Arithmetic square root of 0. Lesson summary "Square roots"

It's time to sort it out root extraction methods. They are based on the properties of roots, in particular, on the equality, which is true for any non-negative number b.

Below we will look at the main methods of extracting roots one by one.

Let's start with the simplest case - extracting roots from natural numbers using a table of squares, a table of cubes, etc.

If tables of squares, cubes, etc. If you don’t have it at hand, it’s logical to use the method of extracting the root, which involves decomposing the radical number into prime factors.

It is worth special mentioning what is possible for roots with odd exponents.

Finally, let's consider a method that allows us to sequentially find the digits of the root value.

Let's get started.

Using a table of squares, a table of cubes, etc.

In the simplest cases, tables of squares, cubes, etc. allow you to extract roots. What are these tables?

The table of squares of integers from 0 to 99 inclusive (shown below) consists of two zones. The first zone of the table is located on a gray background; by selecting a specific row and a specific column, it allows you to compose a number from 0 to 99. For example, let’s select a row of 8 tens and a column of 3 units, with this we fixed the number 83. The second zone occupies the rest of the table. Each cell is located at the intersection of a certain row and a certain column, and contains the square of the corresponding number from 0 to 99. At the intersection of our chosen row of 8 tens and column 3 of ones there is a cell with the number 6,889, which is the square of the number 83.


Tables of cubes, tables of fourth powers of numbers from 0 to 99, and so on are similar to the table of squares, only they contain cubes, fourth powers, etc. in the second zone. corresponding numbers.

Tables of squares, cubes, fourth powers, etc. allow you to extract square roots, cube roots, fourth roots, etc. accordingly from the numbers in these tables. Let us explain the principle of their use when extracting roots.

Let's say we need to extract the nth root of the number a, while the number a is contained in the table of nth powers. Using this table we find the number b such that a=b n. Then , therefore, the number b will be the desired root of the nth degree.

As an example, let's show how to use a cube table to extract the cube root of 19,683. We find the number 19,683 in the table of cubes, from it we find that this number is the cube of the number 27, therefore, .


It is clear that tables of nth powers are very convenient for extracting roots. However, they are often not at hand, and compiling them requires some time. Moreover, it is often necessary to extract roots from numbers that are not contained in the corresponding tables. In these cases, you have to resort to other methods of root extraction.

Factoring a radical number into prime factors

A fairly convenient way to extract the root of a natural number (if, of course, the root is extracted) is to decompose the radical number into prime factors. His the point is this: after that it is quite easy to represent it as a power with the desired exponent, which allows you to obtain the value of the root. Let's clarify this point.

Let the nth root of a natural number a be taken and its value equal b. In this case, the equality a=b n is true. The number b, like any natural number, can be represented as the product of all its prime factors p 1 , p 2 , …, p m in the form p 1 ·p 2 ·…·p m , and the radical number a in this case is represented as (p 1 ·p 2 ·…·p m) n . Since the decomposition of a number into prime factors is unique, the decomposition of the radical number a into prime factors will have the form (p 1 ·p 2 ·…·p m) n, which makes it possible to calculate the value of the root as .

Note that if the decomposition into prime factors of a radical number a cannot be represented in the form (p 1 ·p 2 ·…·p m) n, then the nth root of such a number a is not completely extracted.

Let's figure this out when solving examples.

Example.

Take the square root of 144.

Solution.

If you look at the table of squares given in the previous paragraph, you can clearly see that 144 = 12 2, from which it is clear that the square root of 144 is equal to 12.

But in light of this point, we are interested in how the root is extracted by decomposing the radical number 144 into prime factors. Let's look at this solution.

Let's decompose 144 to prime factors:

That is, 144=2·2·2·2·3·3. Based on the resulting decomposition, the following transformations can be carried out: 144=2·2·2·2·3·3=(2·2) 2·3 2 =(2·2·3) 2 =12 2. Hence, .

Using the properties of the degree and the properties of the roots, the solution could be formulated a little differently: .

Answer:

To consolidate the material, consider the solutions to two more examples.

Example.

Calculate the value of the root.

