океанским фронтом.

Выделяются следующие типы водных масс:

1. Экваториальные водные массы ограничены экваториальным и субэкваториальным фронтами. Они характеризуются самой высокой в открытом океане температурой, пониженной соленостью (до 34-32 ‰), минимальной плотностью, большим содержанием кислорода и фосфатов.

2. Тропические и субтропические водные массы создаются в областях тропических атмосферных антициклонов и ограничены со стороны умеренных поясов тропическим северным и тропическим южным фронтами, а субтропические – северным умеренным и северным южным фронтами. Они характеризуются повышенной соленостью (до 37 ‰ и более), большой прозрачностью, бедностью питательными солями и планктоном. В экологическом отношении тропические водные массы представляет собой океанские пустыни.

3. Умеренные водные массы располагаются в умеренных широтах и ограничены со стороны полюсов арктическим и антарктическим фронтами. Они отличаются большой изменчивостью свойств как по географическим широтам, так и по сезонам года. Для умеренных водных масс характерен интенсивный обмен теплом и влагой с атмосферой.

4. Полярные водные массы Арктики и Антарктики характеризуются самой низкой температурой, наибольшей плотностью, повышенным содержанием кислорода. Воды Антарктики интенсивно погружаются в придонную сферу и снабжают ее кислородом.

Океанские течения. В соответствии с зональным распределением солнечной энергии по поверхности планеты как в океане, так и в атмосфере создаются однотипные и генетически связанные циркуляционные системы. Старое положение о том, что океанские течения вызываются исключительно ветрами, не подтверждается новейшими научными исследованиями. Перемещение и водных, и воздушных масс определяется общей для атмосферы и гидросферы зональностью: неравномерным нагреванием и охлаждением поверхности Земли. От этого в одних районах возникают восходящие токи и убыль массы, в других – нисходящие токи и увеличение массы (воздуха или воды). Таким образом рождается импульс движения. Перенос масс – приспособление их к полю силы тяжести, стремление к равномерному распределению.

Большинство макроциркуляционных систем держится весь год. Только в северной части Индийского океана течения меняются вслед за муссонами.

Всего на Земле имеется 10 крупных циркуляционных систем:

1) Североатлантическая (Азорская) система;

2) Северотихоокеанская (Гавайская) система;

3) Южноатлантическая система;

4) Южнотихоокеанская система;

5) Ижноиндийская система;

6) Экваториальная система;

7) Атлантическая (Исландская) система;

8) Тихоокеанская (Алеутская) система;

9) Индийская муссонная система;

10) Антарктическая и Арктическая система.

Главные циркуляционные системы совпадают с центрами действия атмосферы. Эта общность носит генетический характер.

Поверхностное течение отклоняется от направления ветра на угол до 45 0 вправо в Северном полушарии и влево в Южном полушарии. Так, пассатные течения идут с востока на запад, пассаты же дуют с северо-востока в Северном полушарии и с юго-востока в Южном полушарии. Верхний слой может следовать за ветром. Однако каждый нижележащий слой продолжает отклоняться вправо (влево) от направления движения вышележащего слоя. Скорость течения при этом уменьшается. На некоторой глубине течение принимает противоположное направление, что практически означает его прекращение. Многочисленные измерения показали, что течения оканчиваются на глубинах не более 300 м.

В географической оболочке как системе более высокого, чем океаносфера, уровня – океанские течения – это не только потоки воды, но и полосы переноса воздушных масс, направления обмена веществом и энергией, пути миграции животных и растений.

Тропические антициклонические системы океанских течений самые крупные. Они простираются от одного берега океана до другого на 6-7 тыс. км в Атлантическом океане и 14-15 тыс. км в Тихом океане, а по меридиану от экватора до 40 ° широты, на 4-5 тыс. км. Устойчивые и мощные течения, особенно в Северном полушарии, в основном замкнутые.

Как и в тропических атмосферных антициклонах, движение воды идет по часовой стрелке в Северном и против часовой стрелки в Южном полушарии. От восточных берегов океанов (западных берегов материка) поверхностная вода относится к экватору, на ее место поднимается из глубины (дивергенция) и компенсационно поступает из умеренных широт холодная. Так образуются холодные течения:

Канарское холодное течение;

Калифорнийское холодное течение;

Перуанское холодное течение;

Бенгельское холодное течение;

Западноавстралийское холодное течение и др.

