Determine the geographic coordinates of the city using the map. Determining the coordinates of terrain points (objects)

And it allows you to find the exact location of objects on the earth's surface degree network- a system of parallels and meridians. It serves to determine the geographic coordinates of points on the earth's surface - their longitude and latitude.

Parallels(from Greek parallelos- walking next to) are lines conventionally drawn on the earth's surface parallel to the equator; equator - a line of section of the earth's surface by a depicted plane passing through the center of the Earth perpendicular to its axis of rotation. The longest parallel is the equator; the length of the parallels from the equator to the poles decreases.

Meridians(from lat. meridianus- midday) - lines conventionally drawn on the earth's surface from one pole to another along the shortest path. All meridians are equal in length. All points of a given meridian have the same longitude, and all points of a given parallel have the same latitude.

Rice. 1. Elements of the degree network

Geographic latitude and longitude

Geographic latitude of a point is the magnitude of the meridian arc in degrees from the equator to a given point. It varies from 0° (equator) to 90° (pole). There are northern and southern latitudes, abbreviated as N.W. and S. (Fig. 2).

Any point south of the equator will have a southern latitude, and any point north of the equator will have a northern latitude. Determining the geographic latitude of any point means determining the latitude of the parallel on which it is located. On maps, the latitude of parallels is indicated on the right and left frames.

Rice. 2. Geographical latitude

Geographic longitude of a point is the magnitude of the parallel arc in degrees from the prime meridian to a given point. The prime (prime, or Greenwich) meridian passes through the Greenwich Observatory, located near London. To the east of this meridian the longitude of all points is eastern, to the west - western (Fig. 3). Longitude varies from 0 to 180°.

Rice. 3. Geographical longitude

Determining the geographic longitude of any point means determining the longitude of the meridian on which it is located.

On maps, the longitude of the meridians is indicated on the upper and lower frames, and on the map of the hemispheres - on the equator.

The latitude and longitude of any point on Earth make up its geographical coordinates. Thus, the geographical coordinates of Moscow are 56° N. and 38°E

Geographic coordinates of cities in Russia and CIS countries

City Latitude Longitude
Abakan 53.720976 91.44242300000001
Arkhangelsk 64.539304 40.518735
Astana(Kazakhstan) 71.430564 51.128422
Astrakhan 46.347869 48.033574
Barnaul 53.356132 83.74961999999999
Belgorod 50.597467 36.588849
Biysk 52.541444 85.219686
Bishkek (Kyrgyzstan) 42.871027 74.59452
Blagoveshchensk 50.290658 127.527173
Bratsk 56.151382 101.634152
Bryansk 53.2434 34.364198
Velikiy Novgorod 58.521475 31.275475
Vladivostok 43.134019 131.928379
Vladikavkaz 43.024122 44.690476
Vladimir 56.129042 40.40703
Volgograd 48.707103 44.516939
Vologda 59.220492 39.891568
Voronezh 51.661535 39.200287
Grozny 43.317992 45.698197
Donetsk, Ukraine) 48.015877 37.80285
Ekaterinburg 56.838002 60.597295
Ivanovo 57.000348 40.973921
Izhevsk 56.852775 53.211463
Irkutsk 52.286387 104.28066
Kazan 55.795793 49.106585
Kaliningrad 55.916229 37.854467
Kaluga 54.507014 36.252277
Kamensk-Uralsky 56.414897 61.918905
Kemerovo 55.359594 86.08778100000001
Kyiv(Ukraine) 50.402395 30.532690
Kirov 54.079033 34.323163
Komsomolsk-on-Amur 50.54986 137.007867
Korolev 55.916229 37.854467
Kostroma 57.767683 40.926418
Krasnodar 45.023877 38.970157
Krasnoyarsk 56.008691 92.870529
Kursk 51.730361 36.192647
Lipetsk 52.61022 39.594719
Magnitogorsk 53.411677 58.984415
Makhachkala 42.984913 47.504646
Minsk, Belarus) 53.906077 27.554914
Moscow 55.755773 37.617761
Murmansk 68.96956299999999 33.07454
Naberezhnye Chelny 55.743553 52.39582
Nizhny Novgorod 56.323902 44.002267
Nizhny Tagil 57.910144 59.98132
Novokuznetsk 53.786502 87.155205
Novorossiysk 44.723489 37.76866
Novosibirsk 55.028739 82.90692799999999
Norilsk 69.349039 88.201014
Omsk 54.989342 73.368212
Eagle 52.970306 36.063514
Orenburg 51.76806 55.097449
Penza 53.194546 45.019529
Pervouralsk 56.908099 59.942935
Permian 58.004785 56.237654
Prokopyevsk 53.895355 86.744657
Pskov 57.819365 28.331786
Rostov-on-Don 47.227151 39.744972
Rybinsk 58.13853 38.573586
Ryazan 54.619886 39.744954
Samara 53.195533 50.101801
Saint Petersburg 59.938806 30.314278
Saratov 51.531528 46.03582
Sevastopol 44.616649 33.52536
Severodvinsk 64.55818600000001 39.82962
Severodvinsk 64.558186 39.82962
Simferopol 44.952116 34.102411
Sochi 43.581509 39.722882
Stavropol 45.044502 41.969065
Sukhum 43.015679 41.025071
Tambov 52.721246 41.452238
Tashkent (Uzbekistan) 41.314321 69.267295
Tver 56.859611 35.911896
Tolyatti 53.511311 49.418084
Tomsk 56.495116 84.972128
Tula 54.193033 37.617752
Tyumen 57.153033 65.534328
Ulan-Ude 51.833507 107.584125
Ulyanovsk 54.317002 48.402243
Ufa 54.734768 55.957838
Khabarovsk 48.472584 135.057732
Kharkov, Ukraine) 49.993499 36.230376
Cheboksary 56.1439 47.248887
Chelyabinsk 55.159774 61.402455
Mines 47.708485 40.215958
Engels 51.498891 46.125121
Yuzhno-Sakhalinsk 46.959118 142.738068
Yakutsk 62.027833 129.704151
Yaroslavl 57.626569 39.893822

