Значение миелинизации. Особенности нервной системы у детей

Общее направление развития нервной системы в онтогенезе реализуется в соответствии с ходом филогенеза, т. е раньше созревают с ходом филогенеза, т. е. раньше созревают филогенетически более древние структуры (рекапитуляция признаков). Так, ретикулоспинальные и вестибулярные системы созревают раньше, чем руброспинальные. Руброспинальная созревает раньше, чем пирамидная система. На фоне этого общего плана развития развитие других систем характеризуется гетерохронностью. Например, очень рано созревают нейроны ядер тройничного и лицевого нервов, медиального продольного пучка. Это соответствует принципам системогенеза П.К. Анохина: на каждом этапе онтогенеза консолидируются функциональные системы, обеспечивающие наиболее эффективную адаптацию организма к конкретным условиям. Например поддержание гомеостаза, приспособление к конкретным условиям среды.

Диаметр и длина осевых цилиндров нервных волокон увеличивается в пренатальном периоде и продолжает увеличиваться и после рождения. Так, в локтевых нервах диаметр осевых цилиндров составляет 1-3 мкм, к 4 годам — 7 мкм. Это увеличение продолжается до 5-9 лет и совпадает со сроками окончательной зрелости, когда достигается максимальная скорость проведения.

Миелинизация нервных волокон начинается в пренатальном периоде, сроки же окончания, в особенности для волокон коры больших полушарий, затягиваются на период раннего и позднего детства, подросткового возраста, вплоть до взрослого состояния (Рис. V. 2). Меньшей степени это у всех соматических нервных волокон и части волокон вегетативной нервной системы. В черепномозговых нервах миелинизация происходит раньше, чем в спинномозговых: вестибулярный нерв, например, начинает миелинизироваться на 3-м месяце внутриутробного развития, а волокна, образующие корешки спинного мозга, — на 4-м месяце. В вентральных корешках орган миелинизации короче, чем в дорсальных. В целом, в периферических нервах миелинизация заканчивается лишь к 9 годам жизни.

Гистофизиологическое созревание нервной и мышечной ткани происходит взаимообусловленно. Так, у эмбриона в закладки почек, конечностей и в миотомы врастают миобласты и нервные волокна. Если образующиеся из миобластов миотрубочки не получают иннервации, их развитие прекращается. Когда появляются движения эмбриона, в передних рогах серого вещества спинного мозга многие мотонейроны гибнут из-за того, что их аксоны не образовали синапсов с миотрубочками.

Анализаторы

Зрительная сенсорная система. Развитие глаза начинается на 3-6 неделе эмбриогенеза. Сетчатка развивается как вырост промежуточного мозга, который вначале имеет

мешкообразную форму, а на 11-й неделе приобретает вид бокала. Сосудистая оболочка и склера образуется из мезенхитмы, хрусталик — из эктодермы. К рождению сетчатка еще не полно дифференцирована. Колбочек в сетчатке сравнительно мало, и они имеют округлую форму. Не сформирована центральная ямка. Клеточная дифференцировка сетчатки заканчивается только к 4-5-ти месяцам постнатальной жизни.

Миелинизация зрительных волокон начинается на 8-9-м месяце пренатальной жизни. Она идет по восходящей, в направлении от хиазмы к таламусу, а затем — к сетчатке. Завершается к 4-м месяцам жизни ребенка. В течение первого года жизни интенсивно развиваются зрительные центры мозга и проекционные зрительные корковые центры. Окончательное созревание цитоархитектоники ассоциативно-зрительных полей — 18-19 — наступает лишь к 7-ми годам, однако и к этому возрасту зрительный аппарат оказывается еще не полностью дифференцирован.

Световая чувствительность сетчатки повышается в течение 20-ти лет. До 10-ти лет расширяются границы поля зрения. После рождения постепенно меняется форма глазного яблока. В результате, в периоде детства преобладает небольшая дальнозоркость, которая выправляется в норме к 8-12-ти годам. Однако у 40% детей глазное яблоко с возрастом удлиняется, вследствие этого развивается близорукость.

Причины близорукости могут быть различными. Одна из основных — наследственная предрасположенность. Неблагоприятно также длительное сосредоточенное рассматривание близких предметов. Оптимальным для фокусирующего аппарата является расстояние от глаз 40 см. После рождения постепенно совершенствуются координация и согласованность сокращений мышц глазного яблока, обеспечивающих сосредоточение на объекте и слежение за ним.

Полноценное цветоразличение, которое обеспечивается созреванием не только колбочковых системяетчатки, но и центральных (мозговых) зрительных структур, развивается также постепенно, к 3-м годам жизни.

Острота зрения у новорожденных очень низкая. Это связано, в частности, с отмеченной выше структурной незрелостью центральной ямки сетчатки. Острота зрения становится нормальной лишь к 5-ти годам.

