Distance to Kuiper belt asteroids. "Border Outpost" on the outskirts of the solar system

Today, many countries are taking part in thermonuclear research. The leaders are the European Union, the United States, Russia and Japan, while programs in China, Brazil, Canada and Korea are rapidly expanding. Initially, fusion reactors in the USA and USSR were associated with the development of nuclear weapons and remained classified until the Atoms for Peace conference, which took place in Geneva in 1958. After the creation of the Soviet tokamak, nuclear fusion research became “big science” in the 1970s. But the cost and complexity of the devices increased to the point where international cooperation became the only way forward.

Thermonuclear reactors in the world

Since the 1970s, the commercial use of fusion energy has been continually delayed by 40 years. However, a lot has happened in recent years that may allow this period to be shortened.

Several tokamaks have been built, including the European JET, the British MAST and the TFTR experimental fusion reactor at Princeton, USA. The international ITER project is currently under construction in Cadarache, France. It will be the largest tokamak when it starts operating in 2020. In 2030, China will build CFETR, which will surpass ITER. Meanwhile, China is conducting research on the experimental superconducting tokamak EAST.

Another type of fusion reactor, stellators, is also popular among researchers. One of the largest, LHD, began work at the Japanese National Institute in 1998. It is used to find the best magnetic configuration for plasma confinement. The German Max Planck Institute conducted research at the Wendelstein 7-AS reactor in Garching between 1988 and 2002, and currently at the Wendelstein 7-X reactor, whose construction took more than 19 years. Another TJII stellarator is in operation in Madrid, Spain. In the US, Princeton Laboratory (PPPL), which built the first fusion reactor of this type in 1951, stopped construction of NCSX in 2008 due to cost overruns and lack of funding.

In addition, significant advances have been made in inertial fusion research. Construction of the $7 billion National Ignition Facility (NIF) at Livermore National Laboratory (LLNL), funded by the National Nuclear Security Administration, was completed in March 2009. The French Laser Mégajoule (LMJ) began operations in October 2014. Fusion reactors use lasers delivering about 2 million joules of light energy within a few billionths of a second to a target a few millimeters in size to trigger a nuclear fusion reaction. The primary mission of NIF and LMJ is research in support of national military nuclear programs.

ITER

In 1985, the Soviet Union proposed building a next-generation tokamak jointly with Europe, Japan and the United States. The work was carried out under the auspices of the IAEA. Between 1988 and 1990, the first designs for the International Thermonuclear Experimental Reactor ITER, which also means "path" or "journey" in Latin, were created to prove that fusion could produce more energy than it absorbed. Canada and Kazakhstan also took part, mediated by Euratom and Russia respectively.

Six years later, the ITER board approved the first comprehensive reactor design based on established physics and technology, costing $6 billion. Then the United States withdrew from the consortium, which forced them to halve costs and change the project. The result is ITER-FEAT, which costs $3 billion but achieves self-sustaining response and positive power balance.

In 2003, the United States rejoined the consortium, and China announced its desire to participate. As a result, in mid-2005 the partners agreed to build ITER in Cadarache in the south of France. The EU and France contributed half of the €12.8 billion, while Japan, China, South Korea, the US and Russia contributed 10% each. Japan provided high-tech components, maintained a €1 billion IFMIF facility designed to test materials, and had the right to build the next test reactor. The total cost of ITER includes half the costs for 10 years of construction and half for 20 years of operation. India became the seventh member of ITER at the end of 2005.

Experiments are due to begin in 2018 using hydrogen to avoid activating the magnets. The use of D-T plasma is not expected before 2026.

ITER's goal is to generate 500 MW (at least for 400 s) using less than 50 MW of input power without generating electricity.

Demo's two-gigawatt demonstration power plant will produce large-scale on an ongoing basis. The Demo's conceptual design will be completed by 2017, with construction beginning in 2024. The launch will take place in 2033.

JET

In 1978 the EU (Euratom, Sweden and Switzerland) started the joint European project JET in the UK. JET is today the largest operating tokamak in the world. A similar JT-60 reactor operates at Japan's National Fusion Institute, but only JET can use deuterium-tritium fuel.

The reactor was launched in 1983, and became the first experiment, which resulted in controlled thermonuclear fusion with a power of up to 16 MW for one second and 5 MW of stable power on deuterium-tritium plasma in November 1991. Many experiments have been carried out to study various heating schemes and other techniques.

Further improvements to the JET involve increasing its power. The MAST compact reactor is being developed together with JET and is part of the ITER project.

