Давление воздуха над поверхностью жидкости. Давление жидкости

Наша планета - это красивый голубой шар, на котором расположено множество природных и искусственных водоемов. Они поддерживают жизнь всех живых существ на земле, давая пристанище множествам рыб, моллюсков и других организмов.

Одним из естественных водоемов нашей планеты является Берингово море, глубина, рельеф дна и фауна которого очень интересуют многих природоведов, туристов и натуралистов всего мира. Как раз об этих показателях и пойдет речь в данной статье.

Между двумя материками

Какова средняя глубина Берингово моря? Прежде чем ответить на этот вопрос, давайте узнаем, где находится водоем.

Берингово море, относящееся к Тихоокеанскому бассейну, является условной границей между двумя континентами - Азией и Северной Америкой. С северо-западной стороны водоем омывает побережье Камчатки и Чукотки, ас северо-восточной - берега Западной Аляски.

С юга море замыкается чередой островов (Алеутских и Командорских), а с севера соединяется одноименным проливом с Северным Ледовитым океаном.

Вот какие острова расположены вдоль границы Берингова моря (о глубине которого мы поговорим чуть ниже):

  1. Со стороны Соединенных Штатов Америки (точнее, полуострова Аляска) выступают такие территории, как остров Крузенштерна, Нунивак, острова Прибылова, Алеутские острова, остров Кинг, остров Святого Матвея и другие.
  2. Со стороны Российской Федерации Берингово море омывает всего три островные территории. Это (от Чукотского АО), а также Командорские острова и остров Карагинский (последние являются частью Камчатского края).

Немного о географических открытиях

Какова же история открытия Берингова море, глубина и отдаленность которого во все времена приводила многих мореплавателей в неописуемый трепет?

Известно, что свое название водоем получил в честь первого исследователя, отправившегося экспедицией на Камчатку в далекие 1730-е годы. Этим человеком был датчанин по национальности, русский офицер по призванию - Витус Ианассен Беринг. По распоряжению императора Петра I капитану флота было поручено подробно изучить северные места и определить границу между двумя материками.

Первая экспедиция была посвящена осмотру и освоению восточного берега Камчатки и южного берега а также исследованию пролива, служащего границей между Америкой и Евразией. Беринг считается первым представителем Европы, бороздившим эти места.

После своего возвращения в Санкт-Петербург отважный мореплаватель ходатайствовал за снаряжение второй экспедиции, которая произошла довольно скоро и стала самой крупномасштабной за всю историю. Шесть тысяч человек во главе с бесстрашным Берингом скрупулезно изучили водное пространство вплоть до Японии. Были открыты Аляска, Алеутский архипелаг и многие другие неизведанные земли.

Сам капитан добрался до американского побережья и внимательно осмотрел островок Каяк, изучив его животный и растительный мир.

Условия Крайнего Севера отрицательно сказывались на путешествии многочисленной экспедиции. Моряки и исследователи сталкивались с невероятным холодом и снеговыми заносами, несколько раз претерпевали шторм и бури.

К сожалению, возвращаясь в Россию, Беринг скончался во время вынужденной зимовки на одном из островов.

Статистические факты

Какова же глубина Берингова моря? Этот водоем считается самым большим и самым глубоким в Российской Федерации и одним из самых габаритных в мире. Почему можно так сказать?

Дело в том, что общая площадь моря - 2,315 миллиона кв. км. Это обусловлено тем, что протяженность водоема с севера на юг охватывает тысячу шестьсот километров, а с востока на запад - две тысячи четыреста километров. Ученые даже подсчитали объем морских вод. Он достигает 3 795 000 кубических километров. Неудивительно, что средняя глубина Берингова моря впечатляет внушительностью своих цифр и значений.

Коротко о главном

Средняя и максимальная глубина Берингова моря достигает одной тысячи шестисот метров и четырех тысяч пятьдесят одного метра соответственно. Как видим, разница между показателями очень велика. Это обусловлено тем, что большую половину водного пространства водоема занимает площадь с глубинными показателями меньше пятисот метров. Согласно подсчетам некоторых ученых, этот показатель и является минимальной глубиной Берингова моря. Именно поэтому оно считается окраинным водоемом материково-океанического типа.

Местоположение самых важных точек

Где находится средняя и максимальная глубина Берингова моря? Как уже упоминалось выше, средние показатели водоема охватывают около половины всей его площади. Что же касается максимальных показателей (или макс. глубины Берингова моря), то они зафиксированы в южной части водоема. Вот конкретная координата: пятьдесят четыре градуса северной широты и сто семьдесят один градус западной долготы. Эта часть моря называется глубоководной. Ее разделили подводные хребты Бауэрса и Ширшова на три котловины, названия которых: Алеутская, Командорская и Бауэрс.

Однако это касается и максимальной глубины Берингова моря. Минимальная же глубина зафиксирована в его северо-восточном регионе. Ее протяжность, по подсчетам многих исследователей, достигает около семисот километров.

Дно и его характеристика

Ученые давно уже определили, что структура морского дна очень взаимосвязана с его глубиной. Рельеф дна Берингово моря имеет четкие разделения:

  1. Шельф. Данная зона, расположенная в северной и восточной стороне моря, отличается глубинами до двухсот метров и занимает больше сорока процентов всей территории водоема. Она представляет собой пологую равнину, обладающую несколькими островками, ложбинами и невысокими возвышенностями.
  2. Островная отмель. Этот район расположен у берегов Камчатки и Командорско-Алеутской островной гряды. Рельеф поверхности очень сложен и может претерпевать некоторые изменения из-за близости вулканических и сейсмических проявлений.
  3. Материковый склон. Он находится между мысом Наварин и островом Унимак и характеризуется показателями глубины от двухсот до трех тысяч метров. Данный район также обладает сложным покатым рельефом, угол наклона которого колеблется в пределах от одного-трех градусов до двадцати градусов и выше. Здесь наблюдаются красивые подводные долины и каньоны с крутыми обрывистыми склонами.
  4. Глубоководная котловина. Данная зона расположена в центре и на юго-западе водоема. Она характеризуется небольшими подводными хребтами. Благодаря сложности своего рельефа глубоководная котловина обеспечивает постоянный водообмен между разными частями моря.

Температурный режим

Что можно сказать о температуре воздуха и воды? Летом над акваторией довольно прохладно (около семи-десяти градусов по Цельсию). Зимой же температура может колебаться от минус одного до минус тридцати.

Средняя температура водных масс во многих случаях зависит от глубины Берингова моря. Максимальная глубина имеет температуру в один-три градуса по Цельсию (с плюсовой отметкой), тогда как на минимальной глубине отмечаются более теплые показатели (от семи до десяти градусов). На средних глубинах температурный режим варьируется между двумя-четырьмя градусами по Цельсию.

Сведения о солености

В отношении солености вод применяется тот же принцип: чем больше глубина, тем выше показатели.

В минимальных глубинах соленость воды колеблется между двадцати двумя-тридцати двумя промилле. Средняя зона характеризуется отметками тридцать три-тридцать четыре промилле, тогда как показатель солености глубоководных вод почти достигает отметки в тридцать пять промилле.

Замерзание воды

Интересно, что поверхность Берингова моря ежегодно покрывается льдом в таком соотношении: замерзание половины водоема наблюдается в течение пяти месяцев, тогда как северная его часть может находиться под действием ледников семь месяцев и дольше.

Примечательно, что залив Лаврентия, расположенный у восточного берега Берингова моря, может круглогодично не очищаться от ледовых масс, тогда как воды Берингова пролива почти никогда не подвергаются сильному замерзанию.

Богатый животный мир

Несмотря на низкие температуры и глубокие воды, водоем между Америкой и Евразией активно обитаем. Здесь можно встретить четыреста два вида рыбы, четыре вида крабов, четыре вида креветок, два вида моллюсков, а также большое количество млекопитающих, особенно ластоногих.

Давайте поговорим подробнее о живых существах, населяющих холодные и глубокие воды Берингова моря.

Рыбы

В водоеме чаще всего встречаются разные разновидности бычков. Семейство бычковых принадлежит к донным рыбам, обитающим в прибрежье.

Тело взрослого индивида, слегка приплюснутое сзади, может достигать сорока сантиметров в длину. На нем расположены спинные плавники (обычно в количестве двух штук) и присоска на брюхе, с помощью которой рыба прикрепляется к камням. Нерест бычка выпадает на март-август.

Среди лососевых в Беринговом море особенно выделяются сиги и нельма, а также тихоокеанские лососи, являющиеся ценными промысловыми рыбами.

Это семейство разнообразно за многочисленными видами и представителями. Длина тела лососевых может варьироваться от трех сантиметров до двух метров, а вес взрослых и крупных особей может достигать семи-десяти килограмм.

Тело рыб - удлиненное, сжатое по бокам. Обладает многолучевыми брюшными и грудными плавниками. Грудных плавников два (один обычный, а второй представляет собой кожистый вырост из жировой ткани - характерный признак всех лососеобразных).

Нерест этого вида рыб осуществляется лишь в пресных водах.

Ластоногие

Самыми распространенными млекопитающими в Беринговом море являются тюлени и моржи, которые на берегах водоема устраивают настоящие лежбища.

Тюлени - это очень массивные морские существа. Например, взрослая особь может достигать около двух метров в длину, при этом вес его превышает сто тридцать килограмм. Вынашивание потомства в данном семействе может длиться около года.

Тихоокеанский морж - еще один обитатель северного водоема. Его вес может варьироваться от восьмисот до тысячи семисот килограмм. Данное семейство очень ценится за счет своих длинных бивней, которые могут весить около пяти килограмм каждая.

Кожа моржей морщинистая и очень толстая (в некоторых местах может достигать десяти сантиметров в толщину). Подкожный слой жира также велик - около пятнадцати сантиметров.

Довольно часто в Беринговом море встречаются разнообразные крупные китообразные - нарвалы, горбачи, сейвалы и другие млекопитающие, длина которых измеряется в нескольких десятках метров, а вес может достигать ста тонн и более.

Да, невозможно подробно описать всех обитателей подводных глубин Берингова моря. Однако этот водоем славится не только своим богатым подводным миром, но и захватывающей историей освоения, и красивым рельефом дна, и важным стратегическим расположением. Ведь Берингово море - это граница двух материков, двух континентов, двух государств.

Беринговым проливом соединяется с Чукотским морем Северного Ледовитого океана Площадь 2304 тыс. км², средняя глубина 1598 м (максимальная 4191 м), средний объём воды 3683 тыс. км³, протяжённость с севера на юг 1632 км, с запада на восток 2408 км.

Берега преимущественно высокие скалистые, сильно изрезаны, образуют многочисленные бухты и заливы. Наиболее крупные заливы: Анадырский и Олюторский на запае, Бристольский и Нортон на востоке. В Берингово море впадает большое число рек, наиболее крупные из которых Анадырь, Апука на западе, Юкон, Кускоквим на востоке. Острова Берингова моря материкового происхождения. Наиболее крупные из них - Карагинский, Святого Лаврентия, Нунивак, Прибылова, Святого Матвея.