Слуховая сенсорная система. Слуховой пузырек отшнуровывается от мозга на 4-й неделе эмбриона. Улитка формируется на 10-й неделе. До 5-ти месяцев эмбриогенеза ее размер увеличивается. К 6-ти месяцам дифференцируется рецепторная часть улитки. Миелинизация слуховых волокон в стволе мозга заканчивается в 4-9 месяцев плодного периода. Миелинизация же таламических и корковых отделов завершается лишь к 6-ти годам и позднее. Среднее ухо до рождения содержит жидкость.

Слуховые косточки среднего уха только через несколько месяцев после рождения освобождаются от остатков соединительной ткани и становятся достаточно подвижными. Благодаря этому, колебания барабанной перепонки, вызванные звуковыми волнами, дифференцированно передаются с помощью косточек на базальную мембрану, с расположенными на ней рецепторными клетками.

Представляет интерес также развитие наружного уха. Оно начинается со 2-го месяца эмбриогенеза, с закладки нескольких бугорков, образованных мезенхимой, окружающей первую жаберную борозду. В дальнейшем, благодаря многим точкам роста, формируется окончательная конфигурация наружного уха. Она бывает настолько индивидуальна, что используется в некоторых европейских странах для идентификации личности.

Человек начинает воспринимать звуки внешней для него среды уже в плодном периоде. Слуховая чувствительность совершенствуется до 15-20 лет. В развитии речеслуховой сферы, а также музыкального слуха значительную роль играют обучение и воспитание, т. е. условия соответствующей среды. Вместе с тем, уровень развития слуховой чувствительности в значительной степени генетически обусловлен.

Вестибулярная сенсорная система. Закладывается в эмбриогенезе одновременно со слуховой системой. Это — верхняя часть слухового пузырька, из которой формируются маточка и полукружные каналы. Вестибулярная система созревает сравнительно рано. Так, миелинизация вестибулярного нерва, а также созревание одного из ведущих вестибулярных ядер — ядра Дейтерса в продолговатом мозге наблюдаются очень рано: к 4-м месяца плодного периода. К этому времени у плода уже выражены вестибулярные тонические рефлексы. У новорожденных, благодаря им, хорошо развиты статокинетические рефлексы, а в более позднем возрасте — рефлексы удержания головы, сидения, стояния.

Вкусовая и обонятельная сенсорные системы. У 3-х месячного плода начинают развиваться вкусовые луковицы в сосочках языка. Вкусовые рецепторы у новорожденных занимают даже большую поверхность слизистой оболочки рта, чем у взрослых: они расположены не только на языке, но и на слизистой ротовой полости, на губах и даже щеках. В соответствии с этим, новорожденный различает все 4 эталонные вида вкуса: сладкий, кислый, соленый и горький. В конце 1-го года жизни у ребенка достаточно развита способность различать вкусовые качества пищи. С 2 до 6 лет снижаются пороги вкусовой чувствительности.

Обонятельный эпителий со специфическими рецепторными клетками и нервными волокнами обособляются уже на 2-м месяце пренатальной жизни. К б месяцам он несколько суживается. Окончательная дифференцировка обонятельного эпителия заканчивается к 7 месяцам пренатальной жизни. Миелинизация волокон обонятельных нервов и обонятельного тракта заканчивается пренатально. С возрастом пороги обонятельной чувствительности снижаются. К концу первого детства обонятельная система оказывается сформированной.

Таким образом, гисто-физиологическое созревание структур вкусовой и обонятельной систем происходит быстрее и оканчивается раньше, чем других сенсорных систем. Это связано с особым значением вкуса и обоняния в процессах адаптации организма новорожденного к новым условиям существования и вскармливания материнским молоком.

Экстероцептивная сенсорная система. Рецепторы тактильной, болевой и температурной чувствительности появляются в коже уже 8-недельного плода. Инкапсулированные тельца появляются начиная с 3-го месяца эмбриогенеза. Тельца Пачини окончательно созревают лишь к 6 годам жизни. Тельца Майснера — до 6 месяца после рождения. Снижение порогов тактильной чувствительности продолжается до 20 лет. Понижаются также пороги болевой чувствительности.

Кровеносная система

Первые очаги кроветворения выявляются в стенках желточного мешка у 5-недельного эмбриона. К началу 2-го месяца кроветворение происходит в теле эмбриона, к его концу сосредотачивается в печени. В начале 4-го месяца начинается костномозговое и селезеночное кроветворение. Начиная с 7 месяцев лимфоциты образуются также при участии вилочковой железы (тимус). У детей раннего возраста кроветворение протекает в красном костном мозге. С 4 до 15 лет во многих костях красный костный мозг перерождается в жировой. После 30 лет кроветворение происходит только в губчатом веществе грудины, тел позвонков и ребер.