K-STAR

K-STAR is a Korean superconducting tokamak from the National Fusion Research Institute (NFRI) in Daejeon, which produced its first plasma in mid-2008. ITER, which is the result of international cooperation. The 1.8 m radius Tokamak is the first reactor to use Nb3Sn superconducting magnets, the same ones planned for ITER. During the first phase, completed by 2012, K-STAR had to prove the viability of the underlying technologies and achieve plasma pulses lasting up to 20 seconds. At the second stage (2013-2017), it is being modernized to study long pulses up to 300 s in H mode and transition to a high-performance AT mode. The goal of the third phase (2018-2023) is to achieve high productivity and efficiency in the long-pulse mode. At stage 4 (2023-2025), DEMO technologies will be tested. The device is not capable of working with tritium and does not use D-T fuel.

K-DEMO

Developed in collaboration with the US Department of Energy's Princeton Plasma Physics Laboratory (PPPL) and South Korea's NFRI, K-DEMO is intended to be the next step in commercial reactor development beyond ITER, and will be the first power plant capable of generating power into the electrical grid, namely 1 million kW within a few weeks. It will have a diameter of 6.65 m and will have a reproduction zone module created as part of the DEMO project. The Korean Ministry of Education, Science and Technology plans to invest about a trillion Korean won ($941 million) in it.

EAST

China's Experimental Advanced Superconducting Tokamak (EAST) at the Institute of Physics of China in Hefei created hydrogen plasma at a temperature of 50 million °C and maintained it for 102 s.

TFTR

At the American laboratory PPPL, the experimental fusion reactor TFTR operated from 1982 to 1997. In December 1993, TFTR became the first magnetic tokamak to conduct extensive deuterium-tritium plasma experiments. The following year, the reactor produced a then-record 10.7 MW of controllable power, and in 1995 a temperature record of 510 million °C was reached. However, the facility did not achieve the break-even goal of fusion energy, but successfully met the hardware design goals, making a significant contribution to the development of ITER.

LHD

The LHD at Japan's National Fusion Institute in Toki, Gifu Prefecture, was the largest stellarator in the world. The fusion reactor was launched in 1998 and demonstrated plasma confinement properties comparable to other large facilities. An ion temperature of 13.5 keV (about 160 million °C) and an energy of 1.44 MJ were achieved.

Wendelstein 7-X

After a year of testing, which began in late 2015, helium temperatures briefly reached 1 million °C. In 2016, a hydrogen plasma fusion reactor using 2 MW of power reached a temperature of 80 million °C within a quarter of a second. W7-X is the largest stellarator in the world and is planned to operate continuously for 30 minutes. The cost of the reactor was 1 billion €.

NIF

The National Ignition Facility (NIF) at Livermore National Laboratory (LLNL) was completed in March 2009. Using its 192 laser beams, NIF is able to concentrate 60 times more energy than any previous laser system.

Cold fusion

In March 1989, two researchers, American Stanley Pons and British Martin Fleischman, announced that they had launched a simple tabletop cold fusion reactor operating at room temperature. The process involved the electrolysis of heavy water using palladium electrodes on which deuterium nuclei were concentrated to a high density. The researchers say it produced heat that could only be explained in terms of nuclear processes, and there were fusion byproducts including helium, tritium and neutrons. However, other experimenters were unable to repeat this experiment. Most of the scientific community does not believe that cold fusion reactors are real.

Low energy nuclear reactions

Initiated by claims of "cold fusion", research has continued in the low-energy field with some empirical support, but no generally accepted scientific explanation. Apparently, weak nuclear interactions are used to create and capture neutrons (and not a powerful force, as in their fusion). Experiments involve hydrogen or deuterium passing through a catalytic layer and reacting with a metal. Researchers report an observed release of energy. The main practical example is the interaction of hydrogen with nickel powder, releasing heat in an amount greater than any chemical reaction can produce.

Fusion power plant.


Currently, scientists are working on the creation of a thermonuclear power plant, the advantage of which is to provide humanity with electricity for an unlimited time. A thermonuclear power plant operates on the basis of thermonuclear fusion - the reaction of synthesis of heavy hydrogen isotopes with the formation of helium and the release of energy. The thermonuclear fusion reaction does not produce gaseous or liquid radioactive waste and does not produce plutonium, which is used to produce nuclear weapons. If we also take into account that the fuel for thermonuclear stations will be the heavy hydrogen isotope deuterium, which is obtained from simple water - half a liter of water contains fusion energy equivalent to that obtained by burning a barrel of gasoline - then the advantages of power plants based on thermonuclear reactions become obvious .