Solution.

The prime factorization of the radical number 243 has the form 243=3 5 . Thus, .

Answer:

Example.

Is the root value an integer?

Solution.

To answer this question, let's factor the radical number into prime factors and see if it can be represented as a cube of an integer.

We have 285 768=2 3 ·3 6 ·7 2. The resulting expansion cannot be represented as a cube of an integer, since the power of the prime factor 7 is not a multiple of three. Therefore, the cube root of 285,768 cannot be extracted completely.

Answer:

No.

Extracting roots from fractional numbers

It's time to figure out how to extract the root of a fractional number. Let the fractional radical number be written as p/q. According to the property of the root of a quotient, the following equality is true. From this equality it follows rule for extracting the root of a fraction: The root of a fraction is equal to the quotient of the root of the numerator divided by the root of the denominator.

Let's look at an example of extracting a root from a fraction.

Example.

What is the square root of the common fraction 25/169?

Solution.

Using the table of squares, we find that the square root of the numerator of the original fraction is equal to 5, and the square root of the denominator is equal to 13. Then . This completes the extraction of the root of the common fraction 25/169.

Answer:

The root of a decimal fraction or mixed number is extracted after replacing the radical numbers with ordinary fractions.

Example.

Take the cube root of the decimal fraction 474.552.

Solution.

Let's imagine the original decimal fraction as an ordinary fraction: 474.552=474552/1000. Then . It remains to extract the cube roots that are in the numerator and denominator of the resulting fraction. Because 474 552=2·2·2·3·3·3·13·13·13=(2 3 13) 3 =78 3 and 1 000 = 10 3, then And . All that remains is to complete the calculations .

Answer:

.

Taking the root of a negative number

It is worthwhile to dwell on extracting roots from negative numbers. When studying roots, we said that when the root exponent is an odd number, then there can be a negative number under the root sign. We gave these entries the following meaning: for a negative number −a and an odd exponent of the root 2 n−1, . This equality gives rule for extracting odd roots from negative numbers: to extract the root of a negative number, you need to take the root of the opposite positive number, and put a minus sign in front of the result.

Let's look at the example solution.

Example.

Find the value of the root.

Solution.

Let's transform the original expression so that there is a positive number under the root sign: . Now replace the mixed number with an ordinary fraction: . We apply the rule for extracting the root of an ordinary fraction: . It remains to calculate the roots in the numerator and denominator of the resulting fraction: .

Here is a short summary of the solution: .

Answer:

.

Bitwise determination of the root value

In the general case, under the root there is a number that, using the techniques discussed above, cannot be represented as the nth power of any number. But in this case there is a need to know the meaning of a given root, at least up to a certain sign. In this case, to extract the root, you can use an algorithm that allows you to sequentially obtain a sufficient number of digit values ​​of the desired number.

The first step of this algorithm is to find out what the most significant bit of the root value is. To do this, the numbers 0, 10, 100, ... are sequentially raised to the power n until the moment when a number exceeds the radical number is obtained. Then the number that we raised to the power n at the previous stage will indicate the corresponding most significant digit.

For example, consider this step of the algorithm when extracting the square root of five. Take the numbers 0, 10, 100, ... and square them until we get a number greater than 5. We have 0 2 =0<5 , 10 2 =100>5, which means the most significant digit will be the ones digit. The value of this bit, as well as the lower ones, will be found in the next steps of the root extraction algorithm.

All subsequent steps of the algorithm are aimed at sequentially clarifying the value of the root by finding the values ​​of the next bits of the desired value of the root, starting with the highest one and moving to the lowest ones. For example, the value of the root at the first step turns out to be 2, at the second – 2.2, at the third – 2.23, and so on 2.236067977…. Let us describe how the values ​​of the digits are found.

The digits are found by searching through their possible values ​​0, 1, 2, ..., 9. In this case, the nth powers of the corresponding numbers are calculated in parallel, and they are compared with the radical number. If at some stage the value of the degree exceeds the radical number, then the value of the digit corresponding to the previous value is considered found, and the transition to the next step of the root extraction algorithm is made; if this does not happen, then the value of this digit is 9.