Эритроциты плода сравнительно крупные, многие содержат ядро. По мере развития плода их количество постепенно увеличивается, размеры уменьшаются, и они теряют ядро. Реакция на сильные эмоциональные и болевые стрессы в виде выброса эритроцитов из депо в циркулирующую кровь появляется лишь с 12 лет.

В эритроцитах эмбриона содержится эмбриональный гемоглобин (HBF). На 4-м месяце эмбриогенеза появляется взрослый гемоглобин (НВА), который пока составляет 10% всего гемоглобина. Только в возрасте 40 дней после рождения большая часть гемоглобина представлена в форме НВА. Лейкоциты появляются в кровеносной системе плода в конце 3-го месяца эмбриогенеза. Соотношение количества нейтрофилов и лимфоцитов меняется и в процессе эмбриогенеза, и постнатально до 15 лет. Дифференцировка Т- и В- лимфоцитов происходит в самом конце пренатального периода или в самом начале постнатального.

Групповые свойства крови определяются генотипом. Агглютиногены A и B появляются в эритроцитах 3-месячного плода, однако наибольшая способность к агглютинации достигается лишь к 20 годам жизни. Агглютиногены системы резус определяются у 2-3-месячного плода.

Сердце у эмбриона закладывается в возрасте 3 недель в виде 2 трубок, образующихся из висцерального листка спланхнотома. Они сближаются и срастаются. Перегородка между ними редуцируется, и в результате формируется трубчатое сердце (как у ланцетника). Средняя часть трубки расширяется (будущий желудочек). Передний конец сужается в артериальный конус. К возрасту 4 недели сердце становится 2-камерным (как у рыб). На 5-й неделе образуется межпредсердная перегородка и сердце становится 3-камерным (как у амфибий). Затем, благодаря образованию изгибов и поворотов, желудочек оказывается вентральнее предсердия и каудальнее его. Разделение предсердий происходит на 6-й неделе. На 7-й неделе разделяются желудочки.

Проводящая система сердца закладывается очень рано: на 4-й неделе эмбриогенеза. В течение 2-го месяца эмбриогенеза сердце начинает перемещаться из области шеи в грудную полость. У 5-6-недельного эмбриона предполагается наличие холинорецепторов в миокарде.

Дифференцировка кардиомиоцитов, проводящей системы и сосудов интенсивно продолжается до 2 лет, а затем более медленно — до 7 лет. В этом возрасте сердце ребенка имеет все черты сердца взрослого. Далее происходит, в основном его рост.

У плода формируется особая система кровообращения. При рождении, когда перерезают пуповину, кровь из плаценты перестает поступать в организм плода. При первом вдохе включается малый круг кровообращения, и далее начинают работать оба круга.

Системы дыхания и пищеварения

На весь период плодного развития органом дыхания плода является плацента. Особенностью является то, что кровь, которая идет из плаценты, отличается более низким напряжением кислорода, чем артериальная кровь взрослого. Это объясняется и биохимическими особенностями крови, и анатомическим строением сосудистой системы плода. Содержание кислорода в тканях плода в целом соответствует состоянию тяжелой гипоксии. Тем не менее, для нормального развития тканей его бывает достаточно, в первую очередь, благодаря большому сродству гемоглобина к кислороду (большему, чем у взрослого).

После рождения происходят дальнейшая дифференцировка бронхиального древа, увеличение количества и формирование типичных ацинусов. Легкие разрастаются в течение длительного времени: от рождения и до взрослого состояния.

Пищеварительная система развивается из первичной кишки, которая закладывается у эмбриона на 3-4-й неделе.

Железы внутренней секреции

Развитие желез внутренней секреции осуществляется в определенной последовательности. Сначала формируется закладка железы, затем она начинает функционировать, о чем можно судить по началу синтеза гормона, далее формируется гормональное взаимодействие между различными железами и, наконец, устанавливающая нейроно-эндокринные взаимодействия.

Гипофиз образуется из двух зачатков: аденогипофиз — из выпячивания крыши ротовой полости, нейрогипофиз — из воронки промежуточного мозга. Это наблюдается у плода в возрасте 6,5 недель. Синтез вазопрессина и окситоцина клетками супраоптического и паравентрикулярного ядер гипоталамуса начинается в 3-4 месяца внутриутробного периода. В нейрогипофизе они обнаруживаются на 4-м месяце. Гормоны аденогипофиза начинают синтезироваться с 9-й недели плода. Соматотропный гормон (СТГ) — гормон роста — стимулирует рост эпифизарных хрящей. Плод растет со скоростью, в несколько раз большей, чем дети. Однако полагают, что рост плода регулируется плацентарными гормонами и находится под действием генетической программы.

