Как се решават логаритмични неравенства. Решаване на прости логаритмични неравенства

Сред цялото разнообразие от логаритмични неравенства, неравенствата с променлива база. Те се решават с помощта на специална формула, която по някаква причина рядко се преподава в училище:

log k (x) f (x) ∨ log k (x) g (x) ⇒ (f (x) − g (x)) (k (x) − 1) ∨ 0

Вместо квадратчето за отметка „∨“ можете да поставите произволен знак за неравенство: повече или по-малко. Основното е, че и в двете неравенства знаците са еднакви.

По този начин се отърваваме от логаритмите и свеждаме проблема до рационално неравенство. Последното е много по-лесно за решаване, но при изхвърляне на логаритми може да възникнат проблеми. допълнителни корени. За да ги отрежете, достатъчно е да намерите района приемливи стойности. Ако сте забравили ODZ на логаритъм, силно препоръчвам да го повторите - вижте „Какво е логаритъм“.

Всичко, свързано с обхвата на допустимите стойности, трябва да бъде написано и решено отделно:

f(x) > 0; g(x) > 0; k(x) > 0; k(x) ≠ 1.

Тези четири неравенства съставляват система и трябва да бъдат изпълнени едновременно. Когато диапазонът от приемливи стойности бъде намерен, всичко, което остава, е да го пресечете с решението рационално неравенство- и отговорът е готов.

Задача. Решете неравенството:

Първо, нека напишем ODZ на логаритъма:

Първите две неравенства се изпълняват автоматично, но последното ще трябва да се изпише. Тъй като квадратът на числото равно на нулаако и само ако самото число е нула, имаме:

x 2 + 1 ≠ 1;
x2 ≠ 0;
x ≠ 0.

Оказва се, че ODZ на логаритъма са всички числа с изключение на нула: x ∈ (−∞ 0)∪(0; +∞). Сега решаваме основното неравенство:

Правим преход от логаритмично неравенствокъм рационалното. Първоначалното неравенство има знак „по-малко от“, което означава, че полученото неравенство също трябва да има знак „по-малко от“. Ние имаме:

(10 − (x 2 + 1)) · (x 2 + 1 − 1)< 0;
(9 − x 2) x 2< 0;
(3 − x ) (3 + x ) x 2< 0.

Нулите на този израз са: x = 3; x = −3; x = 0. Освен това x = 0 е корен от втора кратност, което означава, че при преминаване през него знакът на функцията не се променя. Ние имаме:

Получаваме x ∈ (−∞ −3)∪(3; +∞). Това множество се съдържа изцяло в ODZ на логаритъма, което означава, че това е отговорът.

Преобразуване на логаритмични неравенства

Често първоначалното неравенство е различно от горното. Това може лесно да се коригира с помощта на стандартните правила за работа с логаритми - вижте „Основни свойства на логаритмите“. а именно:

  1. Всяко число може да бъде представено като логаритъм с дадена основа;
  2. Сумата и разликата на логаритми с еднакви основи могат да бъдат заменени с един логаритъм.

Отделно бих искал да ви напомня за диапазона от допустими стойности. Тъй като в първоначалното неравенство може да има няколко логаритма, трябва да се намери VA на всеки от тях. по този начин обща схемаРешенията на логаритмичните неравенства са както следва:

  1. Намерете VA на всеки логаритъм, включен в неравенството;
  2. Редуцирайте неравенството до стандартно, като използвате формулите за събиране и изваждане на логаритми;
  3. Решете полученото неравенство, като използвате схемата, дадена по-горе.

Задача. Решете неравенството:

Нека намерим дефиниционната област (DO) на първия логаритъм:

Решаваме с помощта на интервалния метод. Намиране на нулите на числителя:

3x − 2 = 0;
х = 2/3.

След това - нулите на знаменателя:

x − 1 = 0;
х = 1.

Маркираме нули и знаци върху координатната стрелка:

Получаваме x ∈ (−∞ 2/3)∪(1; +∞). Вторият логаритъм ще има същия VA. Ако не вярвате, можете да проверите. Сега трансформираме втория логаритъм, така че основата да е две:

Както можете да видите, тройките в основата и пред логаритъма са намалени. Имаме два логаритма с същата основа. Нека ги съберем:

log 2 (x − 1) 2< 2;
log 2 (x − 1) 2< log 2 2 2 .