Берингово море - крупнейшее из геосинклинальных морей Дальнего Востока. В рельефе дна выделяются континентальный шельф (45% площади), материковый склон, подводные хребты и глубоководная впадина (36,5% площади). Шельф занимает северную и северо-восточную части моря, характеризуется равнинным рельефом, осложнённым многочисленными отмелями, котловинами, затопленными долинами и верховьями подводных каньонов. Осадки на шельфе преимущественно терригенные (пески, песчанистые илы, вблизи берега - грубо-обломочные).

Материковый склон большей частью имеет значительную крутизну (8-15°), расчленён подводными каньонами, нередко осложнён ступенями; южнее островов Прибылова - более полог и широк. Материковый склон Бристольского залива сложно расчленён уступами, возвышенностями, впадинами, что связывается с интенсивным тектоническим дроблением. Осадки материкового склона преимущественно терригенные (песчанистые илы), многочисленные выходы коренных палеогеновых и неоген-четвертичных пород; в районе Бристольского залива - большая примесь вулканогенного материала.

Подводные хребты Ширшова и Бауэрс представляют собой сводообразные поднятия с вулканическими формами. На хребте Бауэрс обнаружены выходы диоритов, что, наряду с дугообразными очертаниями, сближает его с Алеутской островной дугой. Хребет Ширшова имеет сходное строение с Олюторским хребтом, сложенным вулканогенными и флишевыми породами мелового периода.

Подводные хребты Ширшова и Бауэрс разделяют глубоководную впадину Берингова моря. На западе котловины: Алеутскую, или Центральную (максимальная глубина 3782 м), Бауэрс (4097 м) и Командорскую (3597 м). Дно котловин представляет собой плоскую абиссальную равнину, сложенную с поверхности диатомовыми илами, вблизи Алеутской дуги - с заметной примесью вулканогенного материала. По геофизическим данным, мощность осадочного слоя в глубоководных котловинах достигает 2,5 км; под ним залегает базальтовый слой толщиной около 6 км. Глубоководная часть Берингова моря характеризуется субокеаническим типом земной коры.

Климат формируется под влиянием прилегающей суши, близости полярного бассейна на севере и открытого Тихого океана на юге и соответственно развивающихся над ними центров действия атмосферы. Климат северной части моря арктический и субарктический, с выраженными континентальными чертами; южной части - умеренный, морской. Зимой под влиянием Алеутского минимума давления воздуха (998 мбар)над Беринговым морем развивается циклональная циркуляция, благодаря которой восточная часть моря, куда приносится воздух с Тихого океана, оказывается несколько теплее западной части, находящейся под влиянием холодного арктического воздуха (который поступает с зимним муссоном). В этот сезон часты штормы, повторяемость которых в отдельных местах достигает 47% в месяц. Средняя температура воздуха в феврале изменяется от -23°С на севере до О, -4°С на юге. Летом Алеутский минимум исчезает и над Беринговым морем господствуют ветры южных направлений, которые в западной части моря являются летним муссоном. Штормы летом редки. Средняя температура воздуха в августе изменяется от 5°С на севере до 10°С на юге. Средняя годовая облачность составляет на севере 5-7 баллов, на юге 7-8 баллов в год. Количество осадков изменяется от 200-400 мм в год на севере до 1500 мм в год на юге.

Гидрологический режим определяется климатическими условиями, водообменом с Чукотским морем и Тихим океаном, материковым стоком и распреснением поверхностных вод моря при таянии льдов. Поверхностные течения образуют круговорот против часовой стрелки, по восточной периферии которого следуют на север тёплые воды из Тихого океана - берингово-морская ветвь системы тёплых течений Куросио. Часть этих вод поступает через Берингов пролив в Чукотское море, другая часть отклоняется к запду и далее следует на юг вдоль азиатского берега, принимая холодные воды Чукотского моря. Южный поток образует Камчатское течение, которым воды Берингова моря выносятся в Тихий океан. Эта схема течений подвержена заметным изменениям в зависимости от господствующих ветров. Приливы Берингова моря в основном обусловлены распространением приливной волны из Тихого океана. В западной части моря (до 62° северной широты) наибольшая высота прилива 2,4 м, в заливе Креста 3 м, в восточной части 6,4 м (Бристольский залив). Температура поверхностной воды в феврале только на юге и юго-западе достигает 2°С, на остальной части моря ниже -1°С. В августе температура повышается до 5°-6°С на севере и 9°-10°С на юге. Солёность под влиянием речных вод и таяния льдов значительно ниже, чем в океане, и равна 32,0-32,5‰, а на юге достигает 33‰. В прибрежных районах уменьшается до 28-30‰. В подповерхностном слое в северной части Берингова моря температура -1,7°С, солёность до 33‰. В южной части моря на глубине 150 м температура 1,7°С, солёность 33,3‰ и более, а в слое от 400 до 800 м соответственно более 3,4°С и более 34,2‰. У дна температура составляет 1,6°С, солёность 34,6‰.

Большую часть года Берингово море покрыто плавучими льдами, которые на севере начинают образовываться в сентябре - октябре. В феврале - марте почти вся поверхность покрыта льдами, которые вдоль полуострова Камчатки выносятся в Тихий океан. Беринговому морю свойственно явление "свечения моря".

В соответствии с различием гидрологических условий северной и южной частей Берингова моря для северной характерны представители арктических форм растительного и животного мира, для южной - бореальные. На юе обитает 240 видов рыб, из которых особенно много камбаловых (камбала, палтус) и лососёвых (горбуша, кета, чавыча). Многочисленны мидии, баланусы, черви-полихеты, мшанки, осьминоги, крабы, креветки и др. На севере обитает 60 видов рыб, главным образом тресковые. Из млекопитающих для Берингова моря характерны морской котик, калан, тюлени, лахтак, ларга, сивуч, серый кит, горбач, кашалот и др. Обильна фауна птиц (кайры, чистики, топорки, чайки-моёвки и др.), обитающих на "птичьих базарах". В Беринговом море ведётся интенсивный китобойный промысел, главным образом кашалота, рыбный и промысел морского зверя (морской котик, калан, тюлень и др.). Берингово море имеет для России крупное транспортное значение как звено Северного морского пути. Главные порты: Провидения (Россия), Ном (США).

Задача

Определить абсолютное давление р о на свободной поверхности воды в нижнем сосуде, если в верхнем сосуде жидкость керосин Т-1. Известны h 1 и h 2 .h 1 = 210 мм; h 2 = 170 мм.

ρ к = 808 кг/м 3 - плотность керосина;

ρ = 1000кг/м 3 - плотность воды.

Решение.

Согласно основному уравнению гидростатики р абс = р 0 + ρgh , где р 0 - давление на поверхности жидкости; ρ - плотность жидкости; h - глубина погружения точки.

Давление на поверхности в нижнем сосуде равно р о .

Тогда · 9,81 ? 0,21 + 1000 ? 9,81 ? 0,17 = 103330 Па.

Ответ: абсолютное давление на поверхности воды в нижнем сосуде 103330 Па.

Задача 2.

Определить силу давления на коническую крышку горизонтального цилиндрического сосуда с диаметром D , заполненного водой с температурой С, показание манометра р м . Показать на рисунке вертикальную и горизонтальную составляющие силы, а также полную силу давления на коническую крышку. D=a.

р м = 0,4 МПа = 400 000 Па; а = 1000 мм = 1м; D = 1,2 м; ρ = 1000 кг/м 3 .

Решение.

Коническая крышка имеет криволинейную стенку. Сила гидростатического давления на эту стенку будет равна,

р м
D
а
D
S z
P x
P z
P

где Р х - проекция силы на горизонтальную ось;

Р z - проекция силы на вертикальную ось.

Р х = p c s z = pgh c s z , где р с - давление в центре тяжести вертикальной проекции крышки S х =
;

h c - глубина погружения центра тяжести вертикальной проекции крышки S z .
м;

Р z - вес жидкости в объёме конической крышки V;

Тогда полная сила гидростатического давления на коническую крышку будет равна:

Ответ: Р = 451 000Н

Задача 3.

Плоский прямоугольный щит АВ шириной в =2 м, расположенный под углом α = 60 о к горизонту, поддерживает уровень воды в прямоугольном канале глубиной H =4м. Определить силу гидростатического давления на щит и положение центра давления. Построить эпюру гидростатического давления.

Решение. Силу избыточного гидростатического давления определим по формуле (М.2). В нашем случае h c = H / 2. А площадь щита

S = в Н / sinα = 2·4 / 0,866 = 9,25 м 2 .

Р = ρgh c S = 998 ? 9.81 ? 9.25 = 181 480 H.

Положение центра давления определяется по формуле:

,

где
м 4

Следовательно,

Задача 4.

Определить величину и направление силы гидростатического давления на четверть АВ цилиндрической стенки, поддерживающей слой воды h = r = 2 м. Ширина криволинейной поверхности b = 4 м.

Задача 5.

Решение. По формуле определим горизонтальную составляющую силы Р X .

Р Х =
= 1000 · 9,81 · 2 2 /2 · 4 = 80 000 Н.

По формуле p z = pgV


определим вертикальную составляющую силы. Объём тела давления рассчитываем по формуле

.

По формуле находим равнодействующую силы давления.

Направление силы гидростатического давления определяется углом наклона её к горизонту, тангенс которого находят из силового треугольника tgα = P Z / P X = 122 970/80 000= 1,54 , α=57 0 С.

Проведя прямую через центр окружности (точка О) под углом α к горизонту, получим направление Р, а точка пересечения этой прямой с образующей цилиндра даёт центр давления - точку D.

Гидродинамика

По горизонтальной трубе общей длиной l =10 м и внутренним диаметром d = 60 мм подаётся вода при температуре t = 20 о С. Труба снабжена вентилем К (коэффициент сопротивления ξ=5), а также манометрами, которые фиксируют избыточные давление р 1 = 2·10 5 Па на входе и р 2 = 1,5·10 5 Па на выходе.

Определить расход воды Q , приняв в расчётах коэффициент гидравлического трения λ = 0,023, и построить в масштабе напорную и пьезометрическую линии для трубы.

Решение. Для определения расхода воды найдём среднюю скорость её движения по трубопроводу, применив уравнение Бернулли для сечений 1−1 и 2−2:

(А)

За плоскость сравнения принимаем плоскость, проходящую через ось трубы 0−0. Так как заданный трубопровод постоянного диаметра, то

скоростные напоры av 2 /2g в сечениях 1−1 и 2−2 будут равными.