Пролактин появляется в аденогипофизе на 9-й неделе развития. Особую роль он играет в постнатальной жизни, в период полового созревания. Титопропин (ТТГ) определяется на 13-й неделе. У плода он достигает более высокого уровня, чем у взрослого. У женских плодов его уровень больше, чем у мужских. Влияние гипоталамуса на тиреотропную функцию гипофиза обнаруживается у плода в последней трети развития.

Адренокортикотропный гормон (АКТГ) появляется у эмбрионов в возрасте 8 недель. К 7 месяцам его уровень достигает максимального значения, затем снижается. На 7-м месяце проявляется действие этого гормона на надпочечники. Во 2-й половине эмбриогенеза гипофиз становится зависимым от гипоталамуса.

Гонадотропные гормоны (FIT) появляются с 3-месячного возраста плода. Они стимулируют эндокринную секрецию половых желез, но не контролируют их половую дифференцировку. На 5-м месяце у плода под действием тестостерона происходит половая дифференцировка гипоталамо-гипофизарной системы. После этого образуется связь между гонадотропной функцией гипофиза, половыми железами и гипоталамусом. У плодов последней -трети плодного периода концентрация ГЕГ выше, чем у взрослого. У новорожденных она остается очень высокой, после первой недели жизни — снижается, а в препубертатном периоде — увеличивается.

Щитовидная железа образуется у 3-4-недельного плода из выпячивания вентрального отдела глотки. В 3 месяца начинает выявляться тироксин в крови. Гормоны щитовидной железы играют очень большую роль в развитии, процессах роста и дифференцировки тканей плода. Они определяют тонкую структурную и биохимическую дифференцировку нейронов, их отростков в ЦНС. Они определяют взаимодействие систем гипоталамо-гипофизарногонадной, а также надпочечниковой систем. С отклонениями в нормальной деятельности щитовидной железы связаны нарушения процессов окостенения скелета и развития элементов головного мозга. Половые различия в функциях щитовидной железы формируются еще до рождения, но особенно резко проявляются в период полового созревания.

В надпочечниках корковое вещество дифференцируется на 5-й неделе плода, и ко 2-му месяцу начинается синтез гормонов. Они участвуют в обмене гликогена в печени, стимулируют развитие вилочковой железы и легких. Эстрогены коры надпочечников у женских плодов стимулируют развитие матки и других половых органов. После рождения гормоны принимают участие в адаптационных процессах, связанных со стрессовыми реакциями. Нарушение функции коры надпочечников приводят к серьезным дисфункциям половой системы и углеводного обмена: у девочек развиваются мужские половые признаки, умственная отсталость и т. д.

Мозговое вещество надпочечников начинает развиваться позже коркового: в начале 4-го месяца внутриутробного периода. Адреналина у плода образуется сравнительно мало. Действие его проявляется сразу после рождения: новорожденные реагируют на стресс повышением секреции катехоламинов.

Половые железы начинают дифференцироваться на 5-й неделе плодного периода из нейтральной гонады. Превращение индифферентных гонад в яичники или семенники начинается после миграции в эти гонады первичных половых клеток на 6-й неделе. Если генотип плода — XV, то первичные половые клетки дифференцируются в сперматозоиды, окружающие их — в клетки Лейдига. Эти последние появляются у эмбрионов на 8-й неделе: они синтезируют мужские половые гормоны — андрогены, например, тестостерон. Андрогены оказывают влияние на реализацию генетической программы пола. У 5-7 месячных плодов андрогены вызывают дифференцировку гипоталамуса по мужскому типу, в их отсутствие процесс идет по женскому типу. Андрогены обеспечивают развитие мужских половых органов и опускание яичек в мошонку, которое происходит начиная с 3-месячного возраста плода до рождения. Опустившиеся яички являются одним из критериев доношенности плода. В период полового созревания андрогены обеспечивают окончательное развитие по мужскому типу.

Если генотип плода — XX, то первичные половые клетки развиваются в овогонии. Созревание их и образование фолликулов начинается с 4-го месяца внутриутробного развития. Гормоны яичников не влияют на формирование половых органов. Формирование самих яичников и других половых органов плода происходит под действием материнских гонадотропинов, эстрогенов плаценты и надпочечников. У женского плода сохраняется мюллеров канал. Он дифференцируется в яйцеводы, матку, верхнюю часть влагалища. Вольфов канал при нормальном развитии, при отсутствии тестостерона, дегенерирует.