Получихме стандартното логаритмично неравенство. Отърваваме се от логаритмите с помощта на формулата. Тъй като първоначалното неравенство съдържа знак „по-малко от“, полученото рационално изразяванесъщо трябва да бъде по-малко от нула. Ние имаме:

(f (x) − g (x)) (k (x) − 1)< 0;
((x − 1) 2 − 2 2)(2 − 1)< 0;
x 2 − 2x + 1 − 4< 0;
x 2 − 2x − 3< 0;
(x − 3)(x + 1)< 0;
x ∈ (−1; 3).

Имаме два комплекта:

  1. ODZ: x ∈ (−∞ 2/3)∪(1; +∞);
  2. Отговорът на кандидата: x ∈ (−1; 3).

Остава да пресечем тези множества - получаваме истинския отговор:

Интересуваме се от пресечната точка на набори, така че избираме интервали, които са защриховани и на двете стрелки. Получаваме x ∈ (−1; 2/3)∪(1; 3) - всички точки са пробити.

Мислите ли, че има още време до Единния държавен изпит и ще имате време да се подготвите? Може би това е така. Но във всеки случай, колкото по-рано студентът започне подготовка, толкова по-успешно преминава изпитите. Днес решихме да посветим статия на логаритмичните неравенства. Това е една от задачите, което означава възможност за получаване на допълнителен кредит.

Знаете ли вече какво е логаритъм? Силно се надяваме. Но дори и да нямате отговор на този въпрос, това не е проблем. Разбирането какво е логаритъм е много просто.

Защо 4? Трябва да увеличите числото 3 до тази степен, за да получите 81. След като разберете принципа, можете да продължите към по-сложни изчисления.

Преминахте през неравенства преди няколко години. И оттогава постоянно ги срещате в математиката. Ако имате проблеми с решаването на неравенства, вижте съответния раздел.
Сега, след като се запознахме с понятията поотделно, нека да преминем към тяхното разглеждане като цяло.

Най-простото логаритмично неравенство.

Най-простите логаритмични неравенства не се ограничават до този пример; има още три, само с различни знаци. Защо е необходимо това? За да разберете по-добре как да решавате неравенства с логаритми. Сега нека дадем по-приложим пример, все още доста прост;

Как да се реши това? Всичко започва с ODZ. Струва си да знаете повече за това, ако искате винаги лесно да решавате всяко неравенство.

Какво е ODZ? ОДЗ за логаритмични неравенства

Съкращението означава обхвата на допустимите стойности. Тази формулировка често се среща в задачите за Единния държавен изпит. ODZ ще ви бъде полезен не само в случай на логаритмични неравенства.

Погледнете отново горния пример. Ще разгледаме ODZ въз основа на него, за да разберете принципа и решаването на логаритмични неравенства не повдига въпроси. От определението за логаритъм следва, че 2x+4 трябва да е по-голямо от нула. В нашия случай това означава следното.

Това число по дефиниция трябва да е положително. Решете представеното по-горе неравенство. Това може да се направи дори устно; тук е ясно, че X не може да бъде по-малко от 2. Решението на неравенството ще бъде дефинирането на диапазона от допустими стойности.
Сега нека преминем към решаването на най-простото логаритмично неравенство.

Изхвърляме самите логаритми от двете страни на неравенството. Какво ни остава като резултат? Просто неравенство.

Не е трудно да се реши. X трябва да е по-голямо от -0,5. Сега комбинираме двете получени стойности в система. по този начин

Това ще бъде обхватът на приемливите стойности за разглежданото логаритмично неравенство.

Защо изобщо имаме нужда от ODZ? Това е възможност да отсеете грешните и невъзможни отговори. Ако отговорът не е в обхвата на приемливите стойности, тогава отговорът просто няма смисъл. Това си струва да се помни дълго време, тъй като в Единния държавен изпит често има нужда да се търси ODZ и това се отнася не само за логаритмични неравенства.

Алгоритъм за решаване на логаритмично неравенство

Решението се състои от няколко етапа. Първо, трябва да намерите диапазона от приемливи стойности. Ще има две стойности в ODZ, обсъдихме това по-горе. След това трябва да решите самото неравенство. Методите за решение са както следва:

  • метод за заместване на множителя;
  • разграждане;
  • метод на рационализация.

В зависимост от ситуацията си струва да използвате един от горните методи. Да преминем директно към решението. Нека разкрием най-популярния метод, който е подходящ за решаване на задачи от Единния държавен изпит в почти всички случаи. След това ще разгледаме метода на разлагане. Може да помогне, ако попаднете на особено сложно неравенство. И така, алгоритъм за решаване на логаритмично неравенство.