Скорость течений относительно небольшая и составляет около 10 см/сек.

Струи компенсационных течений вливаются в Северное и Южное Пассатные (Экваториальные) теплые течения. Скорость этих течений достаточно большая: 25-50 см/сек на тропической периферии и до 150-200 см/сек близ экватора.

Подходя к берегам материков, пассатные течения, естественно, отклоняются. Образуются крупные сточные течения:

Бразильское течение;

Гвианское течение;

Антильское течение;

Восточноавстралийское течение;

Мадагаскарское течение и др.

Скорость этих течений составляет около 75-100 см/сек.

Благодаря отклоняющему действию вращения Земли центр антициклонической системы течений смещен к западу относительно центра атмосферного антициклона. Поэтому перенос водных масс в умеренные широты сосредоточен в узких полосах у западных берегов океанов.

Гвианское и Антильское течения омывают Антильские острова и большая часть воды заходит в Мексиканский залив. Из него начинается стоковое течение Гольфстрим. Начальный его участок во Флоридском проливе называется Флоридским течением , глубина которого составляет около 700 м, ширина - 75 км, мощность - 25 млн. м 3 /сек. Температура воды здесь достигает 26 0 С. Достигнув средних широт, водные массы частично возвращаются в эту же систему у западных берегов материков, частично вовлекаются в циклонические системы умеренного пояса.

Экваториальная система представлена Экваториальным противотечением. Экваториальное противотечение образуется как компенсационное между Пассатными течениями.

Циклонические системы умеренных широт различны в Северном и Южном полушариях и зависят от расположения материков. Северные циклонические системы – Исландская и Алеутская – весьма обширны: с запада на восток они протягиваются на 5-6 тыс. км и с севера на юг около 2 тыс. км. Система циркуляции в Северной Атлантике начинается теплым Североатлантическим течением. За ним нередко сохраняется название начального Гольфстрима . Однако собственно Гольфстрим как стоковое течение продолжается не далее Нью-Фаундлендской банки. Начиная от 40 0 с.ш. водные массы вовлекаются в циркуляцию умеренных широт и под действием западного переноса и кориолисовой силы от Берегов Америки направляются к Европе. Благодаря активному водообмену с Северным Ледовитым океаном, Североатлантическое течение проникает в полярные широты, где циклоническая деятельность формирует несколько круговоротов-течений Ирмингера, Норвежское, Шпицбергенское, Нордкапское .

Гольфстримом в узком смысле называется стоковое течение от Мексиканского залива до 40 0 с.ш., в широком смысле – система течений в северной Атлантике и западной части Северного Ледовитого океана.

Второй круговорот находится у северо-восточных берегов Америки и включает течения Восточногренландское и Лабрадорское . Они выносят в Атлантический океан основную массу арктических вод и льдов.

Циркуляция северной части Тихого океана аналогична северо-атлантической, но отличается от нее меньшим водообменном с Северным Ледовитым океаном. Стоковое течение Куросио переходит в Северотихоокеанское , идущее к Северо-Западной Америке. Очень часто эта система течений называется Куросио.

В Северный Ледовитый океан проникает относительно небольшая (36 тыс. км 3) масса океанской воды. Холодные течения Алеутское, Камчатское и Ойясио образуются из холодных вод Тихого океана вне связи с Ледовитым.

Циркумполярная антарктическая система Южного океана соответственно океаничности Южного полушария представлена одним течением Западных ветров . Это самое мощное течение в Мировом океане. Оно охватывает Землю сплошным кольцом в поясе от 35-40 до 50-60 0 ю.ш. Ширина его около 2 000 км, мощность 185-215 км3/сек, скорость 25-30 см/сек. В значительной степени это течение определяет самостоятельность Южного океана.

Циркумполярное течение Западных ветров незамкнутое: от него отходят ветви, вливающиеся в Перуанское, Бенгельское, Западноавстралийское течения, а с юга, от Антарктиды, в него впадают прибрежные антарктические течения – из морей Уэдделла и Росса.

