Что такое синус и косинус в тригонометрии? Тригонометрическая окружность. Исчерпывающее руководство (2019)

Откуда

sin= 0,0035 sin cos= 0,0018 sin 2.

Таким образом, угол изменяется в пределах от нуля (на экваторе, где =0, и на полюсах, где =90°) до 0,0018 рад или 6" (на ши­роте 45°).

Направление силы Р совпадает с направлением нити, натянутой грузом; которое называется направлением отвеса или вертикаль­ным направлением. Сила Fнаправлена к центру Земли. Следова­тельно, вертикаль направлена к центру Земли только на полюсах и на экваторе, отклоняясь на промежуточных широтах на угол , определяемый выражением (11).

Разность F-Р равна нулю на полюсах и достигает максимума, равного 0,3% силы F, на экваторе. Из-за сплюснутости Земли у полюсов сила Fсама по себе несколько варьирует с широтой, будучи на экваторе примерно на 0,2% меньше, чем у полюсов. В итоге ускорение свободного падения изменяется с широтой в пре­делах от 9,780 м/с 2 на экваторе до 9,832м/с 2 на полюсах. Значение g =9,80665 м/с 2 принято в качестве нормального (стандартного) значения.


Заметим, что относительно инерциальной, например, гелиоцен­трической" системы отсчета свободно падающее тело движется с ус­корением(а не g). Из рис. 5 видно, что из равенства для разных тел ускорения g вытекает и равенство ускорений w. Действительно, треугольники, построенные на векторах F g и Р для разных тел, подобны (углы а и > для всех тел в данной точке земной поверхности одинаковы). Следовательно, отношение Fg/P, которое совпадает с отношением ig, для всех тел одно и то же, от­куда вытекает, что при одинаковых g получаются одинаковыми

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы инерции, появляется еще одна сила, на­зываемая силой Кориолис а или кориолисовой силой инерции.

Рис.6(а,б)

Появление кориолисовой силы можно обнаружить на следую­щем примере. Возьмем горизонтально расположенный диск, кото­рый может вращаться вокруг вертикальной оси. Прочертим на ди­ске радиальную прямую ОА (рис. 6,а). Запустим в направлении от О к А шарик со скоростью v". Если диск не вращается, шарик будет ка­титься вдоль прочерченной нами пря­мой. Если же диск привести во вра­щение в направлении, указанном стрелкой, то шарик будет катиться по изображенной пунктиром кривой ОВ, причем его скорость относительно диска v" будет изменять свое направ­ление. Следовательно, по отношению к вращающейся системе отсчета ша­рик ведет себя так, как если бы на него действовала сила F K , перпендикулярная к скорости v"

Чтобы заставить шарик катиться по вращающемуся диску вдоль радиальной прямой, нужно сделать направляющую, например, в виде ребра О А (рис. 6 ,б). При качении шарика направляющее ребро действует на него с некоторой силой F r . Относительно вра­щающейся системы (диска) шарик движется с постоянной по на­правлению скоростью. Это можно формально объяснить тем, что сила F r уравновешивается приложенной к шарику силой инерции F K , перпендикулярной к скорости v". Сила F K и есть кориолисова сила инерции.



Найдем сначала выражение силы Кориолиса для частного слу­чая, когда частица т движется относительно вращающейся системы отсчета равномерно по окружности,

Рис.7

лежащей в плоскости, перпендикулярной к оси вращения, с центром, находящимся на этой оси (рис. 7). Скорость частицы относительно вращающейся системы обозначим v". Скорость частицы относительно неподвижной (инерциальной) системы отсчета v равна по величине +R в случае (а) и |-Rв случае (б), где - угловая скорость вращающейся системы,R - радиус окружности.