Video lesson “Geographical latitude and geographic longitude. Geographic Coordinates" will help you get an idea of ​​geographic latitude and geographic longitude. The teacher will tell you how to correctly determine geographic coordinates.

Geographic latitude- arc length in degrees from the equator to a given point.

To determine the latitude of an object, you need to find the parallel on which this object is located.

For example, the latitude of Moscow is 55 degrees and 45 minutes north latitude, it is written like this: Moscow 55°45" N; latitude of New York - 40°43" N; Sydney - 33°52" S

Geographic longitude is determined by meridians. Longitude can be western (from the 0 meridian to the west to the 180 meridian) and eastern (from the 0 meridian to the east to the 180 meridian). Longitude values ​​are measured in degrees and minutes. Geographic longitude can have values ​​from 0 to 180 degrees.

Geographic longitude- length of the equatorial arc in degrees from the prime meridian (0 degrees) to the meridian of a given point.

The prime meridian is considered to be the Greenwich meridian (0 degrees).

Rice. 2. Determination of longitudes ()

To determine longitude, you need to find the meridian on which a given object is located.

For example, the longitude of Moscow is 37 degrees and 37 minutes east longitude, it is written like this: 37°37" east; the longitude of Mexico City is 99°08" west.

Rice. 3. Geographical latitude and geographic longitude

To accurately determine the location of an object on the surface of the Earth, you need to know its geographic latitude and geographic longitude.

Geographical coordinates- quantities that determine the position of a point on the earth’s surface using latitudes and longitudes.

For example, Moscow has the following geographic coordinates: 55°45"N and 37°37"E. The city of Beijing has the following coordinates: 39°56′ N. 116°24′ E First the latitude value is recorded.

Sometimes you need to find an object at already given coordinates; to do this, you must first guess in which hemispheres the object is located.

Homework

Paragraphs 12, 13.

1. What are geographic latitude and longitude?

Bibliography

Main

1. Basic course in geography: Textbook. for 6th grade. general education institutions / T.P. Gerasimova, N.P. Neklyukova. - 10th ed., stereotype. - M.: Bustard, 2010. - 176 p.

2. Geography. 6th grade: atlas. - 3rd ed., stereotype. - M.: Bustard, DIK, 2011. - 32 p.

3. Geography. 6th grade: atlas. - 4th ed., stereotype. - M.: Bustard, DIK, 2013. - 32 p.

4. Geography. 6th grade: cont. cards. - M.: DIK, Bustard, 2012. - 16 p.

Encyclopedias, dictionaries, reference books and statistical collections

1. Geography. Modern illustrated encyclopedia / A.P. Gorkin. - M.: Rosman-Press, 2006. - 624 p.

Literature for preparing for the State Exam and the Unified State Exam

1. Geography: initial course. Tests. Textbook manual for 6th grade students. - M.: Humanite. ed. VLADOS center, 2011. - 144 p.