Арктическая система в циркуляции вод Мирового океана занимает особое место из-за конфигурации Северного Ледовитого океана. Генетически она соответствует Арктическому барическому максимуму и ложбине Исландского минимума. Главное течение здесь – Западное арктическое . Оно перемещает воды и льды с востока на запад по всему Северному Ледовитому океану к проливу Нансена (между Шпицбергеном и Гренландией). Дальше оно продолжается Восточногренландским и Лабрадорским . На востоке в Чукотском море от Западного арктического течения отделяется Полярное течение , идущее через полюс к Гренландии и далее - в пролив Нансена.

Циркуляция вод Мирового океана диссимметрична относительно экватора. Диссимметрия течений пока не получила должного научного объяснения. Причина ее, вероятно, заключается в том, что к северу от экватора господствует меридиональный перенос, а в Южном полушарии – зональный. Объясняется это также положением и формой материков.

Во внутренних морях циркуляция воды всегда индивидуальна.

54. Воды суши. Виды вод суши

Атмосферные осадки после выпадения их на поверхности материков и островов делятся на четыре неравных и изменчивых части: одна испаряется и переносится дальше вглубь континента атмосферным стоком; вторая просачивается в почву и в грунт и на некоторое время задерживается в виде почвенной и подземной воды, стекающей в реки и в моря в форме грунтового стока; третья в ручьях и в реках стекает в моря и океаны, образуя поверхностный сток; четвертая превращается в горные или материковые ледники, которые тают и стекают в океан. Соответственно этому на суше выделяют четыре типа скопления воды: подземные воды, реки, озера и ледники.

55. Сток вод с суши. Величины, характеризующие сток. Факторы стока

Стекание дождевой и талой воды небольшими струйками по склонам называется плоскостным или склоновым стоком. Струи склонового стока собираются в ручьи и реки, образуя русловой , или линейный , называемым речным , сток . Грунтовые воды стекают в реки в виде грунтового или подземного стока.

Полный речной сток R образуется из поверхностного S и подземного U: R = S + U . (см. табл. 1). Полный речной сток равен 38800 км 3 , поверхностный сток – 26900 км 3 , подземный сток – 11900 км 3 , ледниковый сток (2500-3000 км 3)и сток подземных вод прямо в моря вдоль береговой линии 2000-4000 км 3 .

Таблица 1 – Водный баланс суши без полярных ледников

Поверхностный сток зависит от погоды. Он неустойчивый, временный, почву питает слабо, часто нуждается в регулировании (пруды, водохранилища).

Грунтовый сток возникает в грунтах. Во влажное время года грунт принимает избыток воды на поверхности и в реках, а в сухие месяцы грунтовые воды питают реки. Они обеспечивают постоянство течения воды в реках и нормальный водный режим почвы.

Общий объем и соотношение поверхностного и подземного стока меняются по зонам и регионам. В одних частях материков рек много и они полноводные, густота речной сети большая, в других – речная сеть редкая, реки маловодные или пересыхают вообще.

Густота речной сети и многоводность рек – функция стока или водного баланса территории. Сток в целом определяется физико-географическими условиями местности, на учете которых и основан гидролого-географический метод изучения вод суши.

Величины, характеризующие сток. Сток с суши измеряется следующими величинами: слоем стока, модулем стока, коэффициентом стока и объемом стока.

Наиболее наглядно сток выражен слоем , который измеряется в мм. Например, на Кольском полуострове слой стока равен 382 мм.

Модуль стока – количество воды в литрах, стекающее с 1 км 2 в секунду. Например, в бассейне Невы модуль стока равен 9, на Кольском полуострове – 8, а в Нижнем Поволжье – 1 л/км 2 х с.

Коэффициент стока – показывает, какая доля (%) атмосферных осадков стекает в реки (остальная испаряется). Например, на Кольском полуострове К= 60%, в Калмыкии только 2 %. Для всей суши средний многолетний коэффициент стока (К) равен 35%. Другими словами, 35 % годовой суммы осадков стекает в моря и океаны.

Объем стекающей воды измеряется в кубических километрах. На Кольском полуострове в год осадки приносят 92,6 км 3 воды, а стекает 55,2 км 3 .