Для того чтобы частица двигалась относительно неподвижной системы по окружности со скоростью на нее должна действовать направленная к центру окружности сила F, например, сила натяжения нити, которой частица привязана к центру окруж­ности (см. рис. 7). Величина этой силы равна

F=m=== +2 m + mR (12)

Относительно вращающейся системы частица в этом случае движется с ускорением т. е. так, как если бы на нее действовала сила

Таким образом, во вращающейся системе частица ведет себя так, как если бы на нее, кроме направленной к центру окруж­ности силы F, действовали еще две направленные от центра силы: и сила Fk, модуль которой равен 2 m (рис. 7) Cилу F K можно представить в виде

Сила (14) и есть кориолисова сила инерции. При v"=0 эта сила отсутствует. Сила F u 6 не зависит от v" - она, как мы уже отмечали, действует как на покоящиеся, так и на движущиеся тела. В случае, изображенном на рис. 7

F=m=== -2 m + mR

Соответственно

Следовательно, во вращающейся системе частица ведет себя так, как если бы на нее действовали две направленные к центру окружности силы: F и Fk, а также направленная от центра сила F u 6 =m 2 R. Сила Fk и в этом случае может быть представлена в виде (14).

Теперь перейдем к нахождению выражения силы Кориолиса для случая, когда частица движется относительно вращающейся систе­мы отсчета произвольным образом. Свяжем с вращающейся систе­мой координатные оси х", y" , z", причем ось , z" совместим с осью вра­щения (рис. 8). Тогда радиус-вектор частицы можно представить в виде (15)

Положение частицы относительно неподвижной системы следует определять с помощью радиуса-вектора г. Однако символы г" и г обозначают один и тот же вектор, проведенный из начала координат к частице. Символом г" обозначил этот вектор наблюдатель, «живу­щий» во вращающейся системе отсчета; по его наблюдениям орты , е" у, е" г неподвижны, поэтому при дифференцировании выражения (15) он обращается с этими ортами как с константами. Символом г пользуется неподвижный наблюдатель; для него орты, е" у, вра­щаются со скоростью (орт e" z неподвижен). Поэтому при диффе­ренцировании равного г выражения (15) неподвижный наблюда­тель должен обращаться с и е" у как с функциями t, производные которых равны:

| Для вто­рых производных ортов по времени получаются выражения:

Найдем скорость частицы относительно вращающейся системы отсчета. Для этого продифференцируем радиус-вектор (15) по вре­мени, считая орты константами


Повторное дифференцирование этого выражения даст ускорение ча­стицы относительно вращающейся системы отсчета:

Теперь найдем скорость частицы относительно неподвижной системы отсчета. Для этого продифференцируем радиус-вектор (15) «с позиций» неподвижного наблюдателя. Воспользовавшись обозначением г вместо г" (напомним, что г=г"), получим:

Продифференцировав это выражение еще раз по t, найдем ускорение частицы относительно неподвижной системы. Приняв во внимание формулы (15), (16) и (18), полученное со­отношение можно преобразовать к виду:

Соотношение (20) можно записать сле­дующим образом:

Из (21) вытекает, что ускорение частицы относительно непод­вижной системы отсчета можно представить в виде суммы трех ускорений: ускорения относительно вращающейся системы w",

ускорения, равного - R 1), и ускорения


w K =2[, v"],которое называется кориолисовым ускорением.

Для того чтобы частица двигалась с ускорением (21), на нее должны действовать какие-то тела с результирующей силой F=mw. Согласно (21)

mw r = mw - 2m[, v"] + m 2 R = F + 2m + m 2 R (22)

(перестановка сомножителей изменяет знак векторного произведе­ния}. Полученный результат означает, что при составлении уравне­ния второго закона Ньютона во вращающейся системе отсчета,



кроме сил взаимодействия, нужно учитывать центробежную силу инер­ции, а также кориолисову силу. Отме­тим, что сила Кориолиса всегда лежит в плоскости, перпендикуляр­ной к оси вращения.

Из сопоставления формул (19), (17) , (15) , и что с помощью выкладок, аналогичных тем, которые привели нас к со­отношению (21), можно убедиться в том, что

V=v"+[, r"]. (23)

Примеры движений, в которых проявляется кориолисова сила инерции. При истолковании явлений, связанных с движением тел относительно земной поверхности, в ряде случаев необходимо учи­тывать влияние кориолисовых сил. Например, при свободном падении тел на них действует кориолисова сила, обуславливающая отклонение к востоку от линии отвеса (рис.9) . Эта сила максимальна на экваторе и обращается в нуль на полюсах.

Рис. 11.