During a thermonuclear reaction, energy is released when light atoms combine and transform into heavier ones. To achieve this, it is necessary to heat the gas to a temperature of over 100 million degrees - much higher than the temperature at the center of the Sun.

Gas at this temperature turns into plasma. At the same time, atoms of hydrogen isotopes merge, turning into helium atoms and neutrons and releasing a large amount of energy. A commercial power plant operating on this principle would use the energy of neutrons moderated by a layer of dense material (lithium).

Compared to a nuclear power plant, a fusion reactor will leave behind much less radioactive waste.


International thermonuclear reactor ITER


Participants in the international consortium to create the world's first thermonuclear reactor, ITER, signed an agreement in Brussels that launches the practical implementation of the project.

Representatives of the European Union, the United States, Japan, China, South Korea and Russia intend to begin construction of the experimental reactor in 2007 and complete it within eight years. If everything goes according to plan, then by 2040 a demonstration power plant operating on the new principle could be built.

I would like to believe that the era of environmentally hazardous hydroelectric and nuclear power plants will soon end, and the time will come for a new power plant - a thermonuclear one, the project of which is already being implemented. But, despite the fact that the ITER (International Thermonuclear Reactor) project is almost ready; Despite the fact that already at the first operating experimental thermonuclear reactors a power exceeding 10 MW was obtained - the level of the first nuclear power plants, the first thermonuclear power plant will not start working earlier than in twenty years, because its cost is very high. The cost of the work is estimated at 10 billion euros - this is the most expensive international power plant project. Half of the costs of constructing the reactor are covered by the European Union. Other consortium participants will allocate 10% of the estimate.

Now the plan for the construction of the reactor, which will become the most expensive joint scientific project ever, must be ratified by parliamentarians of the consortium member countries.

The reactor will be built in the southern French province of Provence, in the vicinity of the city of Cadarache, where the French nuclear research center is located.

Controlled thermonuclear fusion is the blue dream of physicists and energy companies, which they have been cherishing for decades. Caging an artificial Sun is a great idea. "But the problem is that we don't know how to create such a box,"- said Nobel laureate Pierre Gilles de Gennes in 1991. However, by mid-2018 we already know how. And we are even building. The best minds in the world are working on the project of the international experimental thermonuclear reactor ITER - the most ambitious and expensive experiment of modern science.

Such a reactor costs five times more than the Large Hadron Collider. Hundreds of scientists around the world are working on the project. Its funding could easily exceed 19 billion euros, and the first plasma will be released into the reactor only in December 2025. And despite constant delays, technological difficulties, and insufficient funding from individual participating countries, the world's largest thermonuclear “perpetual motion machine” is being built. It has much more advantages than disadvantages. Which ones? We begin the story about the most ambitious scientific construction project of our time with theory.

What is a tokamak?

Under the influence of enormous temperatures and gravity, thermonuclear fusion occurs in the depths of our Sun and other stars. Hydrogen nuclei collide, form heavier helium atoms, and at the same time release neutrons and enormous amounts of energy.

Modern science has come to the conclusion that at the lowest initial temperature, the greatest amount of energy is produced by the reaction between the isotopes of hydrogen - deuterium and tritium. But three conditions are important for this: high temperature (about 150 million degrees Celsius), high plasma density and high plasma retention time.

The fact is that we will not be able to create such a colossal density as that of the Sun. All that remains is to heat the gas to the state of plasma using ultra-high temperatures. But no material can withstand contact with such a hot plasma. To do this, academician Andrei Sakharov (at the suggestion of Oleg Lavrentyev) in the 1950s proposed using toroidal (hollow donut-shaped) chambers with a magnetic field that would hold the plasma. Later the term was coined - tokamak.

Modern power plants, burning fossil fuels, convert mechanical power (turbine rotation, for example) into electricity. Tokamaks will use fusion energy, absorbed as heat by the walls of the device, to heat and produce steam, which will spin the turbines.

The first tokamak in the world. Soviet T-1. 1954

Small experimental tokamaks were built all over the world. And they successfully proved that a person can create high-temperature plasma and keep it in a stable state for some time. But industrial designs are still a long way off.