Let us explain these points using the same example of extracting the square root of five.

First we find the value of the units digit. We will go through the values ​​0, 1, 2, ..., 9, calculating 0 2, 1 2, ..., 9 2, respectively, until we get a value greater than the radical number 5. It is convenient to present all these calculations in the form of a table:

So the value of the units digit is 2 (since 2 2<5 , а 2 3 >5 ). Let's move on to finding the value of the tenths place. In this case, we will square the numbers 2.0, 2.1, 2.2, ..., 2.9, comparing the resulting values ​​with the radical number 5:

Since 2.2 2<5 , а 2,3 2 >5, then the value of the tenths place is 2. You can proceed to finding the value of the hundredths place:

This is how the next value of the root of five was found, it is equal to 2.23. And so you can continue to find values: 2,236, 2,2360, 2,23606, 2,236067, … .

To consolidate the material, we will analyze the extraction of the root with an accuracy of hundredths using the considered algorithm.

First we determine the most significant digit. To do this, we cube the numbers 0, 10, 100, etc. until we get a number greater than 2,151,186. We have 0 3 =0<2 151,186 , 10 3 =1 000<2151,186 , 100 3 =1 000 000>2 151,186 , so the most significant digit is the tens digit.

Let's determine its value.

Since 10 3<2 151,186 , а 20 3 >2 151.186, then the value of the tens place is 1. Let's move on to units.

Thus, the value of the ones digit is 2. Let's move on to tenths.

Since even 12.9 3 is less than the radical number 2 151.186, then the value of the tenths place is 9. It remains to perform the last step of the algorithm; it will give us the value of the root with the required accuracy.

At this stage, the value of the root is found accurate to hundredths: .

In conclusion of this article, I would like to say that there are many other ways to extract roots. But for most tasks, the ones we studied above are sufficient.

Bibliography.

  • Makarychev Yu.N., Mindyuk N.G., Neshkov K.I., Suvorova S.B. Algebra: textbook for 8th grade. educational institutions.
  • Kolmogorov A.N., Abramov A.M., Dudnitsyn Yu.P. and others. Algebra and the beginnings of analysis: Textbook for grades 10 - 11 of general education institutions.
  • Gusev V.A., Mordkovich A.G. Mathematics (a manual for those entering technical schools).

Raising a number to a power is a shortened form of writing the operation of multiple multiplication, in which all factors are equal to the original number. And extracting the root means the inverse operation - determining the factor that must be involved in the operation of multiple multiplication so that the result is a radical number. Both the exponent and the root exponent indicate the same thing - how many factors there should be in such a multiplication operation.

You will need

  • Access to the Internet.

Instructions

  • If you need to apply both the operation of extracting the root and raising it to a power to a number or expression, reduce both operations into one - raising to a power with a fractional exponent. The numerator of the fraction must contain an exponent, and the denominator must contain a root. For example, if you need to square a cubic root, then these two operations will be equivalent to one raising a number to the ⅔ power.
  • If the conditions require squaring root with an exponent equal to two, this is not a calculation task, but a test of your knowledge. Use the method from the first step and you will get the fraction 2/2, i.e. 1. This means that the result of squaring the square root of any number will be that number itself.
  • Square if necessary root with an even exponent, there is always the possibility of simplifying the operation. Since two (the numerator of a fractional exponent) and any even number (denominator) have a common divisor, then after simplifying the fraction, one will remain in the numerator, which means that there is no need to raise to a power in calculations, it is enough to extract root with half the exponent. For example, squaring the sixth root of eight can be reduced to extracting the cube root from it, because 2/6=1/3.
  • To calculate the result for any root exponent, use, for example, the calculator built into the Google search engine. This is perhaps the easiest way to make payments if you have access to the Internet from your computer. A generally accepted substitute for the sign of the operation of exponentiation is this “lid”: ^. Use it when entering a search query into Google. For example, if you want to square root fifth power from the number 750, formulate the query as follows: 750^(2/5). After entering it, the search engine, even without pressing the send button to the server, will show the calculation result accurate to seven decimal places: 750^(2 / 5) = 14.1261725.