Сумма гидравлических потерь h 1-2 состоит из потерь в местных сопротивлениях h м и потерь по длине h тр:

Подставим значения потерь в уравнение Бернулли (Б) и определим среднюю скорость:

,

Определим расход воды по формуле:

Для построения напорной и пьезометрической линий рассчитаем:

1) скоростной напор h ck = av 2 /2g;

,

где υ - кинематический коэффициент вязкости воды при 20 о С;

режим течения турбулентный, поэтому a = 1,

;

2) полный напор в сечении 1−1:

3) полный напор в сечении 2−2:

4) потери напора в вентиле К

;

5) потери напора на длине l: 2:

Проверка по уравнению (Б):

20,39 = 15,29 + 2,9 + 2?1,11

т.е. расчёты выполнены верно, относительная погрешность составляет (0,02:20,4)·100 = 0,1 %.

По найденным выше значениям строим линии. Откладываем от плоскости сравнения 0−0 в сечении 1−1 в масштабе полный напор Н 1 =20,97 м, и по ходу движения воды от него отнимаем потери

Получаем напорную линию. Откладывая от неё вниз скоростной напор h ск, получаем пьезометрическую линию.

Задача 6.

При движении жидкости из резервуара в атмосферу по горизонтальному трубопроводу диаметром dи длиной 2L уровень в пьезометре, установленном посредине длины трубы равен h. Определить расход воды и коэффициент гидравлического трения трубы L, если статический напор в баке постоянен и равен Н. Построить пьезометрическую и напорную линии. Сопротивлением входа в трубу пренебречь.

Н = 7 м, h = 3 м, l = 3м, d = 30 мм = 0,03 м, р = 1000 кг/м 3 .

Решение. Составим уравнение Бернулли для сечений 1-1 и 2-2, плоскость сравнения проходит через ось трубы 0-0.

,

где z - расстояние от плоскости 0-0 до центра тяжести сечения;

Пьезометрическая высота в сечении;

Скоростная высота в сечении;

h п1-2 - потери напора на гидравлические сопротивления между сечениями.

Тогда
,

где L - коэффициент гидравлического трения;

- потери напора на трение,

Составим уравнение Бернулли для сечений 2−2 и 3−3 и решим относительно плоскости 0−0.

,

Отсюда

Решаем совместно полученные выражения

Расход жидкости м 3 /с.

Определим:

Ответ: λ = 0,03, Q = 0,00313 м 3 /с.

5.3 Истечение жидкости через отверстия и насадки

Задача 7 .

Определить длину трубы L, при которой опорожнение цилиндрического бака диаметром Dна глубину Н будет происходить в два раза медленнее, чем через отверстие того же диаметра d. Коэффициент гидравлического трения в трубе принять λ=0,025.

Н = 8 м, d = 0,5 м.

Решение.

Расход через отверстие в тонкой стенке равен
,

где μ - коэффициент расхода при истечении через отверстие m = 0.62;

S - площадь сечения отверстия,
;

Н - напор.

Расход через трубу длиной l и диаметром d c условием задачи составит:

, где M TP - коэффициент расхода через трубу.

Время опорожнения сосуда при переменном напоре определяется по формуле t = 2v/Qд, где V - объём жидкости в баке при наполнении его напором Н ; Q Д - действительный расход.

По условию задачи
, или
.

Тогда
. Из этого выражения найдём длину трубы l.

Ответ: длина тубы l = 19,5м.

5.4 Гидравлический удар в трубах

Задача 8 .

Вода в количестве Q перекачивается по чугунной трубе диаметром d , длиной l c толщиной стенки . Свободный конец трубы снабжён затвором. Определить время закрытия затвора при условии, чтобы повышение давления в трубе вследствие гидравлического удара не превышало
Па. Как повысится давление при мгновенном закрытии затвора?

Q =0,053 м 3 /с. d = 0,15м, l = 1600м, = 9,5 мм,
= 1 000 000 Па, p =1000 кг /м 3 .

Решение.

При условии, что время полного закрытия затвора
, ударная волна будет равна
,

где p - плотность жидкости;

v- начальная скорость течения жидкости;

l - длина трубы;

T - фаза гидравлического удара.

Из этого выражения следует

.

По условию задачи?р=1 000 000 Па.
м.

Т =
с.

При мгновенном закрытии затвора превышение давления составит

,

где Е Ж - модуль упругости жидкости, Е Ж =
Па;

Е - модуль упругости материала трубы, Е = 152
Па;

d - диаметр трубы;

δ- толщина стенки трубы.

кПа.

Ответ: Т = 0,1 с, /\p = 3900кПа.

Список литературы

1. Прозоров И.В., Николадзе Г.И., Минаев А.В. Гидравлика, водоснабжение и канализация. - М.: Высшая школа, 1990.

2. Калицун В.И. Гидравлика, водоснабжение и канализация: Учеб. Пособие для вузов по спец. «Пром. и гражд. стр-во». - 4-е изд., перераб. И доп. - М.: Стройиздат, 2003.

3. Константинов Н.П., Петров Н.А., Высоцкий Л.И. Гидравлика, гидрология, гидрометрия: учебник для вузов. В 2 ч. /Под ред. Н.М. Константинова. - М.: Высш. шк., 1987. - 438 с.: ил.

4. Альтшуль А.Д., Животовская Л.С., Иванов Л.П. Гидравлика и аэродинамика. − М.: Стройиздат, 1987.− 470 с.

5. Чугаев Р. Р. Гидравлика.- Л.: Энергоиздат, 1982. - 678 с.

6. Основы гидравлики и аэродинамики: учебник для техникумов и колледжей. Калицун В.И., Дроздов Е.В., Комаров А.С., Чижик К.И.- 2-е изд., перераб. и доп. - М.: ОАО Изд-во «Стройиздат», 2004. - 296 с.

7. Киселёв П.Г. Гидравлика: основы механики жидкости и газа: учеб. пособие для вузов. - М.: Энергия, 1980. - 460.

8. Справочник по гидравлике. / Под ред. В.А. Большакова− Киев: издательское объединение «Вища школа», 1977.− 280 с.

Рухленко А.П.

ГИДРАВЛИКА

Примеры решения задач

Учебно-методическое пособие

Для подготовки бакалавров по направлению

Агроинженерия

Тюмень – 2012

Рецензент:

кандидат технических наук, доцент А. Е. Королев.

Г 46 Рухленко А. П. Гидравлика. Примеры решения задач ТюмГСХА. - Тюмень, 2012.

Приведены примеры решения задач по всем основным разделам дисциплины. Пособие содержит 57 задач с подробным пояснением решения каждой.

Назначение данного пособия- помочь студентам в самостоятельном изучении и усвоении методики решения задач по всем темам курса.

Печатается по решению методической комиссии Механико-технологического института ТГСХА.

© Тюменская Государственная

Сельскохозяйственная академия.

© А. П. Рухленко, 2012.

Предисловие

Важным условием усвоения студентами теоретического курса является умение использовать знания теоретических основ при решении конкретных инженерных задач. Именно решение задач развивает у студентов навыки к творческому инженерному мышлению, способствует развитию самостоятельности при решении инженерных вопросов, связанных с изучением этой дисциплины.

Все задачи в данном пособии размещены в порядке изучения дисциплины по тематикам, согласно рабочим программам по подготовке бакалавров направления 110800- агроинженерия.

Пособие предназначено для студентов очной и заочной формы обучения. Цель его – помочь студентам освоить методику решения задач по темам курса «Гидравлика». Особенно полезно, по мнению автора, пособие будет для студентов, пропускающих занятия, ибо оно поможет им в освоении данной дисциплины.

В таблице, приведенной ниже, указываются номера задач по каждой теме и литература для изучения теоретического материала по каждой теме.

Тематика практических занятий

по решению задач

Тема занятия №№ задач по теме Литература, стр. №
Физичес-кие свойства жидкостей 1,2 8..13 8..14 7..12 3..4 3…4
Гидроста-тическое давление 3,4,5,6,7,8, 20..25 19..25 17..20 5..7 7..8
Сила гидростати-ческого давления на плоские и криволи-нейные поверх-ности 9,10,11,12,13,14, 15,16,17,19,21 25..31 28..34 21..27 7..9 15..16
Уравнение Бернулли. Гидравли-ческие сопротив-ления 22,23,24,25,26,27 28,29,30,31,32 42..45 55..64 46..52 52..78 44..59 13..16 19..24 30..36
Истечение жидкости через отверстия, насадки, дроссели и клапаны 34,35,36,37,38,39, 40,41 72..79 78..89 63..76 25..29 45..48
Гидравли-ческий расчет трубопро-водов 42,43,44 64..70 94..104 76..99 31..38 57..63
Лопастные насосы 45,46,47,48 89..108 131..134 139..158 163..173 146..161 41..59 78..83
Объемные гидрома-шины 50,51,52,53 141..169 177..204 223..235 59..76 88..91
Объемный гидропри-вод 54,55,56,57 192..200 204..224 271..279 77..84 95..98


Литература для изучения теоретической части дисциплины

1. Исаев А.П., Сергеев Б.И., Дидур В.А. Гидравлика и гидромеханизация сельскохозяйственных процессов М:Агропром издат, 1990 – 400с.

2. Н.А.Палишкин Гидравлика и сельскохозяйственное водоснабжение М: Агропром издат, 1990 - 351с.



3. Сабащвили Р.Г. Гидравлика, гидравлические машины, водоснабжение сельского хозяйства: Учеб. пособие для вузов М: Колос 1997-479с.

4. Рухленко А.П. Гидравлика и гидравлические машины. Учебное пособие ТГСХА-Тюмень 2006 г. 124с.

1. Определить объемный модуль упругости жидкости,

если под действием груза А массой 250 кг поршень прошел расстояние △h=5мм. Начальная высота положения поршня H=1.5м, диаметры поршня d=80мм и резервуара D=300мм, высота резервуара h=1,3 м. Весом поршня пренебречь. Резервуар считать абсолютно жестким.

Решение: Сжимаемость жидкости характеризуется модулем объемной упругости Е, входящим в обобщенный закон Гука: = ,

где = приращение (в данном случае уменьшение) объема жидкости V , обусловленное увеличением давления ∆р. Вышеприведенную зависимость запишем относительно искомой величины:

В правой части уравнения неизвестные величины необходимо выразить через исходные данные. Повышение давления ∆робусловленное внешней нагрузкой, а именно весом груза:

Начальный объем жидкости складывается из объемов жидкости в цилиндре и резервуаре:
= · .

Абсолютное изменение объема жидкости ∆V:

Подставив в правую часть уравнения полученные выражения для ∆р, ∆V и V получим

E = =

= = .

2. Высота цилиндрического вертикального резервуара h=10м, его диаметр D=3м. Определить массу мазута (ρ м =920кг/ ), которую можно налить в резервуар при 15 , если его температура может подняться до 40 0 С. Расширением стенок резервуара пренебречь, температурный коэффициент объемного расширения жидкости β t =0,0008 1/ 0 С.