Поджелудочная железа дифференцируется на 3-м месяце плодного периода. Синтез инсулина начинается еще раньше: в 2 месяца. Формирование островков Лангерганса завершается к 5-му месяцу. Инсулин у плодов регулирует углеводный обмен. У взрослых при гиперфункции бета-клеток островков Лангерганса развивается сахарный диабет. В последние годы увеличивается процент заболевания сахарным диабетом детей. Основные причины заболевания — избыточное потребление углеводов и наследственная предрасположенность.

В этот день:

  • Дни рождения
  • 1877 Родился Анри Эдуар Брёйль - французский католический священник, археолог, антрополог, этнолог и геолог, специалист по палеолиту и истории первобытного искусства. Изучал наскальную живопись в долинах Соммы и Дордони, изучал первобытные стоянки в Испании, Португалии, Италии, Ирландии, Эфиопии, Южной Африке, Британском Сомали и Китае. Доказал существование ориньякской эпохи верхнего палеолита Западной Европы, а также древнепалеолитических клектонских комплексов, характеризующихся отсутствием ручных рубил.

Процесс миелинизации нервных волокон в онтогенезе тесно связан, как известно, с фосфолипидным обменом (Folch, 1955; Е. М. Крепе и др., 1963). Фосфолипиды - один из важнейших компонентов живой клетки.

Они входят в состав биомембран, участвуя в жизненно важных процессах клеточного метаболизма, включаясь в осуществление циклов внутриклеточных ферментативных реакций. В нервной ткани в процессе развития увеличивается относительное содержание (в % от суммы фосфолипидов) сфингомиелина, серинофосфатида, этаноламинфосфатида. Все эти фосфолипиды входят в состав миелина и поэтому накапливаются в ходе миелинизации нервных волокон. Отмечено также, что в период миелинизации концентрация, в частности, сфингомиелина и этаноламинофосфатида увеличивается не только в нервных проводниках, но и там, где нет миелина,- в митохондриях, ядрах, микросомах (см. обзор Е. М. Крепса, 1967).

Очевидно, скорость формирования и уровень развития холинергической передачи импульсов в волокнах шейных симпатических стволов (как, вероятно, и в волокнах других нервных проводников) в известной степени могут определяться интенсивностью фосфолипидного обмена и включением тех или иных фосфолипидов в онтогенезе в обменные процессы в период миелинизации. Основанием для такого предположения являются структурные особенности липидов, содержащих холин (сфингомиелин, лецитин), который является составной частью ацетилхолина.

По современным воззрениям, синтез ацетилхолина представляет собой цепь реакций, осуществляемых под действием ряда ферментов и требующих подведения источника химической энергии. Из пирувата при участии тиаминпирофосфата, фермента пируватдегидрогеназы, липолевой кислоты и коэнзима А образуется ацетилкоэнзим А.

Из ацетилкоэнзима А и холина путем реакции трансацетилирования (фермент холинацетилаза) образуется ацетилхолин. Предполагается, что холин и уксусная кислота, из которых синтезируется в нервных окончаниях ацетилхолин, являются продуктами его же распада.

Вместе с тем есть данные, непосредственно указывающие на то, что важным источником холина, который идет для синтеза ацетилхолина, участвующего в синаптической передаче возбуждения в ганглиях при раздражении преганглионарных волокон, является холин, получаемый за счет катаболизма холинсодержащих фосфолипидов, находящихся в пресинаптических окончаниях (Friesen et al., 1967). На возможность использования холина фосфолипидов для синтеза ацетилхолина указывали также Ries и Gersch (1953).

Согласно современным представлениям, синтезируемый ацетилхолин накапливается в специальных везикулах пресинаптических окончаний, которые при возбуждении передвигаются к мембране, лопаются и выделяют в синаптическую щель медиатор. Спонтанное опорожнение везикул с ацетилхолином происходит постоянно. Этот фоновый выброс квантов медиатора обусловливает возникновение так называемых миниатюрных потенциалов.

Предполагается, что фоновая импульсация играет роль в постоянной регуляции трофики тканей.


« Онтогенетическое формирование нейро-гуморальной
регуляции возбуждения в тканях организма и канцерогенез»,
В.С.Шевелева

Нервная система выполняет важнейшие функции в организме. Она отвечает за все действия и мысли человека, формирует его личность. Но вся эта сложная работы была бы невозможна без одной составляющей — миелина.

Миелин – это вещество, образующее миелиновую (мякотную) оболочку, которая отвечает за электроизоляцию нервных волокон и скорость передачи электрического импульса.

Анатомия миелина в строении нерва

Главная клетка нервной системы – нейрон. Тело нейрона называется сома. Внутри нее находится ядро. Тело нейрона окружено короткими отростками, которые называются дендриты. Они отвечают за связь с другими нейронами. От сомы отходит один длинный отросток – аксон. Он несет импульс от нейрона к другим клеткам. Чаще всего на конце он соединяется с дендритами других нервных клеток.