Сток зависит от климата, характера почвенного покрова, рельефа, растительности, выветривания, наличия озер и других факторов.

Зависимость стока от климата. Роль климата в гидрологиче­ском режиме суши огромна: чем больше осадков и меньше испа­рение, тем больше сток, и наоборот. При увлажнении больше 100 % сток следует за количеством осадков независимо от вели­чины испарения. При увлажнении меньше 100 % сток уменьшается вслед за испарением.

Однако роль климата не следует переоценивать в ущерб влия­нию других факторов. Если признать климатические факторы решающими, а остальные малозначащими, то мы лишимся возможности регулировать сток.

Зависимость стока от почвенного покрова. Почва и грунты впитывают и накапливают (аккумулируют) влагу. Почвенный покров преобразует атмосферные осадки в эле­мент водного режима и служит средой, в которой формируется речной сток. Если инфильтрационные свойства и водопроницае­мость почвогрунтов невелики, то в них мало попадает воды, боль­ше расходуется на испарение и поверхностный сток. Хорошо обра­ботанная почва в метровом слое может запасать до 200 мм осад­ков, а потом медленно отдавать их растениям и рекам.

Зависимость стока от рельефа. Нужно различать значение для стока макро-, мезо- и микрорельефа.

Уже с незначительных возвышенностей сток больше, чем с при­легающих к ним равнин. Так, на Валдайской возвышенности мо­дуль стока 12, а на соседних равнинах только 6 м/км 2 /с. Еще боль­ший сток в горах. На северном склоне Кавказа он достигает 50, а в западном Закавказье – 75 л/км 2 /с. Если на пустынных равни­нах Средней Азии стока нет, то в Памиро-Алае и Тянь-Шане он достигает 25 и 50 л/км 2 /с. В целом гидрологический режим и вод­ный баланс горных стран иной, чем равнин.

В равнинах проявляется действие на сток мезо- и микрорелье­фа. Они перераспределяют сток и влияют на его темп. На плоских участках равнин сток медленный, почвогрунты насыщены влагой, возможно заболачивание. На склонах плоскостный сток превращается в линейный. Возникают овраги и речные долины. Они в свою очередь ускоряют сток и дренируют местность.

Долины и другие понижения в рельефе, в которых скапливается вода, снабжают грунт водой. Это особенно существенно в зонах недостаточного увлажнения, где почво-грунты не промачиваются и грунтовые воды образуются только при питании за счет речных долин.

Влияние растительности на сток. Растения увеличивают испарение (транспирация) и осушают тем самым местность. Вме­сте с тем они уменьшают нагревание почвы и на 50-70% сокра­щают испарение с нее. Лесная подстилка обладает большой влагоемкостью и повышенной водопроницаемостью. Она увеличивает инфильтрацию осадков в грунт и этим регулирует сток. Раститель­ность содействует накоплению снега и замедляет его таянье, по­этому в грунт просачивается воды больше, чем с поверхности. С другой стороны, часть дождя задерживается листвой и испаряется, не достигнув почвы. Расти­тельный покров противодействует эрозии, замедляет сток и пере­водит его из поверхностного в подземный. Растительность поддер­живает влажность воздуха и этим усиливает внутриматериковые влагообороты и увеличивает количество осадков. Она влияет на влагооборот путем изменения почвы и ее водоприемных свойств.

Влияние растительности различно в разных зонах. В. В. Доку­чаев (1892) считал, что степные леса - надежные и верные регуляторы водного режима степной зоны. В таежной зоне леса осушают местность путем большего, чем на полях, испарения. В степях лесные полосы содействуют накопле­нию влаги путем снегозадержания и уменьшения стока и испаре­ния с почвы.

Различно влияние на сток болот в зонах избыточного и недо­статочного увлажнения. В лесной зоне они являются регулятора­ми стока. В лесостепи и степях их влияние отрицательное, они всасывают поверхностные и грунтовые воды и испаряют их в атмосферу.

Кора выветривания и сток. Песчаные и галечные отложения аккумулируют воду. Нередко по ним фильтруются потоки из отдаленных мест, например, в пустынях с гор. На массивно-кристаллических породах вся поверхностная вода стекает; на щитах подземные воды циркулируют только в трещинах.