2. Tests. Geography. 6-10 grades: Educational and methodological manual / A.A. Letyagin. - M.: LLC "Agency "KRPA "Olympus": "Astrel", "AST", 2001. - 284 p.

Materials on the Internet

1. Federal Institute of Pedagogical Measurements ().

2. Russian Geographical Society ().

We suggest using a similar service from Google - + location of interesting places in the world on the Google Maps diagram

Calculation of the distance between two points by coordinates:

Online calculator - calculating the distance between two cities, points. Their exact location in the world can be found at the link above

Countries in alphabetical order:

map Abkhazia Austria Australia Azerbaijan Armenia Belarus Belgium Bulgaria Brazil Great Britain Hungary Germany Greece Georgia Egypt Israel Spain Italy India Kazakhstan Canada Cyprus China Crimea South Korea Kyrgyzstan Latvia Lithuania Liechtenstein Luxembourg Macedonia Moldova Monaco Netherlands Poland Portugal Russia Syria Slovenia United States of America Tajikistan Thailand Turkmenistan Turkey Tunisia Ukraine Uzbekistan Finland France Montenegro Czech Republic Switzerland Estonia Japan Russia's neighbors? regions of Russia Republics of Russia Krai of Russia Federal districts of Russia Autonomous districts of Russia Federal cities of Russia USSR countries CIS countries European Union countries Schengen countries NATO countries
satellite Abkhazia Austria Australia Azerbaijan Armenia Belarus Belgium Bulgaria Brazil Great Britain Hungary Germany Greece Georgia Egypt Israel Spain Italy Kazakhstan Canada Cyprus China South Korea Latvia Liechtenstein Luxembourg Macedonia Moldova Monaco Netherlands Poland Portugal Russia Russia +stadiums Syria Slovenia United States of America Tajikistan Thailand Turkmenistan Turkey Tunisia Ukraine Finland France +stadiums Montenegro Czech Republic Switzerland Estonia Japan
panorama Australia Belgium Bulgaria Brazil +stadiums Belarus Great Britain Hungary Germany Greece Israel Spain Italy Canada Crimea Kyrgyzstan South Korea Latvia Lithuania Luxembourg Macedonia Monaco Netherlands Poland Portugal Russia Russia +stadiums United States of America Thailand Turkey Ukraine Finland France Czech Republic Switzerland Estonia Japan

Determining latitude and longitude on a map?

On the page you can quickly determine coordinates on the map - find out the latitude and longitude of the city. Online search for streets and houses by address, using GPS, to determine coordinates on a Yandex map, how to find a location - described in more detail below.

Determining the geographic coordinates of any city in the world (find out latitude and longitude) using an online map from the Yandex service is actually a very simple process. You have two convenient options, let’s take a closer look at each of them.

Fill out the form: Rostov-on-Don Pushkinskaya 10 (with the help and if you have the house number, the search will be more accurate). In the upper right corner there is a form for determining coordinates, which contains 3 precise parameters - the coordinates of the mark, the center of the map and the zoom scale.

After activating the “Find” search, each field will contain the necessary data - longitude and latitude. Look at the “Center of the map” field.

Second option: In this case it’s even simpler. Interactive world map with coordinates contains a marker. By default, it is located in the center of Moscow. You need to drag the label and place it on the desired city, for example, determine the coordinates on. The latitude and longitude will automatically match the search object. Look at the “Mark Coordinates” field.

When searching for the desired city or country, use the navigation and zoom tools. By zooming in and out +/-, and also moving the interactive map itself, it is easy to find any country or search for a region on the world map. This way you can find the geographic center of Ukraine or Russia. In the country of Ukraine, this is the village of Dobrovelichkovka, which is located on the Dobraya River, Kirovograd region.

Copy the geographic coordinates of the center of Ukraine urban settlement. Dobrovelychkovka — Ctrl+C

48.3848,31.1769 48.3848 north latitude and 31.1769 east longitude

Longitude +37° 17′ 6.97″ E (37.1769)

Latitude +48° 38′ 4.89″ N (48.3848)

At the entrance to the urban settlement there is a sign announcing this interesting fact. It will most likely be uninteresting to examine its territory. There are much more interesting places in the world.

How to find a place on the map using coordinates?

Let's consider the reverse process, for example. Why do you need to determine latitude and longitude on a map? Let's say you need to determine the exact location of the car on the diagram using GPS navigator coordinates. Or a close friend will call on a weekend and tell you the coordinates of his location, inviting you to join him hunting or fishing.