Решение: Массу мазута можно выразить как произведение его плотности на объем, т. е.:

или ,

где h м - начальный уровень мазута в резервуаре при t=15 0 С. Из выражения для β t находим абсолютное изменение объема мазута при повышении температуры, т.е.:

.

С другой стороны, эту же величину можно представить как разность объемов резервуара и начального объема мазута:

Выразив эти объемы через геометрические параметры можно записать, что:

ΔV = ·

Приравняем правые части выражений для :

.

Сократив левую и правую части уравнения на , получим

Откуда = .

Полученное значение подставим в исходное уравнение

Здесь: △t = t k - t н = 40 – 15 = 25 0 С.

3. Определить абсолютное давление воздуха в баке , если при атмосферном давлении, соответствующем h a = =760 мм рт. ст. показание ртутного вакуумметра = 0,2 м, высота h = 1,5 м. Каково при этом показание пружинного вакуумметра? Плотность ртути ρ = 13600кг/ .

Решение: Для решения этой задачи используем основное уравнение гидростатики, позволяющее определить давление в любой точке жидкости и понятие «поверхность равного давления». Как известно, для неподвижной ньютоновской жидкости поверхности равного давления представляют совокупность горизонтальных плоскостей. В данном случае в качестве поверхностей равного давления возьмем две горизонтальные плоскости - поверхность раздела воды и воздуха в соединительной трубке и поверхность раздела воздуха и ртути в правом колене ртутного вакуумметра. Для первой поверхности давление в точках А и В одинаково и согласно основного уравнения гидростатики определяется следующим образом:

p А = p В = p 1 + ρ · g · h ,

где р 1 - абсолютное давление воздуха в баке. Из этого уравнения следует, что:

p 1 = p A - ρ · g · h.

Если не учитывать плотность воздуха, то можно записать что p А = p В = p Е, т.е. давления в точках А,В, и Е одинаковы.

Для второй поверхности давления в точках С и Д одинаковы и равны атмосферному,

р а = р С = р Д.

С другой стороны, давление в т. С можно представить как

откуда p е = p а – ρ рт ·g · h рт.

Подставив выражения для р А в уравнение для определения р 1 , получим

р 1 = p a - ρ рт · g · h рт – ρ · g · h = ρ рт · g · (h a - h рт) – ρ · g · h.

Численную величину р 1 найдем, подставив численные значения величин в правой части уравнения:

р 1 = 13600 · 9,81 · (0,76 – 0,2) – 1000 · 9,81 · 1,5=

74713 – 14715 = 59998Па = 60кПа.

Разрежение, которое будет показывать вакуумметр:

р вак = р а – р 1 = ρ рт · g · h а – р 1 =

13600 · 9,81 · 0,76 · 10 -3 - 60 = 101,4 – 60 = 41,4кПа.

4.Определить абсолютное давление в сосуде по показанию жидкостного манометра, если известно: h 1 =2м, h 2 =0,5м, h 3 =0,2м, м = = 880кг/м 3 .

Решение : Для решения этой задачи необходимо записать основное уравнение гидростатики для двух точек, распложенных на горизонтальной плоскости (поверхности равного давления), проходящей по линии раздела воды и ртути. Давление в т. А

р А = р абс + ρ · g · h 1 ;

Давление в т. В

Приравняв правые части этих выражений определим абсолютное давление

р абс + ρ · g · h 1 = р а + ρ м · g · h 3 + ρ рт · g · h 2 ,

100000+880·9,81·0,2+13600·9,81·0,5–1000·9,81·2 =

100000+1726,6+66708-19620=148815Па=148кПа.

5. Закрытый резервуар А, заполненный керосином на глубину Н=3м, снабжен вакуумметром и пьезометром. Определить абсолютное давление р 0 над свободной поверхностью в резервуаре и разность уровней ртути в вакуумметре h 1 если высота поднятия керосина в пьезометре h =1,5м.

Решение: Запишем основное уравнение гидростатики для т. А, расположенной на дне резервуара,

С другой стороны, это же давление в точке А можно выразить через показание открытого пьезометра

Полученное выражение для р А вставим в уравнение для определения р 0:

тогда численное значение р 0 будет равно:

Разность уровней ртути в вакууметре определим, записав основное уравнение гидростатики для двух точек В и С поверхности равного давления, совпадающей со свободной поверхностью ртути в правом колене вакуумметра

h 1 = = .

6. Определить избыточное давление воды в трубе В, если показание манометра =0,025МПа.

Соединительная трубка заполненная водой и

воздухом, как показано на схеме, причем Н 1 = 0,5м, Н 2 =3м. Как изменится показание манометра, если при том же давлении в трубе всю соединительную трубку заполнить водой (воздух выпустить через кран К). Высота

Решение: При решении этой задачи используется основное уравнение гидростатики, согласно которому, давление в трубе В, складывается из давления на свободной поверхности (в данном случае манометрического - р м) и весового давления воды. Воздух в расчет не принимается ввиду его малой, сравнительной с водой, плотности.

Итак давление в трубе В:

Здесь 1 взято со знаком минус, потому что этот столб воды способствует уменьшению давления в трубе.

Если из соединительной трубки полностью удалить воздух, то в этом случае основное уравнение гидростатики запишется так:

Точное значение ответов: и получается при g = 10 м/ .

7. При перекрытом кране трубопровода К определить абсолютное давление в резервуаре, зарытом на глубине Н=5м, если показание вакуумметра, установленного на высоте h=1.7м, . Атмосферное давление соответствует Плотность бензина .

Решение: Согласно основному уравнению гидростатики абсолютное давление в резервуаре будет складываться из абсолютного давления на свободной поверхности и весового, т. е.

Абсолютное давление на свободной поверхности :

или

С учетом полученного выражения для
исходное уравнение запишем следующим образом:

8. В цилиндрический бак диаметром D = 2м до уровня Н=1,5м налиты вода и бензин. Уровень воды в пьезометре ниже уровня бензина на h=300мм. Определить вес находящегося в баке

бензина, если .

Решение: Вес находящегося в баке бензина можно записать как

,

где - объем бензина в баке. Выразим его через геометрические параметры бака:

.

Чтобы определить неизвестную величину - уровень бензина в баке, нужно записать основное уравнение гидростатики для поверхности равного давления, в качестве которой наиболее целеобразно принять дно бака, так как относительно его мы располагаем информацией в виде Н- суммарного уровня бензина и воды в баке. Так как бак и пьезометр открыты (сообщаются с атмосферой), давление на дно будем учитывать только весовое.

Итак, давление на дно со стороны бака можно записать как

Это же давление со стороны пьезометра:

.

Приравняв правые части полученных выражений, выразим из них искомую величину :

Сократим полученное уравнение на g, убрав в обеих частях уравнения , запишем искомую величину

Из последнего уравнения

Полученные выражения для и подставим в исходное уравение и определим вес бензина

9. Гидравлический домкрат состоит из неподвижного поршня 1 и скользящего по нему цилиндра 2, на котором смонтирован корпус 3, образующий масляную ванну домкрата и плунжерный насос 4 ручного привода со всасывающими 5 и нагнетательным 6 клапанами. Определить давление рабочей жидкости в цилиндре и массу поднимаемого груза m, если усилие на рукоятке приводного рычага насоса R=150 Н, диаметр поршня домкрата D=180 мм, диаметр плунжера насоса d=18мм, КПД домкрата η = 0,68, плечи рычага а=60мм, b=600мм.

Задача 1.1 . Определить объем воды, который необходимо дополнительно подать в водовод диаметром d= 500 мм и длиной L = 1 км для повышения давления до р =5 МПа. Водовод подготовлен к гидравлическим испытаниям и заполнен водой при атмосферном давлении. Деформацией трубопровода можно пренебречь.

Скачать решение задачи 1.1

Задача 1.2. В отопительной системе (котел, радиаторы и трубопроводы) небольшого дома содержится объем воды W=0,4 м 3 . Сколько воды дополнительно войдет в расширительный сосуд при нагревании с 20 до 90 °С?

Скачать решение задачи 1.2

Задача 1.3. Определить среднюю толщину б ОТЛ солевых отложений в герметичном водоводе внутренним диаметром d = 0,3 м и длиной L = 2 км (рис. 1.1). При выпуске воды в количестве W ж = 0,05 м 3 давление в водоводе падает на величину р = 1 МПа. Отложения по диаметру и длине водовода распределены равномерно.

Скачать решение задачи 1.3

Задача 1.4. Определить изменение плотности воды при ее сжатии от p 1 = 0,1 МПа до р 2 = 10 МПа.

Скачать решениее задачи 1.4

Задача 1.5. Для периодического аккумулирования дополнительного объема воды, получаемого при изменении температуры, к системе водяного отопления в верхней ее точке присоединяют расширительные резервуары, сообщающиеся с атмосферой. Определить наименьший объем расширительного резервуара при частичном заполнении водой. Допустимое колебание температуры воды во время перерывов в работе топки t = 95 - 70 = 25 °С. Объем воды в системе W= 0,55 м 3 .

Скачать решение задачи 1.5

Задача 1.6. В отопительный котел поступает объем воды W= 50 м3 при температуре 70 °С. Какой объем воды W 1 будет выходить из котла при нагреве воды до температуры 90 °С?

Скачать решение задачи 1.6

Задача 1.7. Определить изменение плотности воды при нагревании ее от t 1 = 7 °С до t 2 = 97 °С.

Скачать решение задачи 1.7

Задача 1.8. Вязкость нефти, определенная по вискозиметру Энглера, составляет 8,5 °Е. Вычислить динамическую вязкость нефти, если ее плотность р = 850 кг/м 3 .

Скачать решение задачи 1.8

Задача 1.9. Определить давление внутри капли воды диаметром (1= 0,001 м, которое создают силы поверхностного натяжения. Температура воды t = 20 °С.

Скачать решение задачи 1.9

Задача 1.10. Определить высоту подъема воды в стеклянном капилляре диаметром d = 0,001 м при температуре воды t 1 = 20 °С и t 2 = 80 °С.

Скачать решение задачи 1.10

Задача 1.11. Как изменится плотность бензина А76, если температура окружающей среды изменится с 20 до 70°С?

Скачать решение задачи 1.11

Задача 1.12. Как изменятся объемный вес и плотность воды друг относительно друга на экваторе и Северном полюсе?

Скачать решение задачи 1.12

Задача 1.13. Чему равны удельные объемы и относительные плотности морской воды, ртути и нефти?

Скачать решение задачи 1.13

Задача 1.14. Увеличивается или уменьшается коэффициент объемного сжатия воды с увеличением ее температуры с 0 до 30 °С?

Скачать решение задачи 1.14

Задача 1.15. Определить изменение давления в закрытом резервуаре с бензином с изменением температуры от 20 до 70 °С.

Скачать решение задачи 1.15

Задача 1.16. Определить изменение скорости распространения звука в жидкости при увеличении температуры с 10 до 30 °С.

Скачать решение задачи 1.16

Задача 1.17. На сколько процентов увеличится начальный объем воды, спирта и нефти при увеличении температуры на 10 °С?

