Равновесие вращающихся тел

Урок № 13

Тема. Момент силы. Условие равновесия тела, имеющего ось вращения

Цель: дать учащимся знания о момент силы правило моментов: показать, что правило моментов выполняется и для тела, которое имеет незакріплену ось вращения; объяснить значение правила моментов в быту.

Тип урока: комбинированный.

План урока

Контроль знаний

1. При каком условии тело находится в равновесии?

2. Какую задачу решает статика?

3. Как определить рівнодійну двух сил?

4. Условие равновесия тела, лежащего на наклонной плоскости?

5. Условие равновесия тела, подвешенного на кронштейне?

6. Равновесие тела, подвешенного на тросах

Изучение нового материала

1. Первое условие равновесия.

2. Плечо силы. Момент силы.

3. Второе условие равновесия (правило моментов)

Закрепление изученного материала

1. Контрольные вопросы.

2. Учимся решать задачи

Изучение нового материала

Длина перпендикуляра, опущенного из оси вращения на линию действия силы, называется плечом силы.

Вращательная действие силы определяется произведением модуля силы на расстояние от оси вращения до линии действия силы.

Моментом силы относительно оси вращения тела называют взятый со знаком «плюс» или «минус» произведение модуля силы на ее плечо:

M = ± Fl .

Будем считать момент положительным, если сила вызывает вращение тела против часовой стрелки, и отрицательным - если по часовой стрелке. В рассмотренном выше примере М1 = - F 1 l 1 , M 2 = F 2 l 2 , поэтому условие равновесия тела, закрепленного на оси, под действием двух сил можно записать в виде

M 1 + M 2 = 0.

3. Второе условие равновесия (правило моментов)

Чтобы тело, закрепленное на неподвижной оси, находилось в равновесии, необходимо, чтобы алгебраическая сумма моментов приложенных к телу сил равна нулю:

М1 + M 2 + М3 +... = 0.

Вопрос к учащимся в ходе изложения нового материала

1. Состояние тела называется равновесием в механике?

2. Обязательно ли равновесие означает состояние покоя?

3. Когда тело, закрепленное на оси, находится в равновесии под действием двух сил?

4. Можно ли применять условия равновесия тела, когда явной оси вращения нет?

Задачи, решаемые на уроке

1. До горизонтального стержня підвішано груз массой 50 кг (рис. 4). Каковы силы давления стержня на опоры, если AC = 40 см, BC = 60 см? Массой стержня можно пренебречь.

Так как стержень находится в равновесии,

mg + N 1 + N 2 = 0.

Отсюда N 1 + N 2 = mg . Применим правило моментов, считая, что ось вращения проходит через точку C . Тогда N 1 l 1 = N 2 l 2 (рис. 5).

Из уравнений получаем:

Подставляя числовые данные, находим N 1 = 300 H , N 2 = 200 H .

Ответ: 300 Н; 200 Н.

2. Легкий стержень длиной 1 м підвішано на двух тросах так, что точки крепления тросов расположены на расстоянии 10 и 20 см от концов стержня. К середине стержня підвішано груз массой 21 кг. Каковы силы натяжения тросов? (Ответ: 88 Р и 120 Р.)

3. Канат, на котором выступает канатоходец, должен выдерживать силу, что намного превышает вес канатоходца. Зачем нужно такое перестрахование?

Домашнее задание

1. Концы шнура длиной 10,4 м прикреплен на одинаковой высоте до двух столбов, расположенных на расстоянии 10 м друг от друга. К середине шнура підвішано груз массой 10 кг. Какой груз нужно подвесить к вертикального шнура, чтобы шнур был растянут с такой же силой?

2. Какой должна быть масса m противовеса, чтобы показан на рис. 6 шлагбаум легко было поднимать и опускать? Масса шлагбаума равна 30 кг.

3. До однородной балки массой 100 кг и длиной 3,5 м підвішано груз массой 70 кг на расстоянии 1 м от одного из концов. Балка концами лежит на опорах. Сила давления на каждую из опор?


Поэтому предыдущий вывод можно сформулировать так: модуль максимальной силы трения покоя пропорционален силе реакции опоры:

Греческой буквой обозначен коэффициент пропорциональности, называемый коэффициентом трения.

Опыт показывает, что модуль силы трения скольжения , как и модуль максимальной силы трения покоя, пропорционален модулю силы реакции опоры:

Максимальное значение силы трения покоя примерно равно силе трения скольжения, приближенно равны также коэффициенты трения покоя и скольжения.

Силы трения возникают и при качении тела. При одинаковой нагрузке сила трения качения значительно меньше силы трения скольжения. Поэтому для уменьшения сил трения в технике применяются колеса, шариковые и роликовые подшипники.

Статика. Основным признаком взаимодействия тел в динамике является возникновение ускорений. Однако часто бывает нужно знать, при каких условиях тело, на которое действует несколько различных сил, не движется с ускорением. Подвесим шар на нити. На шар действует сила тяжести, но не вызывает ускоренного движения к Земле. Этому препятствует действие равной по модулю и направленной в противоположную сторону силы упругости. Сила тяжести и сила упругости уравновешивают друг друга, их равнодействующая равна нулю, поэтому равно нулю и ускорение шара (рис. 40).