Значение озер для регулирования стока. Одним из наиболее мощных регуляторов стока являются крупные проточные озера. Большие озерно-речные системы, подобные Невской или Святого Лаврентия, имеют весьма зарегулированный сток и этим су­щественно отличаются от всех остальных речных систем.

Комплекс физико-географических факторов стока. Все перечисленные выше факторы действуют сово­купно, влияя один на другой в целостной системе географической оболочки, определяют валовое увлажнение территории . Так называется та часть атмосферных осадков, которая за вычетом быстро стекающего поверхностного стока просачивается в почву и аккумулируется в почвенном покрове и в грунте, а за­тем медленно расходуется. Очевидно, что именно валовое увлаж­нение имеет наибольшее биологическое (произрастание растений) и сельскохозяйственное (земледелие) значение. Это наиболее существенная часть водного баланса.

Горизонтальный и вертикальный переносы масс воды в океан осуществляются циркуляционными системами различных размеров. Принято делить их на микро-, мезо- и макроциркуляционные. Обращение воды обычно происходит в форме системы вихрей, ко торые могут быть циклоническими (масса воды движется против хода часовой стрелки и поднимается) и антициклоническим (с движением воды по ходу часовой стрелки и вниз). Движения обоих родов соответствуют атмосферным и порождаются волновыми фронтальными возмущениями. Цикло-антициклоническая деятельность в тропосфере продолжается вниз, в океаносфере локализована она, как увидим ниже, в соответствии с атмосферными фронтами и центрами действия атмосферы.

При постоянном перемещении водных масс в одних местах он сходятся, в других расходятся. Сходимость называется конвергенцией, расходимость - дивергенцией. При конвергенции вода скапливается, уровень океана повышается, увеличивается давлени и плотность воды и она опускается. При дивергенции (наприме расхождении течений) происходит понижение уровня и под глубинной воды.

Схождения и расхождения могут быть между движущей водной массой (например, течением) и берегом. Если в результате действия силы Кориолиса течение подходит к берегу, возникает конвергенция и вода опускается. При удалении течения от берега наблюдается дивергенция, в результате которой поднимается глубинная вода.

Наконец, и вертикальная и горизонтальная циркуляция вызывается разностью плотностей волы. В среднем на поверхности она равна 1,02474; с увеличением солености и с понижением температуры воды она повышается, с понижением солености и потеплением- падает (вспомним, что 1%о=1 кг солей на 1 т воды).

Микроциркуляционные системы в океане имеют форму вихрей циклонического и антициклонического характера диаметром от 200 м до 30 км (Степанов, 1974). Образуются они обычно вдоль волновых возмущений фронта, в глубину проникают на 30-40 м. местами до 150 м и существуют несколько суток.

Мезоциркуляционные системы представляют собой круговороты воды также цикло- и антициклонического характера диаметром от 50 до 200 км и глубиной обычно 200-300 м, иногда до 1000 м. Они возникают на изгибах или меандрах фронтов. Замкнутые круговороты воды формируются и вне связи с фронтами. Их могут вызвать ветер, неровности океанского дна или конфигурация берегов.

Макроциркуляционные системы - это квазистационарные системы планетарного обмена вод, обычно называемые океанскими течениями. Они рассматриваются ниже.

Структура Мирового океана. Структурой Мирового океана называется его строение - вертикальная стратификация вод, горизонтальная (географическая) поясность, характер водных масс и океанских фронтов.

В процессе планетарного обмена веществами и энергией в атмо- и гидросфере формируются свойства вод Мирового океана. Энергия движения воды, приходящая с солнечной радиацией, в океан поступает сверху. Естественно поэтому, что в вертикальном разрезе толща воды распадается на большие слои, аналогичные слоям атмосферы; их надо также называть сферами.

Так как в геологическое время океан изменялся (а в планетарном обмене всегда соблюдается динамическое равновесие), то, очевидно, что и стратификация океана и горизонтальная циркуляция воды (течения) в каждую геологическую эпоху имели определенные черты.