Летящий снаряд также испытывает отклоне­ния, обусловленные кориолисовыми силами инерции (рис.10) . При выстреле из орудия, направленного на север, снаряд будет откло­няться к востоку в северном полушарии и к за­паду - в южном. При стрельбе вдоль мериди­ана на юг направления отклонения будут про­тивоположными. При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Зем­ле, если выстрел произведен в направлении на запад, и поднимать его кверху, если выстрел произведен в восточном направлении. Предостав­ляем читателю самому убедиться в том, что сила Кориолиса, действующая на тело, движущееся вдоль меридиана в любом направлении (на се­вер или на юг), направлена по отношению к на­правлению движения вправо в северном полуша­рии и влево в южном полушарии. Это приводит к тому, что у рек под­мывается всегда правый берег в северном полушарии и левый берег в южном полушарии. Эти же причины объясняют неодинаковый износ рельсов при двухколейном движении.

Силы Кориолиса проявляются и при качаниях маятника. На рис. 11 показана траектория груза маятника (для простоты пред­положено, что маятник находится на полюсе). На северном полюсе сила Кориолиса будет все время направлена вправо по ходу маят­ника, на южном полюсе - влево. В итоге траектория имеет вид ро­зетки.

Как следует из рисунка, плоскость качаний маятника поворачи­вается относительно Земли в направлении часовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентриче­ской системы отсчета дело обстоит так, что плоскость качаний оста­ется неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот. Можно показать, что на широте ф плоскость ка­чаний маятника поворачивается за сутки на угол 2я sin ф.

Таким образом, наблюдения за вращением плоскости качаний маятника (маятники, предназначенные для этой цели, называются маятниками Фуко) дают непосредственное доказательство враще­ния Земли вокруг своей оси.

В принципе можно было бы мерить все углы в радианах. На практике широко используется и градусное измерение углов, хотя с чисто математической точки зрения оно неестественно. При этом для малых углов используются специальные единицы: угловая минута и угловая секунда. Угловая минута - это 1/60 часть градуса; угловая секунда - это 1/60 часть угловой минуты. Если, например, величина угла равна 129 градусам, 34 минутам и 16 секундам, то пишут: 129◦ 340 1600 .

Задача 4.1. На какой угол поворачивается за одну секунду:

а) часовая стрелка часов;

б) минутная стрелка часов;

в) секундная стрелка часов?

Решение. Разберем только пункт а). Полный оборот часовая стрелка делает за 12 часов; стало быть, за час она поворачивается на 360/12 = 30◦ . Следовательно, за минуту часовая стрелка повернется на угол, в 60 раз меньший, чем за час, то есть на 300 ;

в свою очередь, за секунду стрелка повернется на угол, в 60 раз меньший, чем за минуту, то есть на 30 00 . Теперь вы видите, на-

сколько мала угловая секунда: ведь даже угол, в тридцать раз больший (поворот часовой стрелки за секунду времени) мы не

в состоянии заметить.

Представление об угловой минуте дает такой факт: «разрешающая способность» человеческого глаза (при стопроцентном зрении и хорошем освещении) равна примерно одной угловой минуте. Это означает, что две точки, которые видны под углом 10 или меньше, на глаз воспринимаются как одна.

Посмотрим, что можно сказать о синусе, косинусе и тангенсе малых углов. Если на рис. 4.2 угол α мал, то высота BC, дуга BD и отрезок BE, перпендикулярный AB, очень близки. Их длины - это sin α, радианная мера α и tg α. Стало быть, для малых углов синус, тангенс и радианная мера приближенно равны друг другу:

Рис. 4.1. Разрешающая способность.

Если α - малый угол, измеренный в радианах, то sin α ≈ α; tg α ≈ α.

Задача 4.2. Запишите приближенные формулы для синуса и тангенса малых углов, считая, что угол измеряется в градусах.

Ответ. sin α◦ ≈ πα/180.

Видно, что формулы сложнее, чем для радианной меры - еще один довод в ее пользу!

Задача 4.3. Под каким углом видно дерево высотой 10 метров с расстояния в 800 метров? Дайте ответ: а) в радианах; б) в угловых минутах.

Задача 4.4. Чему равно расстояние, равное одной минуте дуги земного меридиана? Радиус Земли равен примерно 6370 .