Точку, через которую проходит равнодействующая сил тяжести при любом расположении тела, называют центром тяжести (рис. 41).


Рис. 40-41

Раздел механики, изучающий условия равновесия сил, называется статикой.

Равновесие невращающихся тел. Равномерное прямолинейное поступательное движение тела или его покой возможны только при равенстве нулю геометрической суммы всех сил, приложенных к телу.

Невращающееся тело находится в равновесии, если геометрическая сумма сил, приложенных к телу, равна нулю.

Равновесие тел, имеющих ось вращения. В повседневной жизни и технике часто встречаются тела, которые не могут двигаться поступательно, но могут вращаться вокруг оси. Примерами таких тел могут служить двери и окна, колеса автомобиля, качели и т.д. Если вектор силы лежит на прямой, пересекающей ось вращения, то эта сила уравновешивается силой упругости со стороны оси вращения (рис. 42).

Если же прямая, на которой лежит вектор силы , не пересекает ось вращения, то эта сила не может быть уравновешена силой упругости со стороны оси вращения, и тело поворачивается вокруг оси (рис. 43).

Вращение тела вокруг оси под действием одной силы может быть остановлено действием второй силы . Опыт показывает, что если две силы и по отдельности вызывают вращение тела в противоположных направлениях, то при их одновременном действии тело находится в равновесии, если выполняется условие:

где и - кратчайшие расстояния от прямых, на которых лежат векторы сил и (линии действия сил), до оси вращения (рис. 44). Расстояние называется плечом силы, а произведение модуля силы на плечо называется моментом силы :


Рис. 42-43-44

Если моментам сил, вызывающим вращение тела вокруг оси по часовой стрелке, приписать положительный знак, а моментам сил, вызывающим вращение против часовой стрелки, - отрицательный знак, то условие равновесия тела, имеющего ось вращения, можно сформулировать в виде правила моментов: тело, имеющее неподвижную ось вращения, находится в равновесии, если алгебраическая сумма моментов всех приложенных к телу сил относительно этой оси равна нулю:

За единицу вращающего момента в СИ принимается момент силы в 1 Н, линия действия которой находится на расстоянии 1 м от оси вращения. Эту единицу называют ньютон-метром (Н·м).

Общее условие равновесия тела. Объединяя два вывода, можно сформулировать общее условие равновесия тела: тело находится в равновесии, если равны нулю геометрическая сумма векторов всех приложенных к нему сил и алгебраическая сумма моментов этих сил относительно оси вращения.

При выполнении общего условия равновесия тело необязательно находится в покое. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил ускорение тела равно нулю и оно может находиться в покое или двигаться равномерно и прямолинейно.

Равенство нулю алгебраической суммы моментов сил не означает также, что при этом тело обязательно находится в покое. На протяжении нескольких миллиардов лет с постоянным периодом продолжается вращение Земли вокруг оси именно потому, что алгебраическая сумма моментов сил, действующих на Землю со стороны других тел, очень мала. По той же причине продолжает вращение с постоянной частотой раскрученное велосипедное колесо, и только внешние силы останавливают это вращение.

Виды равновесия. В практике большую роль играет не только выполнение условия равновесия тел, но и качественная характеристика равновесия, называемая устойчивостью. Различают три вида равновесия тел: устойчивое, неустойчивое и безразличное. Равновесие называется устойчивым, если после небольших внешних воздействий тело возвращается в исходное состояние равновесия. Это происходит, если при небольшом смещении тела в любом направлении от первоначального положения равнодействующая сил, действующих на тело, становится отличной от нуля и направлена к положению равновесия. В устойчивом равновесии находится, например, шар на дне углубления (рис. 45).

При поступательном движении все точки тела движутся одинаково. Поэтому такое движение можно рассматривать как движение одной точки тела - его центра масс. При этом мы должны считать, что в центре масс сосредоточена вся масса тела и к нему приложена равнодействующая всех сил, действующих на тело. Из второго закона Ньютона следует, что ускорение этой точки равно нулю, если геометрическая сумма всех приложенных к ней сил - равнодействующая этих сил - равна нулю. Это и есть условие равновесия тела при отсутствии вращения.

Для того чтобы тело при отсутствии вращения находилось в равновесии, необходимо, чтобы равнодействующая сил, приложенных к телу, была равна нулю.

Но если геометрическая сумма сил равна нулю, то и сумма проекций векторов этих сил на любую ось тоже равна нулю. Поэтому условие равновесия тела можно сформулировать и так:

Для того чтобы тело при отсутствии вращения находилось в равновесии, необходимо, чтобы сумма проекций приложенных к телу сил на любую ось была равна нулю.

В равновесии, например, находится тело, к которому, как на рисунке 155, приложены две равные силы, действующие вдоль одной прямой, но направленные в противоположные стороны.

Состояние равновесия - это не обязательно состояние покоя. Согласно второму закону Ньютона при равенстве нулю равнодействующей всех сил, приложенных к телу, оно может двигаться прямолинейно и равномерно. При таком движении тело тоже находится в состоянии равновесия. Например, парашютист, после того как он начал падать с постоянной скоростью, находится в состоянии равновесия.