Примери за решения :

Не напразно взехме точно това неравенство! Обърнете внимание на основата. Запомнете: ако повече от един, знакът остава същият, когато се намери диапазонът от приемливи стойности; V иначетрябва да промените знака за неравенство.

В резултат на това получаваме неравенството:

Сега представяме лявата странавъв формата на уравнението, равно на нула. Вместо знака “по-малко” поставяме “равно” и решаваме уравнението. Така ще намерим ODZ. Надяваме се, че с решение на това просто уравнениеняма да имаш проблеми. Отговорите са -4 и -2. Това не е всичко Трябва да покажете тези точки на графиката, като поставите „+“ и „-“. Какво трябва да се направи за това? Заместете числата от интервалите в израза. Когато стойностите са положителни, поставяме „+“ там.

отговор: x не може да бъде по-голямо от -4 и по-малко от -2.

Намерихме диапазона от приемливи стойности само за лявата страна; сега трябва да намерим диапазона от приемливи стойности за дясната страна. Това е много по-лесно. Отговор: -2. Пресичаме двете получени области.

И едва сега започваме да се занимаваме със самото неравенство.

Нека го опростим, доколкото е възможно, за да е по-лесно за решаване.

Отново използваме интервалния метод в решението. Нека пропуснем изчисленията, всичко вече е ясно от предишния пример. отговор.

Но този метод е подходящ, ако логаритмичното неравенство има еднакви основи.

Решаване на логаритмични уравнения и неравенства с по различни причинипредполага първоначално намаление до една база. След това използвайте метода, описан по-горе. Но има още труден случай. Нека разгледаме един от най сложни видовелогаритмични неравенства.

Логаритмични неравенства с променлива основа

Как се решават неравенства с такива характеристики? Да, и такива хора могат да бъдат намерени в Единния държавен изпит. Решаването на неравенства по следния начин също ще ви бъде от полза образователен процес. Нека разгледаме въпроса в детайли. Да изоставим теорията и да преминем направо към практиката. За решаване на логаритмични неравенства е достатъчно да се запознаете с примера веднъж.

За да се реши логаритмично неравенство на представената форма, е необходимо да се намали дясната страна до логаритъм със същата основа. Принципът наподобява еквивалентни преходи. В резултат на това неравенството ще изглежда така.

Всъщност всичко, което остава, е да се създаде система от неравенства без логаритми. Използвайки метода на рационализация, преминаваме към еквивалентна системанеравенства Ще разберете самото правило, когато замените подходящите стойности и проследите промените им. Системата ще има следните неравенства.

Когато използвате метода на рационализация при решаване на неравенства, трябва да запомните следното: едно трябва да се извади от основата, x, по дефиниция на логаритъма, се изважда от двете страни на неравенството (дясно от ляво), два израза се умножават и поставен под оригиналния знак по отношение на нула.

По-нататъшното решение се извършва с помощта на интервалния метод, тук всичко е просто. Важно е да разберете разликите в методите за решаване, тогава всичко ще започне да се получава лесно.

В логаритмичните неравенства има много нюанси. Най-простите от тях са доста лесни за решаване. Как можете да разрешите всеки от тях без проблеми? Вече сте получили всички отговори в тази статия. Сега ви предстои дълга практика. Постоянно практикувайте решаването на най-много различни задачикато част от изпита и ще можете да получите най-висок резултат. Успех в нелеката задача!

Поддържането на вашата поверителност е важно за нас. Поради тази причина разработихме Политика за поверителност, която описва как използваме и съхраняваме вашата информация. Моля, прегледайте нашите практики за поверителност и ни уведомете, ако имате въпроси.

Събиране и използване на лична информация

Личната информация се отнася до данни, които могат да бъдат използвани за идентифициране или контакт с конкретно лице.

Може да бъдете помолени да предоставите вашата лична информация по всяко време, когато се свържете с нас.

По-долу са дадени някои примери за видовете лична информация, която можем да събираме и как можем да използваме тази информация.

Каква лична информация събираме:

  • Когато подадете заявка на сайта, ние може да съберем различна информация, включително вашето име, телефонен номер, адрес имейли т.н.