Расстояние, о котором идет речь в этой задаче, примерно равно морской миле (именно так и появилась эта мера длины).

Рис. 4.3. Парсек.

Рис. 4.4. Формула тысячных.

Задача 4.5. В астрономии применяется единица измерения расстояний, называемая парсек. По определению, расстояние в 1 парсек - это расстояние с которого радиус земной орбиты 1 виден под углом 100 (рис.4.3 ). Сколько километров в одном парсеке? (Радиус земной орбиты равен примерно 150 миллионам километров.)

Задача 4.6. Военные пользуются единицей измерения углов, называемой «тысячная». По определению, тысячная - это 1/3000 развернутого угла. Такое измерение углов военные применяют в следующей формуле для определения расстояния до удаленных предметов: = (/) · 1000. Здесь - расстояние до предмета, - его высота, - угол, под которым он виден, измеренный в тысячных (рис. 4.4 ). Точна ли эта формула? Почему ей можно пользоваться на практике? Чему равно число π, по мнению военных?

Мы видим, что формулы sin α ≈ α, tg α ≈ α верны с хорошей точностью для малых углов. Посмотрим, что произойдет,

1 Астрономы поправили бы нас: не радиус (орбита Земли - не круг, а эллипс), а большая полуось (половина расстояния между наиболее удаленными друг от друга точками орбиты).

если угол не столь мал. Для угла в 30◦ точное значение синуса равно 0,5, а радианная мера равна π/6 ≈ 0,52. Ошибка (или, как еще говорят, погрешность), которую дает формула sin α ≈ α, равна примерно 0,02, что составляет 4% от значения синуса. Можно сказать, что относительная погрешность при таком вычислении (отношение погрешности к значению синуса) составляет 4%. Для углов, меньших 10◦ , относительная погрешность формулы sin α ≈ α меньше одного процента. Чем меньше угол α, тем меньше относительная погрешность формулы sin α ≈ α.

Существуют и другие формулы, позволяющие вычислять синусы и тангенсы - и не только малых углов - с хорошей точностью. Например, формула sin α ≈ α − α3 /6 (напоминаем, что α измеряется в радианах!) дает относительную погрешность менее 1% уже для всех углов, не превосходящих 50◦ . Позднее мы увидим, как оценить погрешность наших формул.

Задача 4.7. Пусть α - острый угол, измеренный в радианах. Докажите неравенство cos α > 1 − α2 .

Задача 4.8. Для косинусов малых углов в качестве приближенного значения можно брать 1. Докажите, что при величине угла менее 5◦ относительная погрешность этого приближения будет менее 1%.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Одним из разделов математики, с которыми школьники справляются с наибольшими трудностями, является тригонометрия. Неудивительно: для того чтобы свободно овладеть этой областью знаний, требуется наличие пространственного мышления, умение находить синусы, косинусы, тангенсы, котангенсы по формулам, упрощать выражения, уметь применять в вычислениях число пи. Помимо этого, нужно уметь применять тригонометрию при доказательстве теорем, а это требует либо развитой математической памяти, либо умения выводить непростые логические цепочки.

Истоки тригонометрии

Знакомство с данной наукой следует начать с определения синуса, косинуса и тангенса угла, однако прежде необходимо разобраться, чем вообще занимается тригонометрия.

Исторически главным объектом исследования данного раздела математической науки были прямоугольные треугольники. Наличие угла в 90 градусов дает возможность осуществлять различные операции, позволяющие по двум сторонам и одному углу либо по двум углам и одной стороне определять значения всех параметров рассматриваемой фигуры. В прошлом люди заметили эту закономерность и стали активно ею пользоваться при строительстве зданий, навигации, в астрономии и даже в искусстве.

Начальный этап

Первоначально люди рассуждали о взаимоотношении углов и сторон исключительно на примере прямоугольных треугольников. Затем были открыты особые формулы, позволившие расширить границы употребления в повседневной жизни данного раздела математики.

Изучение тригонометрии в школе сегодня начинается с прямоугольных треугольников, после чего полученные знания используются учениками в физике и решении абстрактных тригонометрических уравнений, работа с которыми начинается в старших классах.