Knowing the exact geographic coordinates, you will need a map with latitude and longitude. It is enough to enter your data into the search form from the Yandex service to determine the location by coordinates successfully. Example, enter the latitude and longitude of Moskovskaya street 66 in the city of Saratov - 51.5339,46.0368. The service will quickly determine and display the location of a given house in the city as a mark.

In addition to the above, you can easily determine the coordinates on the map of any metro station in the city. After the name of the city we write the name of the station. And we observe where the mark is located and its coordinates with latitude and longitude. To determine the length of the route, you need to use the “Ruler” tool (measuring distances on the map). We put a mark at the beginning of the route and then at the end point. The service will automatically determine the distance in meters and show the track itself on the map.

It is possible to more accurately examine a place on the map thanks to the “Satellite” diagram (upper corner on the right). Look what it looks like. You can do all of the above operations with it.

World map with longitude and latitude

Imagine you are in an unfamiliar area, and there are no objects or landmarks nearby. And there is no one to ask! How could you explain your exact location so that you can be found quickly?

Thanks to concepts such as latitude and longitude, you can be detected and found. Latitude shows the location of an object in relation to the South and North Poles. The equator is considered to be zero latitude. The South Pole is located at 90 degrees. south latitude, and North at 90 degrees north latitude.

This data turns out to be insufficient. It is also necessary to know the situation in relation to the East and West. This is where the longitude coordinate comes in handy.


Thank you to the Yandex service for the data provided. Cards

Cartographic data of cities in Russia, Ukraine and the world

800+ notes
for only 300 rubles!

* Old price - 500 rub.
The promotion is valid until 08/31/2018

Lesson questions:

1. Coordinate systems used in topography: geographic, flat rectangular, polar and bipolar coordinates, their essence and use.

Coordinates are called angular and linear quantities (numbers) that determine the position of a point on any surface or in space.
In topography, coordinate systems are used that make it possible to most simply and unambiguously determine the position of points on the earth's surface, both from the results of direct measurements on the ground and using maps. Such systems include geographic, flat rectangular, polar and bipolar coordinates.
Geographical coordinates(Fig. 1) – angular values: latitude (j) and longitude (L), which determine the position of an object on the earth’s surface relative to the origin of coordinates – the point of intersection of the prime (Greenwich) meridian with the equator. On a map, the geographic grid is indicated by a scale on all sides of the map frame. The western and eastern sides of the frame are meridians, and the northern and southern sides are parallels. In the corners of the map sheet, the geographical coordinates of the intersection points of the sides of the frame are written.

Rice. 1. System of geographical coordinates on the earth's surface

In the geographic coordinate system, the position of any point on the earth's surface relative to the origin of coordinates is determined in angular measure. In our country and in most other countries, the point of intersection of the prime (Greenwich) meridian with the equator is taken as the beginning. Being thus uniform for our entire planet, the system of geographic coordinates is convenient for solving problems of determining the relative position of objects located at significant distances from each other. Therefore, in military affairs, this system is used mainly for conducting calculations related to the use of long-range combat weapons, for example, ballistic missiles, aviation, etc.
Plane rectangular coordinates(Fig. 2) - linear quantities that determine the position of an object on a plane relative to the accepted origin of coordinates - the intersection of two mutually perpendicular lines (coordinate axes X and Y).
In topography, each 6-degree zone has its own system of rectangular coordinates. The X axis is the axial meridian of the zone, the Y axis is the equator, and the point of intersection of the axial meridian with the equator is the origin of coordinates.

The plane rectangular coordinate system is zonal; it is established for each six-degree zone into which the Earth’s surface is divided when depicting it on maps in the Gaussian projection, and is intended to indicate the position of images of points of the earth’s surface on a plane (map) in this projection.
The origin of coordinates in a zone is the point of intersection of the axial meridian with the equator, relative to which the position of all other points in the zone is determined in a linear measure. The origin of the zone and its coordinate axes occupy a strictly defined position on the earth's surface. Therefore, the system of flat rectangular coordinates of each zone is connected both with the coordinate systems of all other zones, and with the system of geographical coordinates.
The use of linear quantities to determine the position of points makes the system of flat rectangular coordinates very convenient for carrying out calculations both when working on the ground and on a map. Therefore, this system is most widely used among the troops. Rectangular coordinates indicate the position of terrain points, their battle formations and targets, and with their help determine the relative position of objects within one coordinate zone or in adjacent areas of two zones.
Polar and bipolar coordinate systems are local systems. In military practice, they are used to determine the position of some points relative to others in relatively small areas of the terrain, for example, when designating targets, marking landmarks and targets, drawing up terrain diagrams, etc. These systems can be associated with systems of rectangular and geographic coordinates.