Скачать решение задачи 1.17

Задача 1.18. Рассмотреть явление капиллярности в стеклянных пьезометрических трубках диаметрами d 1 = 5 мм, d 2 = 2 мм, d 3 = 10 мм для воды, спирта (рис. 1.2, а) и ртути (рис. 1.2, б).

Скачать решение задачи 1.18

Задача 1.19. Разность скоростей между двумя соседними слоями жидкости толщиной dn = 0,02 мм равна du = 0,0072 м/ч. Рассматриваемая жидкость имеет коэффициент динамической вязкости 13,04*10 -4 Н*с/м 2 . Определить тангенциальное напряжение и силу трения на 1 м 2 поверхности между слоями жидкости (рис. 1.3).

Скачать решение задачи 1.19

Задача 1.20. Определить силу трения и тангенциальное напряжение на площади а х b = 10 х 10 см2 при температуре воды t = 14 °С и разности скоростей между двумя соседними слоями толщиной dn = 0,25 мм, равной v = 0,0003 м/мин. Динамическая вязкость при данной температуре 17,92*10 -4 Н*с/м 2 .

Скачать решение задачи 1.20

Задача 1.21. Определить кинематический коэффициент вязкости воды, если сила трения T= 12*10 -4 Н на поверхность S=0,06 м 2 создает скорость деформации du/dn = 1.

Скачать решение задачи 1.21

Задача 1.22. Определить силу трения и тангенциальное напряжение на площади воды S = 0,2*10 -2 м 2 при температуре t = 8 °С, пред полагая, что скорость деформации равна единице.

Скачать решение задачи 1.22

Задача 1.23. Определить величину деформации сплошной среды для интервала dт = 0,1 с, если вода имеет температуру 9 °С и соответствующее тангенциальное напряжение τ = 28*10 -4 Н/м 2 (рис. 1.4).

Скачать решение задачи 1.23

Задачи по гидравлике Гидростатика

Задача 2.1. Два горизонтальных цилиндрических трубопровода А и В содержат соответственно минеральное масло плотностью 900 кг/м 3 и воду плотностью 1000 кг/м 3 . Высоты жидкостей, представленные на рис. 2.1, имеют следующие значения: hм = 0,2 м; hрт = 0,4 м; hв = 0,9 м. Зная, что гидростатическое давление на оси в трубопроводе А равно 0,6*10 5 Па, определить давление на оси трубопровода В.

Скачать решение задачи 2.1

Задача 2.2.

Скачать решение задачи 2.2

Задача 2.3. Избыточное давление воды в океане на глубине h = 300м равно 3,15 МПа. Требуется определить: плотность морской воды на этой глубине в общем виде; плотность морской воды на этой глубине в районах Северного полюса и экватора g пол = 9,831 кг/м 3 , g экв =9,781 кг/м 3).

Скачать решение задачи 2.3

Задача 2.4. Сосуд, имеющий форму конуса с диаметром основания D переходит в цилиндр диаметром d (рис. 2.3). В цилиндре перемещается поршень с нагрузкой G = 3000 Н. Размеры сосуда: D = 1 м; d = 0,5 м; h = 2 м; плотность жидкости р = 1000 кг/м 3 . Определить усилие, развиваемое на основание сосуда.

Скачать решение задачи 2.4

Задача 2.5. Вода плотностью р 2 = 1000 кг/м 3 и минеральное масло плотностью p 1 = 800 кг/м 3 , находящиеся в закрытом резервуаре, сжимают воздух избыточным давлением p 0 (рис. 2.4). Поверхность раздела минерального масла и воды находится на расстоянии h1 = 0,3 м от свободной поверхности. Показание U-образного ртутного манометра h" = 0,4 м. Разница высот свободных поверхностей жидкостей в резервуаре и ртутном манометре h = 0,4 м. Определить давление воздуха на свободной поверхности p 0 .

Скачать решение задачи 2.5

Задача 2.6. Изучить равновесие системы трех жидкостей, находящихся в U-образной трубке, представленной на рис. 2.5. Определить z 0 , z 1 , z 2 , z 3 , если z 0 -z 1 = 0,2 м; z1 + z2 = 1 м; z 3 - z 2 = 0,1 м; Р 0 = 1000 кг/м 3 ; Р 2 = 13 600 кг/м 3 ; Р 3 = 700 кг/м 3 .

Скачать решение задачи 2.6

Задача 2.7. Несмешивающиеся жидкости с плотностями р 1 , р 2 и р 3 находятся в сосуде (рис. 2.6). Определить избыточное давление на основание сосуда pизб, если ρ 1 = 1000 кг/м 3 ; ρ 2 = 850 кг/м 3 ; ρ 3 = 760 кг/м 3 ; h 1 = 1 м; h 2 = 3 м; h 3 = 6 м.

Скачать решение задачи 2.7

Задача 2.8. Разность давлений между двумя горизонтальными цилиндрическими сосудами, наполненными водой и газом (воздухом), измерена с помощью дифференциального манометра, наполненного спиртом (р2) и ртутью (р3). Зная давление воздуха над свободной поверхностью воды в одном из сосудов, определить давление газа р, если рвоз = 2,5*10 4 Н/м2; ρ 1 = 1000 кг/м 3 ; ρ 2 = 800 кг/м 3 ; ρ 3 = 13 600 Н/м3; h 1 = 200 мм; h 2 = 250 мм; h = 0,5 м; g= 10 м/с2 (рис. 2.7).

Скачать решение задачи 2.8

Задача 2.9. Двойная U-образная трубка заполнена двумя жидкостями таким образом, что свободная поверхность во внутреннем ответвлении трубки находится на одном уровне (рис. 2.8). Рассчитать плотность р 2 , если р 1 = 1000 кг/м3; h 1 = 0,8 м; h 2 = 0,65 см.

Скачать решение задачи 2.9

Задача 2.10. Рассчитать избыточное давление на свободной поверхности минерального масла и абсолютное давление в точке М, если h = 2 м; z = 3,5 м; р = 850 кг/м 3 ; Pатм = 10 5 Па; g = 10 м/с 2 (рис. 2.9).

Скачать решение задачи 2.10

Задача 2.11. Сосуд содержит две несмешивающиеся жидкости с плотностями р 1 и р 2 (рис. 2.10). Давление над свободной поверхностью измеряется манометром. Определить избыточное давление на основание сосуда, если p м = 10 2 Н/м 2 ; р 1 = 890 кг/м 3 ; р 2 = 1280 кг/м 3 ; h 1 = 2,1 м; h 2 = 2,9 м; g = 10 м/с 2 .

Скачать решение задачи 2.11

Задача 2.12. В сообщающихся сосудах находятся две несмешивающиеся жидкости с плотностями p 1 и p 2 . Определить позицию свободных поверхностей жидкостей Н 1 и Н 2 по отношению к плоскости сравнения О - О (рис. 2.11), если p 1 = 1000 кг/м 3 ; р 2 = 1200 кг/м 3 ; h= 11 см.

Скачать решение задачи 2.12

Задача 2.13. Определить объем воды и минерального масла в закрытом сосуде по данным пьезометра и индикатора уровня, если D = 0,4 м; а = 0,5 м; b = 1,6 м; рм = 840 кг/м 3 ; рв = 1000 кг/м 3 ; g=10 м/с 2 (рис. 2.12).

Скачать решение задачи 2.13

Задача 2.14. Показание манометра, расположенного на расстоянии h =1 м от днища резервуара, рм = 5 Н/см 2 . Определить высоту свободной поверхности бензина Н в резервуаре (рис. 2.13), если Р б = 850 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 2.14

Задача 2.15. Два закрытых сосуда содержат воду. Свободные поверхности расположены по отношению к плоскости сравнения О-О на высотах Н 1 = 1 м и Н 2 = 1,8 м (рис. 2.14). Показание манометра p 1 = 1,2*10 5 Н/м 2 , разница уровней ртути в дифференциальном манометре А-А = 200 мм. Определить давление на свободную поверхность второго резервуара р 2 .

Скачать решение задачи 2.15

Задача 2.16. Какую силу нужно приложить к поршню 2, чтобы уравновесить действие силы Рь действующей на поршень 1 диаметром и (рис. 2.15), если Р 1 = 147 Н; D = 300 мм; d = 50 мм; h = 300 мм; рв = 1000 кг/м 3 ; g= 10 м/с 2 ?

Скачать решение задачи 2.16

Задача 2.17. Какая сила должна быть приложена к поршням Аи В для уравновешивания системы поршней А, B, С (рис. 2.16), если h = 80 см; D = 40 см; d= 5 см; Р 1 = 72,64 Н; р = 1000 кг/м 3 ; g= 10 м/с 2 ?

Скачать решение задачи 2.17

Задача 2.18. Два плунжера А и В, находящиеся в горизонтальной плоскости, уравновешены (рис. 2.17). Определить показания манометра и силу F 2 , если сила F 1 = 600 Н, площади плунжеров соответственно S 1 = 60 см 2 , S 2 = 5 см 2 .

Скачать решение задачи 2.18

Задача 2.19. С помощью ртутного манометра измеряется гидростатическое давление в трубопроводе воды (рв = 1000 кг/м 3 ). Манометр изготовлен из пластичного материала (резиновый шланг) и может растягиваться, увеличиваясь в размерах, например, на величину а (рис. 2.18). Найти величину h - изменение показания Н ртутного манометра.

Скачать решение задачи 2.19

Задача 2.20. Герметично закрытый стальной резервуар (рис. 2.19) содержит воду (р в = 1000 кг/м 3 ). Вентилятором на свободной поверхности создается избыточное давление, показание ртутного манометра (р рт =13600 кг/м 3 ) z 2 = 500 мм. Определить абсолютное давление на свободной поверхности жидкости в резервуаре и пьезометрическую высоту

Скачать решение задачи 2.20

Задача 2.21. Во избежание разрыва сплошности потока под поршнем в цилиндре (рис. 2.20) во время всасывания воды (р в = 1000 кг/м 3 ) требуется рассчитать максимальную высоту всасывания h maxв с, если давление насыщенного пара р c =10 Н/м 2 .

Скачать решение задачи 2.21

Задача 2.22 . Вследствие опускания поршня весом О в закрытый резервуар под действием силы Р жидкость поднялась в пьезометре на высоту х (рис. 2.21). Определить величину х, если P = 300 Н; G = 200 Н; d = 0,1 м; h = 0,4 м; р = 1000 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 2.22

Задача 2.23. На зафиксированный на полу поршень опирается цилиндрический сосуд без днища, заполненный водой. Определить величины давления р{ и рг (рис. 2.22), если вес сосуда G = 1000 Н; р = 1000 кг/м 3 ; а = 0,8 м; D = 0,4 м; g= 10 м/с 2 .