Сферическая тригонометрия

Позже, когда наука вышла на следующий уровень развития, формулы с синусом, косинусом, тангенсом, котангенсом стали использоваться в сферической геометрии, где действуют иные правила, а сумма углов в треугольнике всегда больше 180 градусов. Данный раздел не изучается в школе, однако знать о его существовании необходимо как минимум потому, что земная поверхность, да и поверхность любой другой планеты, является выпуклой, а значит, любая разметка поверхности будет в трёхмерном пространстве «дугообразной».

Возьмите глобус и нитку. Приложите нитку к двум любым точкам на глобусе, чтобы она оказалась натянутой. Обратите внимание - она обрела форму дуги. С такими формами и имеет дело сферическая геометрия, применяющаяся в геодезии, астрономии и других теоретических и прикладных областях.

Прямоугольный треугольник

Немного узнав про способы применения тригонометрии, вернемся к базовой тригонометрии, чтобы в дальнейшем разобраться, что такое синус, косинус, тангенс, какие расчёты можно с их помощью выполнять и какие формулы при этом использовать.

Первым делом необходимо уяснить понятия, относящиеся к прямоугольному треугольнику. Во-первых, гипотенуза - это сторона, лежащая напротив угла в 90 градусов. Она является самой длинной. Мы помним, что по теореме Пифагора её численное значение равно корню из суммы квадратов двух других сторон.

Например, если две стороны равны 3 и 4 сантиметрам соответственно, длина гипотенузы составит 5 сантиметров. Кстати, об этом знали ещё древние египтяне около четырех с половиной тысяч лет назад.

Две оставшиеся стороны, которые образуют прямой угол, носят название катетов. Кроме того, надо помнить, что сумма углов в треугольнике в прямоугольной системе координат равняется 180 градусам.

Определение

Наконец, твердо понимая геометрическую базу, можно обратиться к определению синуса, косинуса и тангенса угла.

Синусом угла называется отношение противолежащего катета (т. е. стороны, располагающейся напротив нужного угла) к гипотенузе. Косинусом угла называется отношение прилежащего катета к гипотенузе.

Запомните, что ни синус, ни косинус не может быть больше единицы! Почему? Потому что гипотенуза - это по умолчанию самая длинная Каким бы длинным ни был катет, он будет короче гипотенузы, а значит, их отношение всегда будет меньше единицы. Таким образом, если у вас в ответе к задаче получился синус или косинус со значением, большим, чем 1, ищите ошибку в расчётах или рассуждениях. Этот ответ однозначно неверен.

Наконец, тангенсом угла называется отношение противолежащей стороны к прилежащей. Тот же самый результат даст деление синуса на косинус. Посмотрите: в соответствии с формулой мы делим длину стороны на гипотенузу, после чего делим на длину второй стороны и умножаем на гипотенузу. Таким образом, мы получаем то же самое соотношение, что и в определении тангенса.

Котангенс, соответственно, представляет собой отношение прилежащей к углу стороны к противолежащей. Тот же результат мы получим, разделив единицу на тангенс.

Итак, мы рассмотрели определения, что такое синус, косинус, тангенс и котангенс, и можем заняться формулами.

Простейшие формулы

В тригонометрии не обойтись без формул - как найти синус, косинус, тангенс, котангенс без них? А ведь именно это требуется при решении задач.

Первая формула, которую необходимо знать, начиная изучать тригонометрию, говорит о том, что сумма квадратов синуса и косинуса угла равна единице. Данная формула является прямым следствием теоремы Пифагора, однако позволяет сэкономить время, если требуется узнать величину угла, а не стороны.

Многие учащиеся не могут запомнить вторую формулу, также очень популярную при решении школьных задач: сумма единицы и квадрата тангенса угла равна единице, деленной на квадрат косинуса угла. Присмотритесь: ведь это то же самое утверждение, что и в первой формуле, только обе стороны тождества были поделены на квадрат косинуса. Выходит, простая математическая операция делает тригонометрическую формулу совершенно неузнаваемой. Помните: зная, что такое синус, косинус, тангенс и котангенс, правила преобразования и несколько базовых формул вы в любой момент сможете сами вывести требуемые более сложные формулы на листе бумаги.