2. Determining geographic coordinates and plotting objects on a map using known coordinates.

The geographic coordinates of a point located on the map are determined from the nearest parallel and meridian, the latitude and longitude of which are known.
The topographic map frame is divided into minutes, which are separated by dots into divisions of 10 seconds each. Latitudes are indicated on the sides of the frame, and longitudes are indicated on the northern and southern sides.

Using the minute frame of the map you can:
1 . Determine the geographic coordinates of any point on the map.
For example, the coordinates of point A (Fig. 3). To do this, you need to use a measuring compass to measure the shortest distance from point A to the southern frame of the map, then attach the meter to the western frame and determine the number of minutes and seconds in the measured segment, add the resulting (measured) value of minutes and seconds (0"27") with the latitude of the southwest corner of the frame - 54°30".
Latitude points on the map will be equal to: 54°30"+0"27" = 54°30"27".
Longitude is defined similarly.
Using a measuring compass, measure the shortest distance from point A to the western frame of the map, apply the measuring compass to the southern frame, determine the number of minutes and seconds in the measured segment (2"35"), add the resulting (measured) value to the longitude of the southwestern corner frames - 45°00".
Longitude points on the map will be equal to: 45°00"+2"35" = 45°02"35"
2. Plot any point on the map according to the given geographical coordinates.
For example, point B latitude: 54°31 "08", longitude 45°01 "41".
To plot a point in longitude on a map, it is necessary to draw the true meridian through this point, for which you connect the same number of minutes along the northern and southern frames; To plot a point in latitude on a map, it is necessary to draw a parallel through this point, for which you connect the same number of minutes along the western and eastern frames. The intersection of two lines will determine the location of point B.

3. Rectangular coordinate grid on topographic maps and its digitization. Additional grid at the junction of coordinate zones.

The coordinate grid on the map is a grid of squares formed by lines parallel to the coordinate axes of the zone. Grid lines are drawn through an integer number of kilometers. Therefore, the coordinate grid is also called the kilometer grid, and its lines are kilometer.
On a 1:25000 map, the lines forming the coordinate grid are drawn through 4 cm, that is, through 1 km on the ground, and on maps 1:50000-1:200000 through 2 cm (1.2 and 4 km on the ground, respectively). On a 1:500000 map, only the outputs of the coordinate grid lines are plotted on the inner frame of each sheet every 2 cm (10 km on the ground). If necessary, coordinate lines can be drawn on the map along these outputs.
On topographic maps, the values ​​of the abscissa and ordinate of coordinate lines (Fig. 2) are signed at the exits of the lines outside the inner frame of the sheet and in nine places on each sheet of the map. The full values ​​of the abscissa and ordinate in kilometers are written near the coordinate lines closest to the corners of the map frame and near the intersection of the coordinate lines closest to the northwestern corner. The remaining coordinate lines are abbreviated with two numbers (tens and units of kilometers). The labels near the horizontal grid lines correspond to the distances from the ordinate axis in kilometers.
Labels near the vertical lines indicate the zone number (one or two first digits) and the distance in kilometers (always three digits) from the origin, conventionally moved west of the zone’s axial meridian by 500 km. For example, the signature 6740 means: 6 - zone number, 740 - distance from the conventional origin in kilometers.
On the outer frame there are outputs of coordinate lines ( additional mesh) coordinate system of the adjacent zone.

4. Determination of rectangular coordinates of points. Drawing points on a map according to their coordinates.

Using a coordinate grid using a compass (ruler), you can:
1. Determine the rectangular coordinates of a point on the map.
For example, points B (Fig. 2).
To do this you need:

  • write X - digitization of the bottom kilometer line of the square in which point B is located, i.e. 6657 km;
  • measure the perpendicular distance from the bottom kilometer line of the square to point B and, using the linear scale of the map, determine the size of this segment in meters;
  • add the measured value of 575 m with the digitization value of the lower kilometer line of the square: X=6657000+575=6657575 m.

The Y ordinate is determined in the same way:

  • write down the Y value - digitization of the left vertical line of the square, i.e. 7363;
  • measure the perpendicular distance from this line to point B, i.e. 335 m;
  • add the measured distance to the Y digitization value of the left vertical line of the square: Y=7363000+335=7363335 m.