Скачать решение задачи 2.23

Задача 2.24. Система трех поршней в сообщающихся сосудах (рис. 2.23) находится в равновесии под действием трех сил Р 1 , Р 2 , Р 3 (с учетом веса поршней): Площади поршней соответственно S 1 , S 2 , S 3 . Определить высоты h 1 и h 2 , если Р 1 = 1300 Н; Р 2 = 1000 Н; Р 3 = 800 Н; S 1 = 0,4 м 2 ; S 2 = 0,6 м 2 ; S 3 = 0,9 м 2 ; р = 1000 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 2.24

Задача 2.25 . В системе трех поршней (см. рис. 2.23) определить изменение сил Р 2 и Р 3 при заданных условиях (см. задачу 2.24).

Скачать решение задачи 2.25

Задача 2.26. Пьезометр и два жидкостных манометра присоединены к резервуару (рис. 2.24), наполненному бензином до отметки 2 м (р б = 700 кг/м 3 ). Определить показания манометра М и пьезометра Н для уровней воды, ртути, указанных на рисунке в метрах. Плотностью воздуха можно пренебречь.

Скачать решение задачи 2.26

Задача 2.27. Система двух поршней находится в равновесии (рис. 2.25). Определить разницу показаний пьезометров А, если D/d = 3; H= 2 м; p 1 = р 2 = соnst.

Скачать решение задачи 2.27

Задача 2.28. Определить давление пара в цилиндре поршневого парового насоса (рис. 2.26, золотниковая коробка, обеспечивающая возвратно-поступательное движение поршня в паровом цилиндре, не показана), необходимое для подачи воды на высоту Н = 58 м, если диаметры цилиндров d 1 = 0,3 м; d 2 = 0,18 м.

Скачать решение задачи 2.28

Задача 2.29. Грунтовые воды, формирующие систему с нефтяным пластом, выходят на поверхность (рис. 2.27). Какова должна быть плотность глинистого раствора, применяемого при бурении (Рmin), чтобы не было фонтанирования нефти при вскрытии пласта? Глубина скважины А = 2500 м; расстояние между уровнем выхода подземных вод на поверхность и границей вода-нефть h 1 = 3200 м; расстояние между уровнем выхода грунтовых вод на поверхность и устьем скважины h 2 = 600 м; плотность подземных вод р в = 1100 кг/м 3 ; плотность нефти р н = 850 кг/м 3 .

Скачать решение задачи 2.29

Задача 2.30. Для проведения опыта по сжатию используют поршневой пресс, имеющий размеры: диаметр цилиндра D = 105 мм, диаметр штока поршня d 1 = 55 мм. Насос, управляющий прессом, имеет поршень диаметром d = 18 мм и рычаги с размерами a = 100 мм и b = 900 мм (рис. 2.28). Определить давление р в гидравлической сети и усилие Р на конце рычага насоса, если усилие сжатия Q = 1 МН.

Скачать решение задачи 2.30

Задача 2.31. Цилиндр диаметром d = 20 см заполнен водой и закрыт сверху без зазора плавающим поршнем, на который положен груз массой 5 кг. На какую высоту поднимется вода в пьезометре, соединенном с поршнем?

Скачать решение задачи 2.31

Задача 2.32. Определить давление воды на дно резервуара и на пробку, закрывающую отверстие в наклонной стенке резервуара. Давление на свободную поверхность жидкости р 0 = 5 МПа; А = 2 м; диаметр пробки h = 40 мм; h G = 1 м.

Скачать решение задачи 2.32

Задача 2.33. Определить показание вакуумметра hв (мм рт. ст.), установленного на маслобаке (рис. 2.29), если относительная плотность масла р м = 0,85; Н = 1,2 м; h= 150 мм.

Скачать решение задачи 2.33

Сила давления жидкости на стенку (плоскую и криволинейную)

Задача 3.1 . Рассчитать манометрическое давление рм и силу давления, действующую на верхнюю крышку сосуда, полностью заполненного водой (рис. 3.1), если вес сосуда G = 5*10 4 Н; диаметр сосуда D = 0,4 м; S 2 - площадь сечения верхней крышки; диаметр поршня, действующего на жидкость, d = 0,2 м;

Скачать решение задачи 3.1

Задача 3.2, Определить силу давления на вертикальную стенку АВСD сосуда, полностью заполненного водой (рис. 3.2), и положение центра давления, если L = 32 м; 1=26 м; h = 18 м; р = 1000 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 3.2

Задача 3.3. Определить силы давления жидкости на стенки и основание открытого соеуда, если l=5м; b=3м; р = 1000 кг/м 3 ; h = 2 м; а = 60°; g=10 м/с 2 (рис. 3.3).

Скачать решение задачи 3.3

Задача 3.4. Определить силу давления воды Р" на крышку, перекрывающую прямоугольное отверстие в плоской стенке резервуара (рис. 3.4), вертикальную координату hд точки ее приложения и усилие N. которое необходимо приложить к крышке в точке К, если размеры отверстия В = 30 см, Н = 20 см, расстояние от верхней кромки отверстия до свободной поверхности воды а = 120 мм, расстояние между точкой К и осью шарнира О-О l=250 мм, показание манометра, установленного на верхней крышке резервуара, рм= 0,2 10 5 Па.

Скачать решение задачи 3.4

Задача 3.5. Определить силы давления на боковые поверхности резервуара, заполненного бензином (рис. 3.5), и координаты центров давления, если а = 60°; b=1м; h = 4м; р = 750 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 3.5

Задача 3.6. Определить силу давления воды на цилиндрическую стенку резервуара (рис. 3.6), а также угол наклона к горизонту линии действия этой силы а, если радиус стенки R = 2 м, ширина стенки В = 3 м, высота уровня воды в трубке пьезометра, установленного на верхней крышке резервуара, h = 0,5 м.

Скачать решение задачи 3.6

Задача 3.7. Определить силу давления на основание резервуара (рис. 3.7), а также силу, действующую на землю под резервуаром, если h = 3 м; b = 3 м; р = 1000 кг/м 3 ; l1 = 6 м; а = 60°; g = 10 м/с 2 . Объяснить полученные результаты. Весом резервуара можно пренебречь.

Скачать решение задачи 3.7

Задача 3.8. Определить силу F необходимую для удержания вертикального панно (стенки) шириной b = 4 м и высотой Н= 5,5 м (рис. 3.8) при глубине воды слева h 1 = 5 м, справа h 2 = 2 м; р = 1000 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 3.8

Задача 3.9. Резервуар, содержащий бензин (р = 900 кт/м 3 ), разделен на две части плоской стенкой, имеющей квадратное отверстие, которое закрыто (рис. 3.9). Определить результирующую силу давления и момент сил давления по отношению к точке А, а также точку приложения этой результирующей силы. Исходные данные: p 1 = 0,15 Н/см 2 ; р 2 = 0,05 Н/см 2 ; а = 1 м; g = 10 м/с 2 .

Скачать решение задачи 3.9

Задача 3.10. Резервуар заполнен бензином (рб = 750 кг/м3) на высоту H = 2 м. На дне резервуара расположено отверстие ахb = 0,5 х 0,6 м, закрытое трапом, которое вращается вокруг шарнира А (рис. 3.10). Вес трапа G = 120 Н. Определить силу Tmin открытия трапа и расстояние х приложения этой силы.

Скачать решение задачи 3.10

Задача 3.11. Трубопровод диаметром d = 0,75 м заканчивается заполненным нефтью (р = 860 кг/м 3 ) резервуаром и закрыт крышкой с 12 болтами (рис. 3.11). Свободная поверхность в резервуаре находится на расстоянии hд = 7 м от центра тяжести крышки. Напряжение На разрыв стали болтов [G] = 7000 Н/см 2 . Определить силу давления жидкости на крышку, глубину центра давления и диаметр болтов, если D = d.

Скачать решение задачи 3.11

Задача 3.12. Определить силу давления на основание резервуаров, представленных на рис. 3.12, а также силу реакции земли. Резервуары заполнены бензином одинаковой плотности. Весом резервуаров можно пренебречь. Исходные данные: d = 1 м; d 1 = 0,5 м; D = 2 м; h 1 = 1 м; h 2 = 2 м; h 3 = 1,5 м; р = 700 кг/м 3 .

Скачать решение задачи 3.12

Задача 3.13. Определить силу суммарного давления воды на пло-I кий щит, перекрывающий канал, и усилие, которое необходимо приложить для подъема щита. Ширина канала b = 1,8 м, глубина воды в нем h = 2,2 м. Вес щита G = 15 кН. Коэффициент трения щита по опорам f= 0,25 (рис. 3.13).

Скачать решение задачи 3.13

Задача 3.14. Определить результирующую силу давления на плоскую поверхность А и положение точки ее приложения (рис. 3.14). Показание манометра на закрытом резервуаре, заполненном водой, рм=5000Н/м2; H=4 м; D= 1 м; р = 1000 кг/м 3 ; g = 10 м/с 2 .

Скачать решение задачи 3.14

Задача 3.15. Показание манометра М1, р1 = 5 Н/см 2 , показание манометра М 2 р 2 = 6 Н/см 2 , р = 1000 кг/м 3 и g = 10 м/с 2 . Определить позицию свободной поверхности от дна резервуара (рис. 3.15).

Скачать решение задачи 3.15

Задача 3.16. На плоской боковой поверхности резервуара имеется полусферическая крышка-трап (рис. 3.16). Высота жидкости над центром трапа Н, показание вакуумметра, установленного на резервуаре, р у. Определить результирующее давление на крышку трапа, если D = 0,6 м; H= 3,5 м; р у = 0,05 МПа; р = 1000 кг/м3; g = 10 м/с 2 .

Скачать решение задачи 3.16

Задача 3.17 . Щит, перекрывающий канал, расположен под углом а = 45° к горизонту и закреплен шарнирно к опоре над водой (рис. 3.17). Определить усилие, которое необходимо приложить к тросу для опрокидывания щита, если ширина щита b = 2 м, глубина воды перед щитом H 1 = 2,5 м, после щита Н 2 = 1,5 м. Шарнир расположен над высоким уровнем воды на расстоянии Н 3 = 1 м. Весом щита и трением в шарнире можно пренебречь.

Скачать решение задачи 3.17

Задача 3.18. Имеется цилиндрическая цистерна с бензином (рис. 3.18). Манометр показывает избыточное давление паров над свободной поверхностью. Определить силу давления на поверхность АВ и координату центра давления, если D = 2,2 м; H =2,4 м; p = 0,72*10 3 кг/м 3 ; p м = 1,5 10 5 Н/м 2 ; g = 10 м/с 2 .

Скачать решение задачи 3.18

Задача 3.19. Уровень жидкости в пьезометре находится на той же горизонтальной плоскости, что и верхняя точка сферического резервуара с жидкостью плотностью р = 1000 кг/м 3 . Две полусферы диаметром 2 м связаны болтами (рис. 3.19). Определить силу Р, действующую на все болты, если P = F верт1 + F верт2

Скачать решение задачи 3.19

Задача 3.20. Стальной полусферический резервуар радиусом R = 1 м и массой m = 2550 кг, расположенный на горизонтальной плоскости А-А, через пьезометр заполняется водой (рис. 3.20). При какой высоте х произойдет отрыв резервуара от плоскости А-А?