Всю поверхность аксона покрывает миелиновая оболочка, которая представляет собой отросток клетки Шванна, лишенный цитоплазмы. По сути, это несколько слоев клеточной мембраны, обернутые вокруг аксона.

Шванновские клетки, обволакивающие аксон, разделяются перехватами Ранвье, в которых отсутствует миелин.

Функции

Основными функциями миелиновой оболочки являются:

  • изоляция аксона;
  • ускорение проведения импульса;
  • экономия энергии за счет сохранения ионных потоков;
  • опора нервного волокна;
  • питание аксона.

Как работают импульсы

Нервные клетки изолированы благодаря своей оболочке, но все же взаимосвязаны между собой. Участки, в которых клетки соприкасаются, называются синапсы. Это место, где встречаются аксон одной клетки и сома или дендрит другой.

Электрический импульс может передаваться внутри одной клетки или от нейрона к нейрону. Это сложный электрохимический процесс, который основан на перемещении ионов через оболочку нервной клетки.

В спокойном состоянии внутрь нейрона попадают только ионы калия, а ионы натрия остаются снаружи. В момент возбуждения они начинаются меняться местами. Аксон положительно заряжается изнутри. Затем натрий перестает поступать через мембрану, а отток калия не прекращается.

Изменение напряжения из-за движения ионов калия и натрия называется «потенциал действия». Он распространяется медленно, но миелиновая оболочка, обволакивающая аксон, ускоряет это процесс, препятствуя оттоку и притоку ионов калия и натрия из тела аксона.

Проходя через перехват Ранвье, импульс перескакивает с одного участка аксона на другой, что и позволяет ему двигаться быстрее.

После того, как потенциал действия пересекает разрыв в миелине, импульс останавливается, и возвращается состояние покоя.

Такой способ передачи энергии характерен для ЦНС. Что касается вегетативной нервной системы, в ней часто встречаются аксоны, покрытые малым количеством миелина или вообще не покрытые им. Скачки между шванновскими клетками не осуществляются, и импульс проходит гораздо медленнее.

Состав

Миелиновый слой состоит из двух слоев липидов и трех слоев белка. Липидов в нем гораздо больше (70-75%):

  • фосфолипиды (до 50%);
  • холестерин (25%);
  • глактоцереброзид (20%) и др.

Белковые слои тоньше липидных. Содержание белка в миелине – 25-30%:

  • протеолипид (35-50%);
  • основной белок миелина (30%);
  • белки Вольфграма (20%).

Существуют простые и сложные белки нервной ткани.

Роль липидов в строении оболочки

Липиды играют ключевую роль в строении мякотной оболочки. Они являются структурным материалом нервной ткани и защищают аксон от потери энергии и ионных потоков. Молекулы липидов обладают способностью восстанавливать ткани мозга после повреждений. Липиды миелина отвечают за адаптацию зрелой нервной системы. Они выступают в роли рецепторов гормонов и осуществляют коммуникацию между клетками.

Роль белков

Немаловажное значение в строении миелинового слоя имеют молекулы белков. Они наряду с липидами выступают в роли строительного материала нервной ткани. Их главной задачей является транспортировка питательных веществ в аксон. Также они расшифровывают сигналы, поступающие в нервную клетку и ускоряют реакции в ней. Участие в обмене веществ – важная функция молекул белка миелиновой оболочки.

Дефекты миелинизации

Разрушение миелинового слоя нервной системы – очень серьезная патология, из-за которой происходит нарушение передачи нервного импульса. Она вызывает опасные заболевания, зачастую несовместимые с жизнью. Существуют два типа факторов, влияющие на возникновение демиелинизации:

  • генетическая предрасположенность к разрушению миелина;
  • воздействие на миелин внутренних или внешних факторов.
  • Демиелизация делится на три вида:
  • острая;
  • ремиттирующая;
  • острая монофазная.

Почему происходит разрушение

Наиболее частыми причинами разрушения мякотной оболочки являются:

  • ревматические болезни;
  • существенное преобладание белков и жиров в питании;
  • генетическая предрасположенность;
  • бактериальные инфекции;
  • отравление тяжелыми металлами;
  • опухоли и метастазы;
  • продолжительные сильные стрессы;
  • плохая экология;
  • патологии иммунной системы;
  • длительный прием нейролептиков.