Quite often, when solving problems, we are faced with large numbers from which we need to extract Square root. Many students decide that this is a mistake and begin to re-solve the entire example. Under no circumstances should you do this! There are two reasons for this:

  1. Roots of large numbers do appear in problems. Especially in text ones;
  2. There is an algorithm by which these roots are calculated almost orally.

We will consider this algorithm today. Perhaps some things will seem incomprehensible to you. But if you pay attention to this lesson, you will receive a powerful weapon against square roots.

So, the algorithm:

  1. Limit the required root above and below to numbers that are multiples of 10. Thus, we will reduce the search range to 10 numbers;
  2. From these 10 numbers, weed out those that definitely cannot be roots. As a result, 1-2 numbers will remain;
  3. Square these 1-2 numbers. The one whose square is equal to the original number will be the root.

Before putting this algorithm into practice, let's look at each individual step.

Root limitation

First of all, we need to find out between which numbers our root is located. It is highly desirable that the numbers be multiples of ten:

10 2 = 100;
20 2 = 400;
30 2 = 900;
40 2 = 1600;
...
90 2 = 8100;
100 2 = 10 000.

We get a series of numbers:

100; 400; 900; 1600; 2500; 3600; 4900; 6400; 8100; 10 000.

What do these numbers tell us? It's simple: we get boundaries. Take, for example, the number 1296. It lies between 900 and 1600. Therefore, its root cannot be less than 30 and greater than 40:

[Caption for the picture]

The same thing applies to any other number from which you can find the square root. For example, 3364:

[Caption for the picture]

Thus, instead of an incomprehensible number, we get a very specific range in which the original root lies. To further narrow the search area, move on to the second step.

Eliminating obviously unnecessary numbers

So, we have 10 numbers - candidates for the root. We got them very quickly, without complex thinking and multiplication in a column. It's time to move on.

Believe it or not, we will now reduce the number of candidate numbers to two - again without any complicated calculations! It is enough to know the special rule. Here it is:

The last digit of the square depends only on the last digit original number.

In other words, just look at the last digit of the square and we will immediately understand where the original number ends.

There are only 10 digits that can come in last place. Let's try to find out what they turn into when squared. Take a look at the table:

1 2 3 4 5 6 7 8 9 0
1 4 9 6 5 6 9 4 1 0

This table is another step towards calculating the root. As you can see, the numbers in the second line turned out to be symmetrical relative to the five. For example:

2 2 = 4;
8 2 = 64 → 4.

As you can see, the last digit is the same in both cases. This means that, for example, the root of 3364 must end in 2 or 8. On the other hand, we remember the restriction from the previous paragraph. We get:

[Caption for the picture]

Red squares indicate that we do not yet know this figure. But the root lies in the range from 50 to 60, on which there are only two numbers ending in 2 and 8:

[Caption for the picture]

That's all! Of all the possible roots, we left only two options! And this is in the most difficult case, because the last digit can be 5 or 0. And then there will be only one candidate for the roots!

Final calculations

So, we have 2 candidate numbers left. How do you know which one is the root? The answer is obvious: square both numbers. The one that squared gives the original number will be the root.

For example, for the number 3364 we found two candidate numbers: 52 and 58. Let's square them:

52 2 = (50 +2) 2 = 2500 + 2 50 2 + 4 = 2704;
58 2 = (60 − 2) 2 = 3600 − 2 60 2 + 4 = 3364.

That's all! It turned out that the root is 58! At the same time, to simplify the calculations, I used the formula for the squares of the sum and difference. Thanks to this, I didn’t even have to multiply the numbers into a column! This is another level of calculation optimization, but, of course, it is completely optional :)

Examples of calculating roots

Theory is, of course, good. But let's check it in practice.

[Caption for the picture]

First, let's find out between which numbers the number 576 lies:

400 < 576 < 900
20 2 < 576 < 30 2

Now let's look at the last number. It is equal to 6. When does this happen? Only if the root ends in 4 or 6. We get two numbers:

All that remains is to square each number and compare it with the original:

24 2 = (20 + 4) 2 = 576

Great! The first square turned out to be equal to the original number. So this is the root.