Пространственные измене­ния гидрохимических характеристик вод, прослеживаемые в горизонтальном и вер­тикальном направлениях, тесно связаны с циркуляцией и гидрологической структурой вод Мирового океана. Эта связь находит выражение в том, что поверхностные, промежуточ­ные и глубинные воды, различаясь гидрологическими характе­ристиками, отличаются также (и иногда достаточно резко) со­держанием биогенных и других элементов, кислородным режимом, рН, щелочностью и другими гидрохимическими показателями. Использование гидрохимических данных при анализе происхождения и распределения различных типов вод, как известно, широко применяется в практике океанографических исследо­ваний.

Факторы, определяющие формирование гидрологической структуры океана в зависимости от широтных климатических зон, общей циркуляции вод и особенностей вертикального рас­пределения вод, одновременно являются и факторами, под действием которых создается гид­рохимическая структура океана. В то же время, надо учитывать, что в формирова­нии гидрохимической структуры большое значение принадле­жит биологическим процессам (например, развитие фитопланктона). Их воздействие, особенно в поверхностных слоях, усложняет зависимости гидрохимических характеристик от общих гидрологических усло­вий.

В вертикальной гидрохимической структуре вод океана, как и при гидрологическом подразделении обычно выде­ляются три зоны (или слоя): поверхностная, промежуточная и глубинная. Трехслойная вертикаль­ная гидрохимическая структура обусловловлена значительным изменением всех гидрохимических характеристик по вертикали и их однонаправленным ходом в каждой из зон. Обобщенно эти три зоны можно охарактеризовать:

1. Поверхностный слой - в его пределах находится фото­синтетическая зона и происходит образование ор­ганического вещества и наиболее интенсивные процессы минерализации. Выделяется пониженными и изменчивыми концентра­циями биогенных элементов, иногда и растворенного СО 2 , высо­ким содержанием кислорода, максимальными значениями рН. Роль поверхностного слоя в формировании гидрохимических особенностей вод и, следовательно, гидрохимической структуры исключительно велика. Здесь закладывается основа гидрохимического состава, который, видоизменяясь в ходе процессов циркуляции, перемешивания, подъема и опускания вод, биохимических процессов, обусловливает многие типичные гидрохимические показатели вод разного проис­хождения.

2. Промежуточный слой , наоборот, характеризуется увеличением концентраций биогенных элементов и растворенной СО 2 , сниже­нием содержания кислорода до минимума и понижением рН. Промежуточный слой важен тем, что в нем происходит перемещение отдельных типов вод, ко­торое приводит к перераспределению гидрохимических свойств вод океана, переносу биогенных элементов, кислорода и других компонентов химического состава. Воды промежуточного слоя способствуют обмену веществом в океане.

3. Глубинный слой - изменения всех гидрохимических характери­стик сравнительно невелики, несколько возрастает концентра­ция растворенного кислорода, содержание биогенных элементов меняется по-разному - азота и фосфора слегка снижается или остается неизменным, а кремния возрастает, увеличивается рН.

Вертикальная гидрохимическая структура, сохраняя свою принципиальную основу, по-разному проявляется в широтных зонах каждого из океанов. Во всех зонах отмечаются изменения количественного содержания и вертикального распределе­ния кислорода и биогенных элементов.

1. В субарктиче­ской зоне гидро­химические различия по слоям наиболее слабо выражены, здесь очень высокое содержание растворенного кислорода и минимальное биогенных элементов. Воды этой зоны, проникая к югу на глубинах, обогащают промежуточные и глубинные слои других зон кис­лородом.

2. В се­верной субтропической зоне более выражено распределение гидрологических показателей, в том числе растворенного кислорода и кремния по слоям.

3. В водах тропических и экваториальной зон прослеживается дальнейшее обострение границ между слоями, усложняется распределение растворенного кислорода в поверхностном слое, четко выде­ляется слой кислородного минимума. В промежуточ­ном слое заметно возрастает содержание кремния и фосфора.

Как уже от­мечалось, усложнение гидрохимической структуры вод связано с активизацией биологических и биохимических процессов в по­верхностном слое и проникновением водных масс с иными свой­ствами в промежуточном слое.