2. Place the target on the map at the given coordinates.
For example, point G at coordinates: X=6658725 Y=7362360.
To do this you need:

  • find the square in which point G is located according to the value of whole kilometers, i.e. 5862;
  • set aside from the lower left corner of the square a segment on the map scale equal to the difference between the abscissa of the target and the bottom side of the square - 725 m;
  • - from the obtained point, along the perpendicular to the right, plot a segment equal to the difference between the ordinates of the target and the left side of the square, i.e. 360 m.

The accuracy of determining geographic coordinates using 1:25000-1:200000 maps is about 2 and 10"" respectively.
The accuracy of determining the rectangular coordinates of points from a map is limited not only by its scale, but also by the magnitude of errors allowed when shooting or drawing up a map and plotting various points and terrain objects on it
Most accurately (with an error not exceeding 0.2 mm) geodetic points and are plotted on the map. objects that stand out most sharply in the area and are visible from a distance, having the significance of landmarks (individual bell towers, factory chimneys, tower-type buildings). Therefore, the coordinates of such points can be determined with approximately the same accuracy with which they are plotted on the map, i.e. for a map of scale 1:25000 - with an accuracy of 5-7 m, for a map of scale 1:50000 - with an accuracy of 10-15 m, for a map of scale 1:100000 - with an accuracy of 20-30 m.
The remaining landmarks and contour points are plotted on the map, and, therefore, determined from it with an error of up to 0.5 mm, and points related to contours that are not clearly defined on the ground (for example, the contour of a swamp), with an error of up to 1 mm.

6. Determining the position of objects (points) in polar and bipolar coordinate systems, plotting objects on a map by direction and distance, by two angles or by two distances.

System flat polar coordinates(Fig. 3, a) consists of point O - the origin, or poles, and the initial direction of the OR, called polar axis.

System flat bipolar (two-pole) coordinates(Fig. 3, b) consists of two poles A and B and a common axis AB, called the basis or base of the notch. The position of any point M relative to two data on the map (terrain) of points A and B is determined by the coordinates that are measured on the map or on the terrain.
These coordinates can be either two position angles that determine the directions from points A and B to the desired point M, or the distances D1=AM and D2=BM to it. The position angles in this case, as shown in Fig. 1, b, are measured at points A and B or from the direction of the basis (i.e. angle A = BAM and angle B = ABM) or from any other directions passing through points A and B and taken as the initial ones. For example, in the second case, the location of point M is determined by the position angles θ1 and θ2, measured from the direction of the magnetic meridians.

Drawing a detected object on a map
This is one of the most important points in detecting an object. The accuracy of determining its coordinates depends on how accurately the object (target) is plotted on the map.
Having discovered an object (target), you must first accurately determine by various signs what has been detected. Then, without stopping observing the object and without detecting yourself, put the object on the map. There are several ways to plot an object on a map.
Visually: A feature is plotted on the map if it is near a known landmark.
By direction and distance: to do this, you need to orient the map, find the point of your standing on it, indicate on the map the direction to the detected object and draw a line to the object from the point of your standing, then determine the distance to the object by measuring this distance on the map and comparing it with the scale of the map.


Rice. 4. Drawing the target on the map using a straight line
from two points.

If it is graphically impossible to solve the problem in this way (the enemy is in the way, poor visibility, etc.), then you need to accurately measure the azimuth to the object, then translate it into a directional angle and draw on the map from the standing point the direction at which to plot the distance to the object.
To obtain a directional angle, you need to add the magnetic declination of a given map to the magnetic azimuth (direction correction).
Straight serif. In this way, an object is placed on a map of 2-3 points from which it can be observed. To do this, from each selected point, the direction to the object is drawn on an oriented map, then the intersection of straight lines determines the location of the object.

7. Methods of target designation on the map: in graphic coordinates, flat rectangular coordinates (full and abbreviated), by kilometer grid squares (up to a whole square, up to 1/4, up to 1/9 square), from a landmark, from a conventional line, in azimuth and target range, in a bipolar coordinate system.