Task. Calculate the square root:

[Caption for the picture]

900 < 1369 < 1600;
30 2 < 1369 < 40 2;

Let's look at the last digit:

1369 → 9;
33; 37.

Square it:

33 2 = (30 + 3) 2 = 900 + 2 30 3 + 9 = 1089 ≠ 1369;
37 2 = (40 − 3) 2 = 1600 − 2 40 3 + 9 = 1369.

Here is the answer: 37.

Task. Calculate the square root:

[Caption for the picture]

We limit the number:

2500 < 2704 < 3600;
50 2 < 2704 < 60 2;

Let's look at the last digit:

2704 → 4;
52; 58.

Square it:

52 2 = (50 + 2) 2 = 2500 + 2 50 2 + 4 = 2704;

We received the answer: 52. The second number will no longer need to be squared.

Task. Calculate the square root:

[Caption for the picture]

We limit the number:

3600 < 4225 < 4900;
60 2 < 4225 < 70 2;

Let's look at the last digit:

4225 → 5;
65.

As you can see, after the second step there is only one option left: 65. This is the desired root. But let’s still square it and check:

65 2 = (60 + 5) 2 = 3600 + 2 60 5 + 25 = 4225;

Everything is correct. We write down the answer.

Conclusion

Alas, no better. Let's look at the reasons. There are two of them:

  • In any normal mathematics exam, be it the State Examination or the Unified State Exam, the use of calculators is prohibited. And if you bring a calculator into class, you can easily be kicked out of the exam.
  • Don't be like stupid Americans. Which are not like roots - they cannot add two prime numbers. And when they see fractions, they generally become hysterical.

Mathematics originated when man became aware of himself and began to position himself as an autonomous unit of the world. The desire to measure, compare, count what surrounds you is what underlay one of the fundamental sciences of our days. At first, these were particles of elementary mathematics, which made it possible to connect numbers with their physical expressions, later the conclusions began to be presented only theoretically (due to their abstraction), but after a while, as one scientist put it, “mathematics reached the ceiling of complexity when they disappeared from it.” all the numbers." The concept of “square root” appeared at a time when it could be easily supported by empirical data, going beyond the plane of calculations.

Where it all began

The first mention of the root, which is currently denoted as √, was recorded in the works of Babylonian mathematicians, who laid the foundation for modern arithmetic. Of course, they bore little resemblance to the current form - scientists of those years first used bulky tablets. But in the second millennium BC. e. They derived an approximate calculation formula that showed how to extract the square root. The photo below shows a stone on which Babylonian scientists carved the process for deducing √2, and it turned out to be so correct that the discrepancy in the answer was found only in the tenth decimal place.

In addition, the root was used if it was necessary to find a side of a triangle, provided that the other two were known. Well, when solving quadratic equations, there is no escape from extracting the root.

Along with the Babylonian works, the object of the article was also studied in the Chinese work “Mathematics in Nine Books,” and the ancient Greeks came to the conclusion that any number from which the root cannot be extracted without a remainder gives an irrational result.

The origin of this term is associated with the Arabic representation of number: ancient scientists believed that the square of an arbitrary number grows from a root, like a plant. In Latin, this word sounds like radix (you can trace a pattern - everything that has a “root” meaning is consonant, be it radish or radiculitis).

Scientists of subsequent generations picked up this idea, designating it as Rx. For example, in the 15th century, in order to indicate that the square root of an arbitrary number a was taken, they wrote R 2 a. The “tick”, familiar to modern eyes, appeared only in the 17th century thanks to Rene Descartes.

Our days

In mathematical terms, the square root of a number y is the number z whose square is equal to y. In other words, z 2 =y is equivalent to √y=z. However, this definition is relevant only for the arithmetic root, since it implies a non-negative value of the expression. In other words, √y=z, where z is greater than or equal to 0.

In general, which applies to determining an algebraic root, the value of the expression can be either positive or negative. Thus, due to the fact that z 2 =y and (-z) 2 =y, we have: √y=±z or √y=|z|.