Формулы двойного угла и сложения аргументов

Ещё две формулы, которые требуется выучить, связаны со значениями синуса и косинуса при сумме и разности углов. Они представлены на рисунке ниже. Обратите внимание, что в первом случае оба раза перемножается синус и косинус, а во втором складывается попарное произведение синуса и косинуса.

Также существуют формулы, связанные с аргументами в виде двойного угла. Они полностью выводятся из предыдущих - в качестве тренировки попробуйте получить их самостоятельно, приняв угол альфа равным углу бета.

Наконец, обратите внимание, что формулы двойного угла можно преобразовать так, чтобы понизить степень синуса, косинуса, тангенса альфа.

Теоремы

Двумя основными теоремами в базовой тригонометрии являются теорема синусов и теорема косинусов. С помощью этих теорем вы легко сможете понять, как найти синус, косинус и тангенс, а значит, и площадь фигуры, и величину каждой стороны и т. д.

Теорема синусов утверждает, что в результате деления длины каждой из сторон треугольника на величину противолежащего угла мы получим одинаковое число. Более того, это число будет равно двум радиусам описанной окружности, т. е. окружности, содержащей все точки данного треугольника.

Теорема косинусов обобщает теорему Пифагора, проецируя её на любые треугольники. Оказывается, из суммы квадратов двух сторон вычесть их произведение, умноженное на двойной косинус смежного им угла - полученное значение окажется равно квадрату третьей стороны. Таким образом, теорема Пифагора оказывается частным случаем теоремы косинусов.

Ошибки по невнимательности

Даже зная, что такое синус, косинус и тангенс, легко совершить ошибку из-за рассеянности внимания или ошибки в простейших расчётах. Чтобы избежать таких ошибок, ознакомимся с наиболее популярными из них.

Во-первых, не следует преобразовывать обыкновенные дроби в десятичные до получения окончательного результата - можно и ответ оставить в виде обыкновенной дроби, если в условии не оговорено обратное. Такое преобразование нельзя назвать ошибкой, однако следует помнить, что на каждом этапе задачи могут появиться новые корни, которые по задумке автора должны сократиться. В этом случае вы напрасно потратите время на излишние математические операции. Особенно это актуально для таких значений, как корень из трёх или из двух, ведь они встречаются в задачах на каждом шагу. То же касается округлений «некрасивых» чисел.

Далее, обратите внимание, что к любому треугольнику применима теорема косинусов, но не теорема Пифагора! Если вы по ошибке забудете вычесть удвоенное произведение сторон, умноженное на косинус угла между ними, вы не только получите совершенно неверный результат, но и продемонстрируете полное непонимание предмета. Это хуже, чем ошибка по невнимательности.

В-третьих, не путайте значения для углов в 30 и 60 градусов для синусов, косинусов, тангенсов, котангенсов. Запомните эти значения, ведь синус 30 градусов равен косинусу 60, и наоборот. Их легко перепутать, вследствие чего вы неизбежно получите ошибочный результат.

Применение

Многие ученики не спешат приступать к изучению тригонометрии, поскольку не понимают её прикладного смысла. Что такое синус, косинус, тангенс для инженера или астронома? Это понятия, благодаря которым можно вычислить расстояние до далёких звёзд, предсказать падение метеорита, отправить исследовательский зонд на другую планету. Без них нельзя построить здание, спроектировать автомобиль, рассчитать нагрузку на поверхность или траекторию движения предмета. И это только самые очевидные примеры! Ведь тригонометрия в том или ином виде используется повсюду, начиная от музыки и заканчивая медициной.

В заключение

Итак, вы синус, косинус, тангенс. Вы можете использовать их в расчётах и успешно решать школьные задачи.

Вся суть тригонометрии сводится к тому, что по известным параметрам треугольника нужно вычислить неизвестные. Всего этих параметров шесть: длины трёх сторон и величины трёх углов. Всё различие в задачах заключается в том, что даются неодинаковые входные данные.

Как найти синус, косинус, тангенс исходя из известных длин катетов или гипотенузы, вы теперь знаете. Поскольку эти термины обозначают не что иное, как отношение, а отношение - это дробь, главной целью тригонометрической задачи становится нахождение корней обычного уравнения либо же системы уравнений. И здесь вам поможет обычная школьная математика.