The ability to quickly and correctly indicate targets, landmarks and other objects on the ground is important for controlling units and fire in battle or for organizing battle.
Targeting in geographical coordinates used very rarely and only in cases where targets are located at a considerable distance from a given point on the map, expressed in tens or hundreds of kilometers. In this case, geographic coordinates are determined from the map, as described in question No. 2 of this lesson.
The location of the target (object) is indicated by latitude and longitude, for example, height 245.2 (40° 8" 40" N, 65° 31" 00" E). On the eastern (western), northern (southern) sides of the topographic frame, marks of the target position in latitude and longitude are applied with a compass. From these marks, perpendiculars are lowered into the depth of the topographic map sheet until they intersect (commander’s rulers and standard sheets of paper are applied). The point of intersection of the perpendiculars is the position of the target on the map.
For approximate target designation by rectangular coordinates It is enough to indicate on the map the grid square in which the object is located. The square is always indicated by the numbers of the kilometer lines, the intersection of which forms the southwest (lower left) corner. When indicating the square of the map, the following rule is followed: first they call two numbers signed at the horizontal line (on the western side), that is, the “X” coordinate, and then two numbers at the vertical line (the southern side of the sheet), that is, the “Y” coordinate. In this case, “X” and “Y” are not said. For example, enemy tanks were detected. When transmitting a report by radiotelephone, the square number is pronounced: "eighty eight zero two."
If the position of a point (object) needs to be determined more accurately, then full or abbreviated coordinates are used.
Work with full coordinates. For example, you need to determine the coordinates of a road sign in square 8803 on a map at a scale of 1:50000. First, determine the distance from the bottom horizontal side of the square to the road sign (for example, 600 m on the ground). In the same way, measure the distance from the left vertical side of the square (for example, 500 m). Now, by digitizing kilometer lines, we determine the full coordinates of the object. The horizontal line has the signature 5988 (X), adding the distance from this line to the road sign, we get: X = 5988600. We define the vertical line in the same way and get 2403500. The full coordinates of the road sign are as follows: X=5988600 m, Y=2403500 m.
Abbreviated coordinates respectively will be equal: X=88600 m, Y=03500 m.
If it is necessary to clarify the position of a target in a square, then target designation is used in an alphabetic or digital way inside the square of a kilometer grid.
During target designation literal way inside the square of the kilometer grid, the square is conditionally divided into 4 parts, each part is assigned a capital letter of the Russian alphabet.
Second way - digital way target designation inside the square kilometer grid (target designation by snail ). This method got its name from the arrangement of conventional digital squares inside the square of the kilometer grid. They are arranged as if in a spiral, with the square divided into 9 parts.
When designating targets in these cases, they name the square in which the target is located, and add a letter or number that specifies the position of the target inside the square. For example, height 51.8 (5863-A) or high-voltage support (5762-2) (see Fig. 2).
Target designation from a landmark is the simplest and most common method of target designation. With this method of target designation, the landmark closest to the target is first named, then the angle between the direction to the landmark and the direction to the target in protractor divisions (measured with binoculars) and the distance to the target in meters. For example: “Landmark two, forty to the right, further two hundred, near a separate bush there is a machine gun.”
Target designation from the conditional line usually used in motion on combat vehicles. With this method, two points are selected on the map in the direction of action and connected by a straight line, relative to which target designation will be carried out. This line is denoted by letters, divided into centimeter divisions and numbered starting from zero. This construction is done on the maps of both transmitting and receiving target designation.
Target designation from a conventional line is usually used in movement on combat vehicles. With this method, two points are selected on the map in the direction of action and connected by a straight line (Fig. 5), relative to which target designation will be carried out. This line is denoted by letters, divided into centimeter divisions and numbered starting from zero.


Rice. 5. Target designation from the conditional line

This construction is done on the maps of both transmitting and receiving target designation.
The position of the target relative to the conditional line is determined by two coordinates: a segment from the starting point to the base of the perpendicular lowered from the target location point to the conditional line, and a perpendicular segment from the conditional line to the target.
When designating targets, the conventional name of the line is called, then the number of centimeters and millimeters contained in the first segment, and, finally, the direction (left or right) and the length of the second segment. For example: “Straight AC, five, seven; to the right zero, six - NP.”

Target designation from a conventional line can be given by indicating the direction to the target at an angle from the conventional line and the distance to the target, for example: “Straight AC, right 3-40, one thousand two hundred – machine gun.”
Target designation in azimuth and range to the target. The azimuth of the direction to the target is determined using a compass in degrees, and the distance to it is determined using an observation device or by eye in meters. For example: “Azimuth thirty-five, range six hundred—a tank in a trench.” This method is most often used in areas where there are few landmarks.

8. Problem solving.

Determining the coordinates of terrain points (objects) and target designation on the map is practiced practically on training maps using previously prepared points (marked objects).
Each student determines geographic and rectangular coordinates (maps objects according to known coordinates).
Methods of target designation on the map are worked out: in flat rectangular coordinates (full and abbreviated), by squares of a kilometer grid (up to a whole square, up to 1/4, up to 1/9 of a square), from a landmark, along the azimuth and range of the target.