Installation of T-15. 1980s

Advantages and disadvantages of fusion reactors

Typical nuclear reactors run on tens of tons of radioactive fuel (which eventually turns into tens of tons of radioactive waste), while a fusion reactor requires only hundreds of grams of tritium and deuterium. The first can be produced in the reactor itself: the neutrons released during synthesis will affect the walls of the reactor with lithium impurities, from which tritium appears. Lithium reserves will last for thousands of years. There will also be no shortage of deuterium - it is produced in the world in tens of thousands of tons per year.

A fusion reactor produces no greenhouse gas emissions, which is typical of fossil fuels. And the by-product in the form of helium-4 is a harmless inert gas.

In addition, thermonuclear reactors are safe. In any catastrophe, the thermonuclear reaction will simply stop without any serious consequences for the environment or personnel, since there will be nothing to support the fusion reaction: it needs too hothouse conditions.

However, thermonuclear reactors also have disadvantages. First of all, this is the banal difficulty of starting a self-sustaining reaction. She needs a deep vacuum. Complex magnetic confinement systems require huge superconducting magnetic coils.

And don't forget about radiation. Despite some stereotypes about the harmlessness of thermonuclear reactors, the bombardment of their surroundings with neutrons produced during fusion cannot be canceled. This bombardment results in radiation. Therefore, maintenance of the reactor must be carried out remotely. Looking ahead, let’s say that after launch, robots will directly maintain the ITER tokamak.

In addition, radioactive tritium can be dangerous if it enters the body. True, it will be enough to take care of its proper storage and create safety barriers along all possible paths of its distribution in the event of an accident. In addition, the half-life of tritium is 12 years.

When the necessary minimum foundation of the theory has been laid, you can move on to the hero of the article.

The most ambitious project of our time

In 1985, the first personal meeting of the heads of the USSR and the USA in many years took place in Geneva. Before this, the Cold War had reached its peak: the superpowers boycotted the Olympics, built up their nuclear potential and were not going to enter into any negotiations. This summit of the two countries on neutral territory is notable for another important circumstance. During it, General Secretary of the CPSU Central Committee Mikhail Gorbachev proposed implementing a joint international project to develop thermonuclear energy for peaceful purposes.

They arrive in France by sea, and from the port to the construction site are delivered along a road specially converted by the French government. The country spent 110 million euros and 4 years of work on the 104 km of the ITER Path. The route has been widened and strengthened. The fact is that by 2021, 250 convoys with huge cargo will pass through it. The heaviest parts reach 900 tons, the highest - 10 meters, the longest - 33 meters.

ITER has not yet been put into operation. However, there is already a project for a DEMO nuclear fusion power plant, the purpose of which is to demonstrate the attractiveness of the commercial use of the technology. This complex will have to continuously (and not pulse, like ITER) generate 2 GW of energy.

The timing of the new global project depends on the success of ITER, but according to the 2012 plan, the first launch of DEMO will occur no earlier than 2044.

ITER - International Thermonuclear Reactor (ITER)

Human energy consumption is growing every year, which pushes the energy sector towards active development. Thus, with the emergence of nuclear power plants, the amount of energy generated around the world increased significantly, which made it possible to safely use energy for all the needs of mankind. For example, 72.3% of the electricity generated in France comes from nuclear power plants, in Ukraine - 52.3%, in Sweden - 40.0%, in the UK - 20.4%, in Russia - 17.1%. However, technology does not stand still, and in order to meet the further energy needs of future countries, scientists are working on a number of innovative projects, one of which is ITER (International Thermonuclear Experimental Reactor).

Although the profitability of this installation is still in question, according to the work of many researchers, the creation and subsequent development of controlled thermonuclear fusion technology can result in a powerful and safe source of energy. Let's look at some of the positive aspects of such an installation:

  • The main fuel of a thermonuclear reactor is hydrogen, which means practically inexhaustible reserves of nuclear fuel.
  • Hydrogen can be produced by processing seawater, which is available to most countries. It follows from this that a monopoly of fuel resources cannot arise.
  • The probability of an emergency explosion during the operation of a thermonuclear reactor is much less than during the operation of a nuclear reactor. According to researchers, even in the event of an accident, radiation emissions will not pose a danger to the population, which means there is no need for evacuation.
  • Unlike nuclear reactors, fusion reactors produce radioactive waste that has a short half-life, meaning it decays faster. Also, there are no combustion products in thermonuclear reactors.
  • A fusion reactor does not require materials that are also used for nuclear weapons. This eliminates the possibility of covering up the production of nuclear weapons by processing materials for the needs of a nuclear reactor.