Как използваме вашата лична информация:

  • Събрани от нас лична информацияни позволява да се свържем с вас и да ви информираме за уникални предложения, промоции и други събития и предстоящи събития.
  • От време на време може да използваме вашата лична информация, за да изпращаме важни известия и съобщения.
  • Може също така да използваме лична информация за вътрешни цели като одит, анализ на данни и различни изследванияза да подобрим услугите, които предоставяме и да ви предоставим препоръки относно нашите услуги.
  • Ако участвате в теглене на награди, конкурс или подобна промоция, ние може да използваме предоставената от вас информация за администриране на такива програми.

Разкриване на информация на трети лица

Ние не разкриваме информацията, получена от вас, на трети страни.

Изключения:

  • При необходимост, в съответствие със закона, съдебна процедура, В изпитание, и/или въз основа на публични искания или искания от държавни агенциина територията на Руската федерация - разкрийте вашата лична информация. Може също така да разкрием информация за вас, ако преценим, че такова разкриване е необходимо или подходящо за целите на сигурността, правоприлагането или други обществено значими цели.
  • В случай на реорганизация, сливане или продажба, можем да прехвърлим личната информация, която събираме, на съответната трета страна приемник.

Защита на личната информация

Ние вземаме предпазни мерки – включително административни, технически и физически – за да защитим вашата лична информация от загуба, кражба и злоупотреба, както и неоторизиран достъп, разкриване, промяна и унищожаване.

Зачитане на вашата поверителност на фирмено ниво

За да гарантираме, че вашата лична информация е защитена, ние съобщаваме стандартите за поверителност и сигурност на нашите служители и стриктно прилагаме практиките за поверителност.

Логаритмични неравенства

В предишните уроци се запознахме с логаритмичните уравнения и сега знаем какво представляват и как се решават. Днешният урок ще бъде посветен на изучаването на логаритмични неравенства. Какви са тези неравенства и каква е разликата между решаването на логаритмично уравнение и неравенство?

Логаритмичните неравенства са неравенства, които имат променлива, която се появява под знака на логаритъм или в основата му.

Или можем също така да кажем, че логаритмично неравенство е неравенство, в което неговата неизвестна стойност, както в логаритмично уравнение, ще се появи под знака на логаритъма.

Най-простите логаритмични неравенства имат следния вид:

където f(x) и g(x) са някои изрази, които зависят от x.

Нека да разгледаме това, използвайки този пример: f(x)=1+2x+x2, g(x)=3x−1.

Решаване на логаритмични неравенства

Преди да решите логаритмични неравенства, струва си да се отбележи, че когато се решават, те са подобни на експоненциални неравенства, а именно:

Първо, когато преминаваме от логаритми към изрази под знака на логаритъм, ние също трябва да сравним основата на логаритъма с единица;

Второ, когато решаваме логаритмично неравенство с помощта на промяна на променливи, трябва да решаваме неравенства по отношение на промяната, докато получим най-простото неравенство.

Но вие и аз сме разглеждали подобни аспекти на решаването на логаритмични неравенства. Сега нека обърнем внимание на една доста съществена разлика. Вие и аз знаем, че логаритмичната функция има ограничена площдефиниции, следователно, преминавайки от логаритми към изрази под знака на логаритъм, трябва да вземете предвид обхвата на допустимите стойности (APV).

Тоест трябва да се има предвид, че при вземането на решение логаритмично уравнениеВие и аз можем първо да намерим корените на уравнението и след това да проверим това решение. Но решаването на логаритмично неравенство няма да работи по този начин, тъй като преминавайки от логаритми към изрази под знака на логаритъм, ще е необходимо да напишете ДЗ неравенство.

Освен това си струва да си припомним, че теорията на неравенствата се състои от реални числа, които са положителни и отрицателни числа, както и числото 0.

Например, когато числото „a“ е положително, тогава трябва да използвате следната нотация: a >0. В този случай както сумата, така и произведението на тези числа също ще бъдат положителни.

Основният принцип за решаване на неравенство е да го замените с по-просто неравенство, но основното е то да е еквивалентно на даденото. Освен това получихме и неравенство и отново го заменихме с такова, което има по-проста форма и т.н.

Когато решавате неравенства с променлива, трябва да намерите всичките му решения. Ако две неравенства имат една и съща променлива x, тогава тези неравенства са еквивалентни, при условие че техните решения съвпадат.

Когато изпълнявате задачи за решаване на логаритмични неравенства, трябва да запомните, че когато a > 1, тогава логаритмичната функция нараства, а когато 0< a < 1, то такая функция имеет свойство убывать. Эти свойства вам будут необходимы при решении логарифмических неравенств, поэтому вы их должны хорошо знать и помнить.