Notes

Military topography

Military ecology

Military medical training

Engineering training

Fire training

Each point on the planet's surface has a specific position, which corresponds to its own latitude and longitude coordinates. It is located at the intersection of the spherical arcs of the meridian, which corresponds to longitude, with the parallel, which corresponds to latitude. It is denoted by a pair of angular quantities expressed in degrees, minutes, seconds, which has the definition of a coordinate system.

Latitude and longitude are the geographic aspect of a plane or sphere translated into topographic images. To more accurately locate a point, its altitude above sea level is also taken into account, which makes it possible to find it in three-dimensional space.

The need to find a point using latitude and longitude coordinates arises due to the duty and occupation of rescuers, geologists, military personnel, sailors, archaeologists, pilots and drivers, but it may also be necessary for tourists, travelers, seekers, and researchers.

What is latitude and how to find it

Latitude is the distance from an object to the equator line. Measured in angular units (such as degrees, degrees, minutes, seconds, etc.). Latitude on a map or globe is indicated by horizontal parallels - lines that describe a circle parallel to the equator and converge in the form of a series of tapering rings towards the poles.

Therefore, they distinguish between northern latitude - this is the entire part of the earth's surface north of the equator, and also southern latitude - this is the entire part of the planet's surface south of the equator. The equator is the zero, longest parallel.

  • Parallels from the equator line to the north pole are considered to be a positive value from 0° to 90°, where 0° is the equator itself, and 90° is the top of the north pole. They are counted as northern latitude (N).
  • Parallels extending from the equator towards the south pole are indicated by a negative value from 0° to -90°, where -90° is the location of the south pole. They are counted as southern latitude (S).
  • On the globe, parallels are depicted as circles encircling the ball, which become smaller as they approach the poles.
  • All points on the same parallel will be designated by the same latitude, but different longitudes.
    On maps, based on their scale, parallels have the form of horizontal, curved stripes - the smaller the scale, the straighter the parallel strip is depicted, and the larger it is, the more curved it is.

Remember! The closer to the equator a given area is located, the smaller its latitude will be.

What is longitude and how to find it

Longitude is the amount by which the position of a given area is removed relative to Greenwich, that is, the prime meridian.

Longitude is similarly characterized by measurement in angular units, only from 0° to 180° and with a prefix - eastern or western.

  • The Greenwich Prime Meridian vertically encircles the globe of the Earth, passing through both poles, dividing it into the western and eastern hemispheres.
  • Each of the parts located west of Greenwich (in the Western Hemisphere) will be designated west longitude (w.l.).
  • Each of the parts distant from Greenwich to the east and located in the eastern hemisphere will bear the designation east longitude (E.L.).
  • Finding each point along one meridian has the same longitude, but different latitude.
  • Meridians are drawn on maps in the form of vertical stripes curved in the shape of an arc. The smaller the map scale, the straighter the meridian strip will be.

How to find the coordinates of a given point on the map

Often you have to find out the coordinates of a point that is located on the map in a square between the two nearest parallels and meridians. Approximate data can be obtained by eye by sequentially estimating the step in degrees between the mapped lines in the area of ​​interest, and then comparing the distance from them to the desired area. For accurate calculations you will need a pencil with a ruler, or a compass.

  • For the initial data we take the designations of the parallels closest to our point with the meridian.
  • Next, we look at the step between their stripes in degrees.
  • Then we look at the size of their step on the map in cm.
  • We measure with a ruler in cm the distance from a given point to the nearest parallel, as well as the distance between this line and the neighboring one, convert it to degrees and take into account the difference - subtracting from the larger one, or adding to the smaller one.
  • This gives us the latitude.

Example! The distance between the parallels 40° and 50°, among which our area is located, is 2 cm or 20 mm, and the step between them is 10°. Accordingly, 1° is equal to 2 mm. Our point is 0.5 cm or 5 mm away from the fortieth parallel. We find the degrees to our area 5/2 = 2.5°, which must be added to the value of the nearest parallel: 40° + 2.5° = 42.5° - this is our northern latitude of the given point. In the southern hemisphere, the calculations are similar, but the result has a negative sign.

Similarly, we find longitude - if the nearest meridian is further from Greenwich, and the given point is closer, then we subtract the difference, if the meridian is closer to Greenwich, and the point is further, then we add it.

If you only have a compass at hand, then each of the segments is fixed with its tips, and the spread is transferred to the scale.

In a similar way, calculations of coordinates on the surface of the globe are carried out.