Thermonuclear reactor - inside view

However, there are also a number of technical shortcomings that researchers constantly encounter.

For example, the current version of the fuel, presented in the form of a mixture of deuterium and tritium, requires the development of new technologies. For example, at the end of the first series of tests at the JET thermonuclear reactor, the largest to date, the reactor became so radioactive that the development of a special robotic maintenance system was further required to complete the experiment. Another disappointing factor in the operation of a thermonuclear reactor is its efficiency - 20%, while the efficiency of a nuclear power plant is 33-34%, and a thermal power plant is 40%.

Creation of the ITER project and launch of the reactor

The ITER project dates back to 1985, when the Soviet Union proposed the joint creation of a tokamak - a toroidal chamber with magnetic coils that can hold plasma using magnets, thereby creating the conditions required for a thermonuclear fusion reaction to occur. In 1992, a quadripartite agreement on the development of ITER was signed, the parties to which were the EU, the USA, Russia and Japan. In 1994, the Republic of Kazakhstan joined the project, in 2001 - Canada, in 2003 - South Korea and China, in 2005 - India. In 2005, the location for the construction of the reactor was determined - the Cadarache Nuclear Energy Research Center, France.

Construction of the reactor began with the preparation of a pit for the foundation. So the parameters of the pit were 130 x 90 x 17 meters. The entire tokamak complex will weigh 360,000 tons, of which 23,000 tons are the tokamak itself.

Various elements of the ITER complex will be developed and delivered to the construction site from all over the world. So in 2016, part of the conductors for poloidal coils was developed in Russia, which were then sent to China, which will produce the coils themselves.

Obviously, such a large-scale work is not at all easy to organize; a number of countries have repeatedly failed to keep up with the project schedule, as a result of which the launch of the reactor was constantly postponed. So, according to last year’s (2016) June message: “receipt of the first plasma is planned for December 2025.”

The operating mechanism of the ITER tokamak

The term "tokamak" comes from a Russian acronym that means "toroidal chamber with magnetic coils."

The heart of a tokamak is its torus-shaped vacuum chamber. Inside, under extreme temperature and pressure, the hydrogen fuel gas becomes plasma—a hot, electrically charged gas. As is known, stellar matter is represented by plasma, and thermonuclear reactions in the solar core occur precisely under conditions of elevated temperature and pressure. Similar conditions for the formation, retention, compression and heating of plasma are created by means of massive magnetic coils that are located around a vacuum vessel. The influence of magnets will limit the hot plasma from the walls of the vessel.

Before the process begins, air and impurities are removed from the vacuum chamber. Magnetic systems that will help control the plasma are then charged and gaseous fuel is introduced. When a powerful electric current is passed through the vessel, the gas is electrically split and becomes ionized (that is, electrons leave the atoms) and forms a plasma.

As the plasma particles are activated and collide, they also begin to heat up. Assisted heating techniques help bring the plasma to temperatures between 150 and 300 million °C. Particles "excited" to this degree can overcome their natural electromagnetic repulsion upon collision, such collisions releasing enormous amounts of energy.

The tokamak design consists of the following elements:

Vacuum vessel

(“donut”) is a toroidal chamber made of stainless steel. Its large diameter is 19 m, the small one is 6 m, and its height is 11 m. The volume of the chamber is 1,400 m 3, and its weight is more than 5,000 tons. The walls of the vacuum vessel are double; a coolant will circulate between the walls, which will be distilled water. water. To avoid water contamination, the inner wall of the chamber is protected from radioactive radiation using a blanket.

Blanket

(“blanket”) – consists of 440 fragments covering the inner surface of the chamber. The total banquet area is 700m2. Each fragment is a kind of cassette, the body of which is made of copper, and the front wall is removable and made of beryllium. The parameters of the cassettes are 1x1.5 m, and the mass is no more than 4.6 tons. Such beryllium cassettes will slow down high-energy neutrons formed during the reaction. During neutron moderation, heat will be released and removed by the cooling system. It should be noted that beryllium dust formed as a result of reactor operation can cause a serious disease called beryllium and also has a carcinogenic effect. For this reason, strict security measures are being developed at the complex.