Методи за решаване на логаритмични неравенства

Сега нека да разгледаме някои от методите, които се използват при решаване на логаритмични неравенства. За по-добро разбиране и усвояване ще се опитаме да ги разберем с помощта на конкретни примери.

Всички знаем, че най-простото логаритмично неравенство има следния вид:

В това неравенство V – е един от следните знаци за неравенство:<,>, ≤ или ≥.

Когато основата на даден логаритъм е по-голяма от единица (a>1), което прави прехода от логаритми към изрази под знака на логаритъм, тогава в тази версия знакът за неравенство се запазва и неравенството ще има следния вид:

което е еквивалентно на тази система:


В случай, че основата на логаритъма е по-голяма от нула и по-малка от единица (0

Това е еквивалентно на тази система:


Нека разгледаме още примери за решаване на най-простите логаритмични неравенства, показани на снимката по-долу:



Решаване на примери

Упражнение.Нека се опитаме да разрешим това неравенство:


Решаване на диапазона от допустими стойности.


Сега нека се опитаме да умножим дясната му страна по:

Да видим какво можем да измислим:



Сега нека преминем към преобразуването на сублогаритмични изрази. Поради факта, че основата на логаритъма е 0< 1/4 <1, то от сюда следует, что знак неравенства изменится на противоположный:

3x - 8 > 16;
3x > 24;
х > 8.

А от това следва, че интервалът, който получихме изцяло принадлежи на ОДЗ и е решение на такова неравенство.

Ето отговора, който получихме:


Какво е необходимо за решаване на логаритмични неравенства?

Сега нека се опитаме да анализираме какво ни е необходимо за успешно решаване на логаритмични неравенства?

Първо, концентрирайте цялото си внимание и се опитайте да не правите грешки, когато извършвате трансформациите, които са дадени в това неравенство. Също така трябва да се помни, че при решаването на такива неравенства е необходимо да се избягват разширения и свивания на ODZ на неравенството, което може да доведе до загуба или придобиване на странични решения.

Второ, когато решавате логаритмични неравенства, трябва да се научите да мислите логически и да разбирате разликата между понятия като система от неравенства и набор от неравенства, за да можете лесно да избирате решения на неравенството, като същевременно се ръководите от неговия DL.

Трето, за успешно решаване на такива неравенства, всеки от вас трябва да знае отлично всички свойства елементарни функциии ясно разбират тяхното значение. Такива функции включват не само логаритмични, но и рационални, степенни, тригонометрични и т.н., с една дума всички онези, които сте изучавали навсякъде училищно обучениеалгебра.

Както можете да видите, след като сте изучавали темата за логаритмичните неравенства, няма нищо трудно в решаването на тези неравенства, при условие че сте внимателни и упорити в постигането на целите си. За да избегнете проблеми при решаването на неравенства, трябва да практикувате колкото е възможно повече, решавайки различни задачи и в същото време да запомните основните методи за решаване на такива неравенства и техните системи. Ако не успеете да решите логаритмични неравенства, трябва внимателно да анализирате грешките си, за да не се връщате към тях в бъдеще.

домашна работа

За по-добро усвояванетеми и затвърдяване на преминатия материал, решете следните неравенства:


Едно неравенство се нарича логаритмично, ако съдържа логаритмична функция.

Методите за решаване на логаритмични неравенства не се различават от, с изключение на две неща.

Първо, при преминаване от логаритмичното неравенство към неравенството под логаритмични функциитрябва следват знака на полученото неравенство. Подчинява се на следното правило.

Ако основата на логаритмичната функция е по-голяма от $1$, тогава при преминаване от логаритмично неравенство към неравенство на сублогаритмични функции знакът на неравенството се запазва, но ако е по-малък от $1$, тогава той се променя на противоположния .

Второ, решението на всяко неравенство е интервал и следователно в края на решаването на неравенството на сублогаритмичните функции е необходимо да се създаде система от две неравенства: първото неравенство на тази система ще бъде неравенството на сублогаритмичните функции, а вторият ще бъде интервалът от областта на дефиниране на логаритмичните функции, включени в логаритмичното неравенство.

Практикувайте.

Да решим неравенствата:

1. $\log_(2)((x+3)) \geq 3.$

$D(y): \x+3>0.$

$x \in (-3;+\infty)$

Основата на логаритъма е $2>1$, така че знакът не се променя. Използвайки определението за логаритъм, получаваме:

$x+3 \geq 2^(3),$

$x \in )