Региональные особенности вертикальной гидрохимической структуры вод

В Атлантическом океане сказываются следующие факторы:

а) Влияние апвеллинга (подъема вод) на распределение биогенных элементов и кислорода в поверхностном слое у Северо-Запад­ной и Юго-Западной Африки.

б) Внедрение промежуточных суб­арктических и субантарктических вод, что создает дополнительные слои минимума и максимума растворенного кислорода на раз­личных глубинах в тропических широтах.

в) Пониженная концен­трация кремния в промежуточном слое связана с проникнове­нием обедненных кремнием субарктических и средиземномор­ских вод.

г) Воды глубинного слоя Атлантического океана менее богаты биогенными элементами, чем в других океанах, по­скольку интенсивный горизонтальный и вертикальный обмен благоприятствует выравниванию их концентраций.

В Индийском океане гидрохимическая структура вод во мно­гом отличается от структуры вод Атлантического океана. Наи­более четко это проявляется в экваториальных, тропических и субтропических широтах.

а) На юге Индийского океана прослежи­ваются только некоторые количественные различия в концент­рациях биогеных элементов.

б) В муссонной области Индийского океана очень четко выражен поверхностный слой. Наблюдается резкое увеличение содержания фосфора во многом опреде­ляют высокую продуктивность в пределах верхних 50-100 м. Смена более мощного летнего на зимний муссон приводит к уменьшению содержания фосфора в фотосинтетической зоне. Изменения концентраций растворенного кислорода и биогенных элементов прослежи­ваются почти до 3000 м (иногда даже более), что определяет нижнюю границу промежуточного слоя. Осо­бенностью Индийского океана является также то, что воды промежуточного слоя богаты кремнием как в северных, так и в южных широтах.

В Тихом океане основные зональные особенности гидрохи­мической структуры выдерживаются в большинстве его райо­нов.

а) Наиболее значительные отклонения наблюдаются в восточных частях океана. Они связаны с про­никновением более холодных вод под действием восточных по­граничных течений в субтропические и тропические широты, с процессами прибрежного апвеллинга, приводящими к повы­шенным содержаниям биогенных элементов, и как следствие, формирова­нию весьма продуктивных районов. Здесь в поверхностном и частично в промежуточном слоях увеличиваются градиенты гидрохимических характеристик. На востоке экваториальной зоны система подповерхностных течений, поднимающихся на относительно небольшие глубины и усиливающих плотностное разделение вод, создает заметные различия в кислородном ре­жиме биогенных элементов уже в пределах верхнего 50-метро­вого слоя. Проникновение в этот район вод различного проис­хождения, в том числе и поднимающихся с глубины, приводит к высокому содержанию биогенных элементов, особенно фос­фора, концентрация которого на глубине 100 м может превы­шать 2 мкг-ат/л. С подъемом вод связано также и уменьшение мощности поверхностного слоя по направлению к берегу до 75-100 м. В удалении от берега она может превышать 150 м.

б) Субантарк­тическая зона ограничивается положением зон субтропической и экваториальной конвергенции. Опускание вод в зонах конвер­генции создает определенные различия в распределении плотностных и гидрохимических характеристик на севере и юге. На севере это опускание проникает до глубин 400-700 м, на юге - свыше 1000-1200 м.

в) Можно выделить различия между субантарктической и антарктической зонами. Если в субантарктической зоне про­межуточный слой гидрохимической структуры выражен доста­точно отчетливо и характеризуется, пожалуй, даже большей из­менчивостью концентраций растворенного кислорода и биоген­ных элементов, чем поверхностный, то в антарктической зоне промежуточный слой выделяется крайне малыми изменениями концентраций и почти не отличается от глубинного.

Широтная зональность гидрохимической структуры Миро­вого океана вместе с тем не исключает значительных различий в распределении гидрохимических характеристик между цент­ральными и периферическими областями океана, отражающими циркумконтинентальную зональность . Эти различия в наиболь­шей степени проявляются в поверхностном слое и сказываются как на абсолютных значениях гидрохимических характеристик, так и на их временной изменчивости.

Суточная изменчивость гидрохимических характеристик, на которую влияют биологические процессы, охватывает поверхностный слой фотосинтеза. В малопродуктивных рай­онах сожержание кислорода и биогенных элементов может изменяться на порядок. Воздействие изменений синоптического масштаба (прохождение циклонов и антицик­лонов) оценивается в 20% измеряемых гидрохимических ха­рактеристик.