Заболевания вследствие демиелинизации

Демиелинизирующие заболевания центральной нервной системы:

  1. Болезнь Канавана – генетическое заболевание, возникающее в раннем возрасте. Его характеризуют слепота, проблемы с глотанием и приемом пищи, нарушение моторики и развития. Также следствием этой болезни являются эпилепсия, макроцефалия и мышечная гипотония.
  2. Болезнь Бинсвангера. Чаще всего вызвана артериальной гипертонией. Больных ожидают расстройства мышления, слабоумие, а также нарушения ходьбы и функций тазовых органов.
  3. . Может вызвать поражения нескольких частей ЦНС. Ему сопутствуют парезы, параличи, судороги и нарушение моторики. Также в качестве симптомов рассеянного склероза выступают поведенческие расстройства, ослабление лицевых мышц и голосовых связок, нарушение чувствительности. Зрение нарушается, меняется восприятие цвета и яркости. Рассеянный склероз также характеризуется расстройствами тазовых органов и дистрофией ствола мозга, мозжечка и черепных нервов.
  4. Болезнь Девика – демиелинизация в зрительном нерве и спинном мозге. Болезнь характеризуют нарушения координации, чувствительности и функций тазовых органов. Ее отличают серьезные нарушения зрения и даже слепота. В клинической картине также наблюдаются парезы, мышечная слабость и вегетативная дисфункция.
  5. Синдром осмотической демиелинизации . Возникает из-за недостатка натрия в клетках. Симптомами выступают судороги, нарушения личности, потери сознания вплоть до комы и смерти. Следствием заболевания являются отек головного мозга, инфаркт гипоталамуса и грыжа ствола мозга.
  6. Миелопатии – различные дистрофические изменения в спинном мозге. Их характеризуют мышечные нарушения, сенсорные расстройства и дисфункция тазовых органов.
  7. Лейкоэнцефалопатия – разрушение миелиновой оболочки в подкорке головного мозга. Больных мучают постоянная головная боль и эпилептические припадки. Также наблюдаются нарушения зрения, речи, координации и ходьбы. Снижается чувствительность, наблюдаются расстройства личности и сознания, прогрессирует слабоумие.
  8. Лейкодистрофия – генетическое нарушение метаболизма, вызывающее разрушение миелина. Течение болезни сопровождают мышечные и двигательные расстройства, параличи, нарушение зрения и слуха, прогрессирующее слабоумие.

Демиелинизирующие заболевания периферической нервной системы:

  1. Синдром Гийена-Барре – острая воспалительная демиелинизация. Она характеризуется мышечными и двигательными нарушениями, дыхательной недостаточностью, частичным или полным отсутствием сухожильных рефлексов. Больные страдают заболеваниями сердца, нарушением работы пищеварительной системы и тазовых органов. Парезы и нарушения чувствительности так же являются признаками этого синдрома.
  2. Невральная амиотрофия Шарко-Мари-Тута – наследственная патология миелиновой оболочки. Ее отличают нарушения чувствительности, дистрофия конечностей, деформация позвоночника и тремор.

Это лишь часть заболеваний, возникающих из-за разрушения миелинового слоя. Симптомы в большинстве случаев схожи. Точный диагноз можно поставить лишь после проведения компьютерной или магнитно-резонансной томографии. Немаловажную роль в постановке диагноза играет уровень квалификации врача.

Принципы лечения дефектов оболочки

Заболевания, связанные с разрушением мякотной оболочки, очень сложно лечить. Терапия направлена в основном на купирование симптомов и остановку процессов разрушения. Чем раньше диагностировано заболевание, тем больше шансов остановить его течение.

Возможности восстановления миелина

Благодаря своевременному лечению можно запустить процесс восстановления миелина. Однако, новая миелиновая оболочка не будет так же хорошо выполнять свои функции. Кроме того, болезнь может перейти в хроническую стадию, а симптомы сохранятся, лишь слегка сгладятся. Но даже незначительная ремиелинизация способна остановить ход болезни и частично вернуть утраченные функции.

Современные лекарственные средства, направленные на регенерацию миелина более эффективны, но отличаются очень высокой стоимостью.

Терапия

Для лечения заболеваний, вызванных разрушением миелиновой оболочки, используются следующие препараты и процедуры:

  • бета-интерфероны (останавливают течение заболевания, снижают риск возникновения рецидивов и инвалидности);
  • иммуномодуляторы (воздействуют на активность иммунной системы);
  • миорелаксанты (способствуют восстановлению двигательных функций);

  • ноотропы (восстанавливают проводниковую активность);
  • противовоспалительные (снимают воспалительный процесс, вызвавший разрушение миелина);
  • (предупреждают повреждение нейронов мозга);
  • обезболивающие и противосудорожные препараты;
  • витамины и антидепрессанты;
  • фильтрация ликвора (процедура, направленная на очищение спинномозговой жидкости).