Скачать решение задачи 3.20

Задача 3.21 . Резервуар наполнен бензином. Определить силы дшшения, действующие на основание, боковые поверхности и крышу, если D = 5 м; h = 1,5 м; H= 4 м; рб = 800 кг/м 3 ; g = 9,81 м/с 2 (рис. 3.21).

Скачать решение задачи 3.21

Задача 3.22. В стенке резервуара просверлен трап, который закрывается полусферической крышкой радиусом R = 0,1 м и весом 200 Н (рис. 3.22). Какова должна быть высота H воды в резервуаре, чтобы крышка открылась?

Скачать решение задачи 3.22

Задача 3.23. Стальной резервуар в форме усеченного конуса не имеет дна и установлен на горизонтальной плоскости (рис. 3.23). На какую высоту х должна подняться жидкость, чтобы резервуар оторвался от горизонтальной плоскости под действием давления жидкости на боковую поверхность, если D = 2м; d=1 м; H= 4 м; а = 3 мм; рст = 7800 кг/м 3 ; рв = 1000 кг/м 3 ; g=10 м/с 2 ?

Скачать решение задачи 3.23

Задача 3.24. Простейший ареометр (прибор для определения плотности жидкости), выполненный из круглого карандаша диаметром d = 8 мм и прикрепленного к его основанию металлического шарика диаметром dш = 5 мм, имеет вес G = 0,006 Н. Определить плотность жидкости р, если ареометр цилиндрической частью погружается в нее на глубину h = 1,5 см.

Скачать решение задачи 3.24

Задача 3.25. Резервуар, состоящий из двух идентичных частей конической формы, полностью заполнен водой. Рассчитать силы, действующие на болты в горизонтальных плоскостях А-А, В-В и С-С (рис. 3.24). Показание манометра на крышке (А-А) р м = 5 Н/см 2 масса крышки m1 = 60 кг, масса конической части m 2 = 90 кг; d 1 = 1,8 м; d 2 = 0,9 м; h = 1,2 м.

Скачать решение задачи 3.25

Задача 3.26. Для поддержания стенки резервуара используются четыре двутавровые балки, при этом Р 1 = Р 2 = Р 3 = Р 4 (рис. 3.26). Определить расстояния h 1 h 2 , h 3 , h 4 , если ширина стенки b = 1 м; высота свободной поверхности Н=6 м.

Скачать решение задачи 3.26

Задача 3.27. Резервуар А наполнен жидкостью плотностью ря (рис. 3.27). Внутри крышки-цилиндра В диаметром d = 10 см имеется поршень, на который действует сила F. Жидкость находится в равновесии и расположена на высоте h2 от крышки-цилиндра. По показаниям ртутного манометра h 5 = 0,08 м и зная высоты h 2 =0,25 м, h 3 =0,3 м, h 4 = 0,7 м, h 5 = 0,08 м и h 6 = 0,15 м, определить: 1) показание пьезометра Нг; 2) показание манометра С; 3) силу F, действующую на поршень; 4) абсолютное давление жидкости под поршнем pабс, если рт = 10 5 Па; рх = 900 кг/м 3 ; р рт = 13600 кг/м 3 , g = 10 см.

Скачать решение задачи 3.27

Задача 3.28. Бассейн, заполненный бензином (р = 900 кг/м 3 ), опорожняется с помощью трубопровода, закрытого клапаном (рис. 3.28). Рассчитать силу Р, необходимую для поднятия клапана, если вес клапана G = 29,4 Н, диаметр трубопровода d = 0,4 м, высота жидкости по отношению к центру тяжести Н= 3,5 м, размеры рычага а = 0,55 м и bn = 1,3 м; а = 30.

Скачать решение задачи 3.28

Задача 3.29. Закрытый резервуар содержит бензин (рис. 3.29) плотностью р = 950 кг/м 3 . Напряжение насыщенного пара p 1 = 70 мм рт.ст. Имеются три полусферические крышки диаметром D = 0,35 м. Зная высоты h = 0,8 м, h 1 = 1 м и h 2 = 1,8м, найти вертикальную и горизонтальную составляющие, а также равнодействующую силу действующую на болты крышек; координату центра давления.

Скачать решение задачи 3.29

Плавание тела. Закон Архимеда

Задача 4.1 . В обычных условиях человек поднимает без труда стальную гирю массой m 1 = 30 кг. Стальную гирю какой массы человек может поднять без труда под водой, если рв = 1000 кг/м 3 ; р ст =7,8*10 3 кг/м 3 ?

Скачать решение задачи 4.1

Задача 4.2. Прямоугольная баржа размером l х b х H = 60 х 8 х З,5 м (рис. 4.1) наполнена песком относительной плотностью р п = 2,0 кг/м 3 и несом G = 14400 kН. Определить осадку баржи h; объем песка, который необходимо отгрузить с баржи, чтобы осадка не превышала h =1,2 м (р в = 1000 кг/м 3).

Скачать решение задачи 4.2

Задача 4.3. Коническое тело с диаметром основания D и высотой Н плавает в жидкости плотностью р 2 (рис. 4.2). Плотность тела p 1 . Определить глубину погружения конического тела z.

Скачать решение задачи 4.3

Задача 4.4 . Свободная поверхность жидкости в резервуаре находится на расстоянии h" 1 + h" 2 от его основания. После погружения цилиндра диаметром и расстояние до свободной поверхности стали равным h 1 + h" 1 + h" 2 . Определить диаметр d цилиндра, если h 1 = 200 мм; h 2 = 288 мм; D = 60 мм (рис. 4.3).

Скачать решение задачи 4.4

Задача 4.5. Лодка плывет по воде (рис. 4.4). Определить глубину погружения Н. Сколько человек (массой 67,5 кг каждый) может разместиться в лодке при условии, что она не погрузится полностью (плотность лодки р = 700 кг/м 3 ); h = 0,3 м; а = 0,3 м; b = 5 м?

Скачать решение задачи 4.5

Задача 4.6. Понтон весом G 1 = 40 кН нагружен грузом G 2 (рис. 4.5). Центр тяжести находится на расстоянии h = 0,45 м от основания понтона. Размеры понтона: длина L = 8 м, ширина l = 4 м, высота Н = 1 м. Определить вес груза G 2

Скачать решение задачи 4.6

Задача 4.7. Поплавок, сделанный из меди, служит для указания уровня раздела воды и бензина. Определить диаметр D поплавка, если б = 1 мм; d = 3 мм; L = 2 м; р меди = 9000 кг/м 3 ; р б = 860 кг/м 3 ; рв= 1000 кг/м 3 ; l= 1 м; Н= 10 см (рис. 4.6).

Скачать решение задачи 4.7

Задача 4.11. Буровая скважина наполнена глинистым раствором плотностью р р = 1400 кг/м 3 . Определить координату z поперечного сечения, где напряжение [G] = 0. Буровая штанга из стали имеет длину L = 800 м, внутренний диаметр d= 156 мм, толщина стенки трубы б = 7 мм, р ст = 7800 кг/м 3 (рис. 4.11).

Скачать решение задачи 4.11

Задача 4.12. Коническое тело с диаметром основания d= 0,4м, высотой h = 0,5 м и массой m = 10 кг плавает в воде (рис. 4.12). Какое количество воды необходимо залить в эту емкость для полного его погружения?

Скачать решение задачи 4.12

Задача 4.13. Стальной конический клапан диаметром В и высотой А служит для закрытия отверстия круглой формы, куда он опускается на 2/3h (рис. 4.13). Позиция свободной поверхности соответствует высоте Н. Определить силу Р, необходимую для открытия клапана, если D = 0,5 h; Н= 5h; рст = 7800 кг/м3; р в = 1000 кг/м 3 ; h = 0,5м.

Скачать решение задачи 4.13

Уравнение неразрывности. Уравнение Бернулли

Задача 5.1 . Расход идеальной жидкости относительной плотности б = 0,860 в расширяющемся трубопроводе с диаметрами d 1 = 480 мм (сечение 1-1) и d 2 = 945 мм (сечение 2-2) равен Q= 0,18 м 3 /с (рис. 5.1). Разница в позициях центра сечений равна 2 м. Показание манометра в сечении 1-1 равно р 1 = 3*10 5 Н/м 2 . Определить скорость жидкости в сечениях 1-1 и 2-2; давление р 2 в сечении 2-2.

Скачать решение задачи 5.1

Задача 5.2. Сифон длиной l = 1 1 + l 2 = 25м и диаметром d = 0,4 м (рис. 5.2) позволяет перетекать воде из одного резервуара в другой. Центральная часть сифона поднимается на высоту h 1 = 2м над свободной поверхностью жидкости. Разница уровней в резервуарах z = 2,5 м. Коэффициент потери напора по длине 0,02, коэффициенты местных потерь: входа 0,5, выхода 1; поворота трубопровода 0,4. Определить расход воды в сифоне.

Скачать решение задачи 5.2

Задача 5.3 . Наклонный трубопровод состоит из четырех составных частей с диаметрами d 1 = 100 мм; d 2 = 75 мм; d 3 = 50 мм; d 4 = 25 мм (рис. 5.3). Дебит равен 0,01 м 3 /с, относительная плотность жидкости б = 0,95. Рассчитать давления р 1 ; р 2 ; р 3 в соответствующих поперечных сечениях, имеющих координаты центров z 1 = 5 м, z 2 = 4 м, z 3 = 3 м. Потерями напора можно пренебречь

Скачать решение задачи 5.3

Задача 5.4. Последовательно соединенные трубопроводы с водой имеют U-образный ртутный манометр (рис. 5.4). Рассчитать давления и скорости воды в двух сечениях данных трубопроводов, пренебрегая потерями напора, если Q = 10 л/с; d 1 = 5 см; d2 =10 см; р в = 1000 кг/см3; р от = 13600 кг/м 3 ; d H = 700 мм рт. ст.; Н= 1 м.

Скачать решение задачи 5.4

Задача 5.5 Через трубопровод диаметром d = 100 мм движется вода с расходом Q = 8 л/с (рис. 5.5). С помощью U-образного ртутного манометра между сечениями 1-1 и 2-2, расположенными на расстоянии l=50м друг от друга, берется разность показаний h = 32 мм. Относительная плотность ртути б = 13,6. Определить коэффициент потери напора на трение.

Скачать решение задачи 5.5

Задача 5.6 . Расходомер Вентури расположен в наклонном трубопроводе с диаметрами d 1 = 0,25 м, d 2 = 0,1 м (рис. 5.6). В двух сечениях ртутным манометром производится замер разности давлений Зная разницу давлений h = 0,1 м ртутного столба, определить расход воды (р рт = 13600 кг/м 3 ).