Tokamak in section. Yellow - solenoid, orange - toroidal field (TF) and poloidal field (PF) magnets, blue - blanket, light blue - VV - vacuum vessel, purple - divertor

(“ashtray”) of the poloidal type is a device whose main task is to “cleanse” the plasma of dirt resulting from the heating and interaction of the blanket-covered chamber walls with it. When such contaminants enter the plasma, they begin to radiate intensely, resulting in additional radiation losses. It is located at the bottom of the tokomak and uses magnets to direct the upper layers of plasma (which are the most contaminated) into the cooling chamber. Here the plasma cools and turns into gas, after which it is pumped back out of the chamber. Beryllium dust, after entering the chamber, is practically unable to return back to the plasma. Thus, plasma contamination remains only on the surface and does not penetrate deeper.

Cryostat

- the largest component of the tokomak, which is a stainless steel shell with a volume of 16,000 m 2 (29.3 x 28.6 m) and a mass of 3,850 tons. Other elements of the system will be located inside the cryostat, and it itself serves as a barrier between the tokamak and the outside environment. On its inner walls there will be thermal screens cooled by circulating nitrogen at a temperature of 80 K (-193.15 °C).

Magnetic system

– a set of elements that serve to contain and control plasma inside a vacuum vessel. It is a set of 48 elements:

  • Toroidal field coils are located outside the vacuum chamber and inside the cryostat. They are presented in 18 pieces, each measuring 15 x 9 m and weighing approximately 300 tons. Together, these coils generate a magnetic field of 11.8 Tesla around the plasma torus and store energy of 41 GJ.
  • Poloidal field coils – located on top of the toroidal field coils and inside the cryostat. These coils are responsible for generating a magnetic field that separates the plasma mass from the chamber walls and compresses the plasma for adiabatic heating. The number of such coils is 6. Two of the coils have a diameter of 24 m and a mass of 400 tons. The remaining four are somewhat smaller.
  • The central solenoid is located in the inner part of the toroidal chamber, or rather in the “donut hole”. The principle of its operation is similar to a transformer, and the main task is to excite an inductive current in the plasma.
  • Correction coils are located inside the vacuum vessel, between the blanket and the chamber wall. Their task is to maintain the shape of the plasma, capable of locally “bulging” and even touching the walls of the vessel. Allows you to reduce the level of interaction of the chamber walls with the plasma, and therefore the level of its contamination, and also reduces the wear of the chamber itself.

Structure of the ITER complex

The tokamak design described above “in a nutshell” is a highly complex innovative mechanism assembled through the efforts of several countries. However, for its full operation, a whole complex of buildings located near the tokamak is required. Among them:

  • Control, Data Access and Communication System – CODAC. Located in a number of buildings of the ITER complex.
  • Fuel storage and fuel system - serves to deliver fuel to the tokamak.
  • Vacuum system - consists of more than four hundred vacuum pumps, the task of which is to pump out thermonuclear reaction products, as well as various contaminants from the vacuum chamber.
  • Cryogenic system – represented by a nitrogen and helium circuit. The helium circuit will normalize the temperature in the tokamak, the work (and therefore the temperature) of which does not occur continuously, but in pulses. The nitrogen circuit will cool the cryostat's heat shields and the helium circuit itself. There will also be a water cooling system, which is aimed at lowering the temperature of the blanket walls.
  • Power supply. The tokamak will require approximately 110 MW of energy to operate continuously. To achieve this, kilometer-long power lines will be installed and connected to the French industrial network. It is worth recalling that the ITER experimental facility does not provide for energy generation, but operates only in scientific interests.

ITER funding

The international thermonuclear reactor ITER is a fairly expensive undertaking, which was initially estimated at $12 billion, with Russia, the USA, Korea, China and India accounting for 1/11 of the amount, Japan for 2/11, and the EU for 4/11 . This amount later increased to $15 billion. It is noteworthy that financing occurs through the supply of equipment required for the complex, which is developed in each country. Thus, Russia supplies blankets, plasma heating devices and superconducting magnets.

Project perspective

At the moment, the construction of the ITER complex and the production of all the required components for the tokamak are underway. After the planned launch of the tokamak in 2025, a series of experiments will begin, based on the results of which aspects that require improvement will be noted. After the successful commissioning of ITER, it is planned to build a power plant based on thermonuclear fusion called DEMO (DEMOnstration Power Plant). DEMo's goal is to demonstrate the so-called "commercial appeal" of fusion power. If ITER is capable of generating only 500 MW of energy, then DEMO will be able to continuously generate energy of 2 GW.

However, it should be borne in mind that the ITER experimental facility will not produce energy, and its purpose is to obtain purely scientific benefits. And as you know, this or that physical experiment can not only meet expectations, but also bring new knowledge and experience to humanity.