На рисунке 155 силы приложены к телу не в одной точке. Но мы уже видели, что важна не точка приложения силы, а прямая, вдоль которой она действует. Перенос точки приложения силы вдоль линии ее действия ничего не изменяет ни в движении тела, ни в состоянии равновесия. Ясно, например, что ничего не изменится, если, вместо того чтобы тянуть вагонетку, как это показано на рисунке 156, а, еестанут толкать (рис. 156,б).

Если равнодействующая сил, приложенных к телу, не равна нулю, то, для того чтобы тело находилось в состоянии равновесия, к нему должна быть приложена добавочная сила, равная по модулю равнодействующей, но противоположная ей по направлению.

Поясним это на опыте. Прикрепим к двум точкам верхней перекладины рамы ди-


нанометры 1 и 2 (рис. 157). При помощи нитей в точке О прикрепим груз. Под действием трех сил точка О будет находиться в равновесии. Теперь заменим силы, действующие на точку О со стороны двух динамометров, одной силой. Для этого прикрепим к точке О еще один динамометр 3 и потянем его вверх. Когда стрелки динамометров 1 и 2 установятся на нуле шкалы, на точку О будут действовать только две силы. Одна из них - сила упругости пружины динамометра 3, измеряемая этим динамометром, - является равнодействующей сил Сила тяжести груза равна этой равнодействующей по абсолютной величине и направлена в противоположную сторону. Поэтому точка О находится в равновесии.

Рассмотрим еще один пример. Как удержать в равновесии лодку, на которую действуют течение реки и ветер, дующий от берега (рис. 158)? Найдем равнодействующую сил вызванных ветром и течением воды. Для этого воспользуемся правилом параллелограмма. Диагональ параллелограмма дает величину и

Рис. 157 (см. скан)

направление равнодействующей Для того чтобы лодка была в равновесии, к ней должна быть приложена уравновешивающая сила равная этой равнодействующей, но направленная в противоположную сторону. Такой силой, например, может быть сила натяжения каната, прикрепленного одним концом к носу лодки, а другим к берегу. Если, например, сила, с которой текущая вода действует на лодку, равна 150 н, а сила давления ветра равна 100 н, то равнодействующая этих двух взаимно перпендикулярных сил может быть вычислена по теореме Пифагора:

Лодка, следовательно, может быть удержана канатом, способным выдержать натяжение не менее 180 н.

Задача. Груз массой 100 кг подвешен к кронштейну (рис. 159, а), который состоит из поперечной балки и укосины Определите силы упругости, возникающие в балке и укосине, если .

Решение. Прежде всего выясним, каково происхождение сил, действующих на части кронштейна.

Под действием силы тяжести груз начинает падать вертикально вниз. При этом он увлекает за собой конец В балки. Ясно, что балка и укосина вследствие этого деформируются: балка удлиняется, а укосина сжимается (рис. 159, а). В деформированных частях кронштейна возникают силы упругости, направленные в сторону, противоположную деформации. Эти силы и нужно определить. На рисунке 159 вектор изображает силу упругости в сжатой


укосине, а вектор силу упругости в растянутой балке. Эти силы действуют на точку В, к которой подвешен груз.

Деформации балки и укосины будут увеличиваться до тех пор,пока равнодействующая сил и не уравновесит силу тяжести Тогда точка В будет находиться в равновесии. Следовательно, равнодействующая трех сил, приложенных к точке В: силы тяжести силы и силы равна нулю:

Равна нулю и сумма проекций этих сил на любую ось.

Направим ось X по горизонтали вправо (рис. 159, б), а ось по вертикали вверх. Сила направлена по вертикали, поэтому ее проекция на ось X равна нулю. Проекция силы на ось X равна модулю вектора взятому со знаком Проекция силы на ось X равна . Тогда можно записать:

Проекции всех сил на ось найдем таким же образом. Проекция силы равна нулю, проекция силы равна а проекция силы равна Поэтому

Из уравнении (1) и (2) нетрудно найти силы и

Значение найдем непосредственно из уравнения (2):

Подставив это значение в уравнение (1), получим:

равен 30°.

3. Шар массой 3 кг висит на веревке, прикрепленной к гладкой стене (рис. 161). Определите силу натяжения веревки и силу давления шара на стену. Нить образует со стеной угол 15°,

4. К середине троса длиной 20 м подвешен светильник массой в следствие чего трос провис на 5 см. Определите силы упругости, возникшие в тросе.

5. На наклонной плоскости лежит ящик массой 30 кг. Будет ли ящик соскальзывать вниз, если коэффициент трения ящика о наклонную плоскость равен 0,2? Длина наклонной плоскости 6 м, высота 2 м.

6. Антенная мачта (рис. 162) закреплена оттяжкой АВ, образующей угол 30° с мачтой. Сила, с которой антенна действует на мачту в точке В (натяжение антенны), равна 1000 н. Чему равна сила, сжимающая мачту, и сила, действующая на оттяжку?