Due to the fact that the love for mathematics has only increased with the development of science, there are various manifestations of affection for it that are not expressed in dry calculations. For example, along with such interesting phenomena as Pi Day, square root holidays are also celebrated. They are celebrated nine times every hundred years, and are determined according to the following principle: the numbers that indicate in order the day and month must be the square root of the year. So, the next time we will celebrate this holiday is April 4, 2016.

Properties of the square root on the field R

Almost all mathematical expressions have a geometric basis, and √y, which is defined as the side of a square with area y, has not escaped this fate.

How to find the root of a number?

There are several calculation algorithms. The simplest, but at the same time quite cumbersome, is the usual arithmetic calculation, which is as follows:

1) from the number whose root we need, odd numbers are subtracted in turn - until the remainder at the output is less than the subtracted one or even equal to zero. The number of moves will ultimately become the desired number. For example, calculating the square root of 25:

The next odd number is 11, the remainder is: 1<11. Количество ходов - 5, так что корень из 25 равен 5. Вроде все легко и просто, но представьте, что придется вычислять из 18769?

For such cases there is a Taylor series expansion:

√(1+y)=∑((-1) n (2n)!/(1-2n)(n!) 2 (4 n))y n , where n takes values ​​from 0 to

+∞, and |y|≤1.

Graphic representation of the function z=√y

Let's consider the elementary function z=√y on the field of real numbers R, where y is greater than or equal to zero. Its schedule looks like this:

The curve grows from the origin and necessarily intersects the point (1; 1).

Properties of the function z=√y on the field of real numbers R

1. The domain of definition of the function under consideration is the interval from zero to plus infinity (zero is included).

2. The range of values ​​of the function under consideration is the interval from zero to plus infinity (zero is again included).

3. The function takes its minimum value (0) only at the point (0; 0). There is no maximum value.

4. The function z=√y is neither even nor odd.

5. The function z=√y is not periodic.

6. There is only one point of intersection of the graph of the function z=√y with the coordinate axes: (0; 0).

7. The intersection point of the graph of the function z=√y is also the zero of this function.

8. The function z=√y is continuously growing.

9. The function z=√y takes only positive values, therefore, its graph occupies the first coordinate angle.

Options for displaying the function z=√y

In mathematics, to facilitate the calculation of complex expressions, the power form of writing the square root is sometimes used: √y=y 1/2. This option is convenient, for example, in raising a function to a power: (√y) 4 =(y 1/2) 4 =y 2. This method is also a good representation for differentiation with integration, since thanks to it the square root is represented as an ordinary power function.

And in programming, replacing the symbol √ is the combination of letters sqrt.

It is worth noting that in this area the square root is in great demand, since it is part of most geometric formulas necessary for calculations. The counting algorithm itself is quite complex and is based on recursion (a function that calls itself).

Square root in complex field C

By and large, it was the subject of this article that stimulated the discovery of the field of complex numbers C, since mathematicians were haunted by the question of obtaining an even root of a negative number. This is how the imaginary unit i appeared, which is characterized by a very interesting property: its square is -1. Thanks to this, quadratic equations were solved even with a negative discriminant. In C, the same properties are relevant for the square root as in R, the only thing is that the restrictions on the radical expression are removed.

Root formulas. Properties of square roots.

Attention!
There are additional
materials in Special Section 555.
For those who are very "not very..."
And for those who “very much…”)

In the previous lesson we figured out what a square root is. It's time to figure out which ones exist formulas for roots what are properties of roots, and what can be done with all this.

Formulas of roots, properties of roots and rules for working with roots- this is essentially the same thing. There are surprisingly few formulas for square roots. Which certainly makes me happy! Or rather, you can write a lot of different formulas, but for practical and confident work with roots, only three are enough. Everything else flows from these three. Although many people get confused in the three root formulas, yes...

Let's start with the simplest one. Here she is:

If you like this site...

By the way, I have a couple more interesting sites for you.)

You can practice solving examples and find out your level. Testing with instant verification. Let's learn - with interest!)

You can get acquainted with functions and derivatives.