Сезонная изменчивость прослеживается не только во всем поверхностном слое, но и в верхней части (а иногда и глубже) промежуточного слоя. Она наиболее выражена в зо­нах интенсивного конвективного перемешивания (воды поляр­ных и умеренных широт), в муссонных областях, в восточно-экваториальной зоне Тихого океана. Для условий обитания организмов и биопродукционного процесса роль сезонных изменений гидрохимических характеристик в по­верхностном слое особенно велика. Отчетливо прослеживается связь этих изменений с широтными особенностями гидрохимиче­ской структуры в океане. В умеренных и высоких широтах се­зонные изменения освещенности биогенных элементов, темпе­ратуры и динамики вод ограничивают по времени развитие фитопланктона. Вегетационный период здесь продолжается от 1 до 7 месяцев. Основная масса фитопланктона в этот период обитает и продуцирует в относительно тонком верхнем слое воды (до 50-75 м), ограниченном снизу сезонным слоем скачка плотности, возникающем в результате прогрева поверх­ностных вод. В результате жизнедеятельности фитопланктона содержание биогенных элементов значительно снижается по сравнению с предвегетационным периодом. В отдельных райо­нах оно становится настолько малым, что почти полностью лимитирует развитие фитопланктона. Однако в результате осенне-зимнего охлаждения поверхностных вод сезонный слой скачка разрушается, конвективное перемешивание захватывает более глубокие по сравнению с теплыми периодами года слои воды - до 200-500 м, характеризующиеся высоким содержа­нием биогенных элементов. Это обусловливает выравнивание концентраций биогенных элементов в пределах 200-260-метро­вого слоя и, следовательно, повышение их содержания в фотическом слое. К началу следующего вегетационного периода фи­топланктон вновь оказывается достаточно хорошо снабженным питательными веществами. Так, в высокопродуктивном районе о. Ю. Георгия в море Скотия количество фосфора и кремния во время вегетационного периода в слое летнего прогрева (~50 м) составляет в среднем 1,4 и 2-3 мкг-ат/л соответ­ственно. Низкое содержание кремния уже в первой половине вегетационного периода лимитирует развитие фитопланктона. Осенью и зимой конвективное перемешивание захватывает вод­ную толщу примерно до 200 м, увеличивая содержание фосфора до 2,2, а кремния до 20 мкг-ат/л в верхнем слое. В глубо­ководной части Берингова моря, например, содержание биоген­ных элементов в фотическом слое за счет осенне-зимнего кон­вективного перемешивания увеличивается с 0,5 до 2,6 мкг-ат Р/л и с 7,14 до 35 мкг-ат Si/л.

В отличие от областей умеренных и высоких широт, в эква­ториально-тропических областях в связи с отсутствием четко выраженной смены сезонов вертикальная структура вод в пре­делах поверхностного слоя сохраняет основные свои черты в течение всего года. Динамические и световые условия здесь благоприятны для развития фитопланктона круглый год, веге­тационный период охватывает 12 месяцев. Происходит посто­янное потребление биогенных элементов, которое не компен­сируется их регенерацией, хотя и достаточно быстрой. Такой же мощный фактор доставки биогенных элементов, как конвек­тивное перемешивание, здесь отсутствует. Фотический слой ока­зывается обедненным питательными веществами; новообразо­вание органического вещества резко ослабевает. Например, в западной части тропической зоны Атлантического океана к югу от экватора концентрация азота, фосфора и кремния остается на очень низком уровне в течение всего года - в сред­нем соответственно 0,5; 0,2 и 2,6 мкг-ат/л. И лишь в зонах при­брежного апвеллинга, частично экваториальной дивергенции, подъем поверхностных вод приводит к форми­рованию районов, богатых биогенными веществами и, как следствие, высокопродуктивных.

Межгодовая изменчивость гидрохимических характеристик может дости­гать 10-20 и даже 50 % значений гидрохимических характе­ристик и связана с общим изменением режима океана под действием крупномасштабных колебаний океана и атмосферы.