Скачать решение задачи 5.6

Задача 5.7. Идеальная жидкость относительной плотностью б= 0,8 перетекает через систему трех трубопроводов с диаметрами d 1 = 50 мм, d 2 = 70 мм, d 3 = 40 мм под постоянным напором Н= 16 м (рис. 5.7). Трубопроводы полностью заполнены жидкостью. Определить расход жидкости Q.

Скачать решение задачи 5.7

Задача 5.8. Вода протекает по водомеру Вентури, состоящему из трубы диаметром d = 20 см, в которую вставлен участок трубы диаметром d 2 = 10 см (рис. 5.8). Пренебрегая сопротивлением, опреде¬лить расход воды, если в пьезометрах П 1 и П 2 разность показаний h = 0,25 м.

Скачать решение задачи 5.8

Задача 5.9. Пренебрегая всеми потерями напора, определить высоту Н и расход С струи воды (рв = 1000 кг/м 3 ) начальным диаметром d = 25 м при выходе из сопла длиной h = 0,25 м. Выброс струи осуществляется вертикальной трубкой диаметром D = 500 мм и длиной H 0 = 3 м, которая подпитывается из резервуара с постоянным уровнем под избыточным давлением рм = 5 Н/см 2 = 5*10 4 Н/м 2 над свободной поверхностью (рис. 5.9).

Скачать решение задачи 5.9

Задача 5.10. Центробежный насос должен обеспечить расход Q= 0,1 м 3 /с и давление на высоте р2 = 4,7 10 4 Н/м 2 . Всасывающая труба имеет диаметр d = 0,3 м и длину L = 24 м, а также фильтр на входе, имеющий местный коэффициент сопротивления ξ = 5. Всасывание воды осуществляется из открытого резервуара (рис. 5.10). Коэффициент потерь на трение 0,02, коэффициент местных сопротивлений поворот ξ = 0,2. Определить высоту всасывания

Скачать решение задачи 5.10

Задача 5.11. Горизонтальная часть эжектора расположена на высоте h = 2 м от свободной поверхности жидкости в резервуаре. Диаметр горловины эжектора d = 20 мм, а диаметр выходного сечения D = 60 мм (рис. 5.11). Определить давление в минимальном сечении эжектора и максимальный расход при отсутствии расхода в трубке А.

Скачать решение задачи 5.11

Задача 5.12. Два резервуара, содержащие воду (резервуар А закрыт, резервуар В открыт и связан с атмосферой), соединены с помощью трубопроводов с диаметрами d 1 = 70 мм и d 2 = 100 мм и длинами l 1 = 3 м и l 2 = 5 м (рис. 5.12). Разность уровней воды в резервуарах H= 5 м. Предположим, что уровни 1- 1 и 5-5 остаются постоянными. Определить расход воды Q, если ри = 20 Н/см 2 = 20*10 4 Н/м 2 ; λ = 0,02.

Скачать решение задачи 5.12

Задача 5.13. Течение воды осуществляется из резервуара с постоянным уровнем Н= 16 м через короткий трубопровод, состоящий из отрезков труб с диаметрами d 1 = 50 мм и d 2 = 70 мм (рис. 5.13). На конце трубопровода помещено запорное устройство с коэффициентом местных потерь ξ = 4. Другими потерями можно пренебречь. Определить расход воды Q.

Скачать решение задачи 5.13

Задача 5.14. Резервуары А и Б с водой соединены горизонтальным трубопроводом, состоящим из отрезков труб с диаметрами d 1 = 100 мм и d 2 = 60 мм и имеющим кран с коэффициентом местных потерь ξ = 5 (рис. 5.14). Другими потерями можно пренебречь. Разница в уровнях жидкости в резервуарах Н = 3 м. Определить расход жидкости в трубопроводе Q. Каким должен быть коэффициент местных потерь, чтобы расход жидкости увеличился в два раза?

Скачать решение задачи 5.14

Задача 5.15, Согласно показанию манометра избыточное давление в закрытом резервуаре р изб = 4*10 6 Н/м 2 . Ось трубопровода находится на глубине h = 5 м от свободной поверхности (рис. 5.15). Коэффициенты местного сопротивления запорного крана 4, сопла 0,06. Линейным сопротивлением трубопровода можно пренебречь. Определить расход воды Q, если d 1 = 10 см; d 2 = 20 см; d 3 = 8 см.

Скачать решение задачи 5.15

Задача 5.16. Система из двух соединенных последовательно трубопроводов d 1 = 100 мм и d 2 = 200 мм, l 1 = 200 м и l 2 = 300 м соединяет резервуары Аи В, имеющие свободные поверхности на уровнях H1 = 100 м и Н2 = 200 м (рис. 5.16). Коэффициенты потерь на местные сопротивления: ξ 1 = 0,5; ξ 2 = 0,1; ξ 3 = 0,6; коэффициент трения на линейные сопротивления для сформировавшегося турбулентного режима λ = 0,02 + 0,5/d. Определить расход жидкости между резервуарами.

Скачать решение задачи 5.16

Задача 5.17. Жидкость вытекает из резервуара через трубопровод диаметром d = 100 мм длиной l= 50 м (рис. 5.17). Уровень свободной поверхности, находящийся на высоте Н = 4 м, остается постоянным. Рассчитать расход жидкости: в горизонтальном трубопроводе Q 1 ; в наклонном трубопроводе Q 2 (z = 2 м). Местными потерями напора можно пренебречь.

Скачать решение задачи 5.17

Задача 5.18. Определить, на какую высоту hвых поднимется вода в трубке, один конец которой присоединен к суженной части трубы, а другой опущен в воду (рис. 5.18). Расход воды в трубе Q = 0,025 м 3 /с, избыточное давление р 1 = 49 кПа, диаметры d 1 = 100 мм и d 2 = 50 мм.

Скачать решение задачи 5.18

Задача 5.19 Вертикальный трубопровод, соединяющий основание резервуара с атмосферой, имеет следующие параметры: h=5 м, l 1 = 4 м; l 2 = 10 м; l 3 = 3 м; d 1 = 100 мм; d 2 = 150 мм (рис. 5.19). Коэффициент потерь напора на линейные сопротивления для сформировавшегося турбулентного режима определен по эмпирической формуле λ=0,02 + 0,5/d. Рассчитать расход жидкости в трубопроводе и давление в точке В. Потерями на местные сопротивления можно пренебречь.

Скачать решение задачи 5.19

Задача 5.20. Определить расход воды Q в трубе диаметром d1= 250 мм, имеющей плавное сужение до диаметра d 2 = 125 мм, если показания пьезометров: до сужения hv = 50 см; в.сужении h 2 = 30 см. Температура воды 20 °С (рис. 5.20).

Скачать решение задачи 5.20

Задача 5.21. Трубопровод диаметром d=25 мм служит для транспортирования воды, которая выливается наружу (рис. 5.21). Показание манометра, установ

Скачать решение задачи 5.21

Задача 5.22. Имеется центробежный насос производительностью Q = 9000 л/с, состоящий из всасывающего и нагнетательного трубопроводов. На входе во всасывающий трубопровод диаметром d 1 = 30 см давление составляет р 1 = 200 мм рт. ст., в нагнетательном трубопроводе диаметром d 2 = 20 см, находящемся на высоте z =1,22 м над осью всасывающего трубопровода, давление р 2 = 7 Н/см 2 . Определить гидравлическую мощность насоса.

Скачать решение задачи 5.22

Задача 5.23. Определить расход минерального масла, движущегося по трубе диаметром d = 12 мм, изогнутой под прямым углом. Показания манометров, поставленных перед коленом и после него, составляют соответственно р 1 = 10 МПа и р 2 = 9,96 МПа.

Скачать решение задачи 5.23

Задача 5.24. Определить расход жидкости через зазор между цилиндром и поршнем, если dг= 20,04 см, d2 = 20 см, длина сопряжения l=15 см. Поршень неподвижный. Перепад давления р = 20 МПа, вязкость жидкости μ = 170 10 -4 Н* с/м 2 .

Скачать решение задачи 5.24

Задача 5.25. Рассчитать потери давления в прямом трубопроводе длиной L = 40 м и внутренним диаметром d=16 мм при движении в нем жидкости плотностью р = 890 кг/м3 и вязкостью
V = 20 10 -6 м 2 /с. Скорость потока w = 3 м/с.

Скачать решение задачи 5.25

Задача 5.26. Определить повышение давления в трубе диаметром d = 5 см с толщиной стенки б = 2 мм при гидравлическом ударе. Скорость потока в трубе v = 7 м/с. Модуль упругости жидкости Еж = 2700 МПа, плотность жидкости р = 900 кг/м3. Модуль упругости материала трубы Е = 2*10 5 МПа.

Скачать решение задачи 5.26

Задача 5.27. Определить давление струи жидкости на неподвижную, наклонную к горизонту на угол 15° стенку. Струя вытекает из конически сходящейся насадки диаметром 1 мм с давлением 20 МПа. Плотность жидкости р = 900 кг/м 3 .

Скачать решение задачи 5.27

Задача 5.28. Определить изменение заключенного в стальном цилиндре объема жидкости, находящейся под атмосферным давлением при его увеличении на 20 МПа. Длина цилиндра 1 м, внутренний диаметр d = 100 мм, толщина стенки цилиндра б=1 мм; Eм = 1700*10 6 Н/м 2 ; Eст = 2*10 5 МН/м 2 .

Скачать решение задачи 5.28

Задача 5.29. Имеются два трубопровода с диаметрами d 1 = 100 мм и d 2 = 50 мм. Вязкость жидкости в трубопроводах соответственно v 1 = 23*10 -6 м2/с и v 2 = 9*10 -6 м 2 /с. Скорость жидкости в трубопроводе большего диаметра v 1 = 7 м/с. При какой скорости жидкости в трубопроводе меньшего диаметра потоки будут подобны?

Скачать решение задачи 5.29

Задача 5.30. Определить мощность, расходуемую потоком воды на участке трубопровода длиной l = 10 м (рис. 5.23), если угол наклона трубопровода 30°, диаметр большой трубы D = 0,2 м, диаметр малой трубы d = 0,1 м, расход воды Q = 0,05 м 3 /с, разность уровней ртути в дифференциальном манометре h = 0,4 м, движение воды турбулентное.

Скачать решение задачи 5.30

Задача 5.31. По трубопроводу (см. рис. 5.23) движется сжатый воздух. Абсолютное давление воздуха р 1 = 0,4 МН/м 2 , температура t = 20 °С, расход Q 0 = 0,5 м 3 /с (расход, приведенный к нормальным атмосферным условиям). Показание дифманометра h = 0,4 м. Определить мощность, расходуемую воздушным потоком на участке длиной l = 10 м при изотермическом процессе.

Скачать решение задачи 5.31

Cтраница 1 из 2

  • Начало
  • Предыдущая