Прогноз по заболеваниям

В настоящее время лечение демиелинизации не дает стопроцентного результата, но учеными активно ведутся разработки лекарственных средств, направленных на восстановление мякотной оболочки. Исследования проводятся по следующим направлениям:

  1. Стимуляция олигодендроцитов . Это клетки, производящие миелин. В организме, пораженном демиелинизацией, они не работают. Искусственная стимуляция этих клеток поможет запустить процесс восстановления разрушенных участков миелиновой оболочки.
  2. Стимуляция стволовых клеток . Стволовые клетки могут превращаться в полноценную ткань. Есть вероятность, что они могут заполнять и мякотную оболочку.
  3. Регенерация гематоэнцефалического барьера . При демиелинизации этот барьер разрушается и позволяет лимфоцитам негативно влиять на миелин. Его восстановление защищает миелиновый слой от атаки иммунной системы.

Возможно, в скором времени заболевания, связанные с разрушением миелина, перестанут быть неизлечимыми.


Нервным волокном называют отросток нервной клетки, покрытый оболочками. Центральную часть любого отростка нервной клетки (аксона или дендрита) называют осевым цилиндром. Осевой цилиндр располагается в аксоплазме и состоит из тончайших волокон - нейрофибрилл и покрыт оболочкой - аксолеммой. При рассмотрении под электронным микроскопом установлено, что каждая нейрофибрилла состоит из еще более тонких волокон разного диаметра, имеющих трубчатое строение. Трубочки диаметром до 0,03 мкм называют нейротубулями, а диаметром до 0,01 мкм - нейрофиламентами. По нейротубулям и нейрофиламентам поступают к нервным окончаниям вещества, образующиеся в теле клетки и служащие для передачи нервного импульса.
В аксоплазме содержатся митохондрии, количество которых особенно велико в окончаниях волокон, что связывают с передачей возбуждения с аксона на другие клеточные структуры. В аксоплазме мало рибосом и РНК, чем объясняется низкий уровень обмена веществ в нервном волокне.

Аксон покрыт миелиновой оболочкой до места его разветвления у иннервируемого органа, которая располагается вдоль осевого цилиндра не сплошной линией, а сегментами длиной 0,5-2 мм. Пространство между сегментами (1-2 мкм) называют перехватом Ранвье. Миелиновая оболочка образуется шванновскими клетками путем их многократного обкручивания вокруг осевого цилиндра. Каждый ее сегмент образован одной шванновской клеткой, скрученной в сплошную спираль.
В области перехватов Ранвье миелиновая оболочка отсутствует, и концы шванновских клеток плотно прилегают к аксолемме. Наружная мембрана шванновских клеток, покрывающая миелин, образует самую верхнюю оболочку нервного волокна, которую называют шванновской оболочкой или неврилеммой. Шванновским клеткам придают особое значение, их считают клетками-спутниками, которые дополнительно обеспечивают обмен веществ в нервном волокне. Они принимают участие в процессе регенерации нервных волокон.

Различают мякотные, или миелиновые, и безмякотные, или безмиелиновые, нервные волокна. К миелиновым относят волокна соматической нервной системы и некоторые волокна вегетативной нервной системы. Безмякотные волокна отличаются тем, что в них не развивается миелиновая оболочка и их осевые цилиндры покрыты только шванновскими клетками (шванновской оболочкой). К ним относится большинство волокон вегетативной нервной системы.

^ Свойства нервных волокон . В организме возбуждение проводится по нервам, в состав которых входит большое количество различных по строению и функции нервных волокон.

Основные свойства нервных волокон заключаются в следующем: связь с телом клетки, высокая возбудимость и лабильность, невысокий уровень обмена веществ, относительная неутомляемость, большая скорость проведения возбуждения (до 120 м/с). Миелинизация нервных волокон осуществляется в центробежном направлении, отступая несколько микрон от тела клетки к периферии нервного волокна. Отсутствие миелиновой оболочки ограничивает функциональные возможности нервного волокна. Реакции возможны, но они диффузные и слабо координированы. По мере развития миелиновой оболочки возбудимость нервного волокна постепенно повышается. Раньше других начинают миелинизироваться периферические нервы, затем волокна спинного мозга, стволовой части головного мозга, мозжечка и позже - больших полушарий головного мозга. Миелинизация спинно-мозговых и черепно-мозговых нервов начинается на четвертом месяце внутриутробного развития. Двигательные волокна покрыты миелином к моменту рождения. Большинство смешанных и центростремительных нервов миелинизируются к трем месяцам после рождения, некоторые - к трем годам. Проводящие пути спинного мозга хорошо развиты к моменту рождения и почти все миелинизированы. Не заканчивается миелинизация только пирамидных путей. Скорость миелинизации черепно-мозговых нервов различна; большинство из них миелинизируются к 1,5-2 годам. Миелинизация нервных волокон головного мозга начинается во внутриутробном периоде развития и заканчивается после рождения. Несмотря на то, что к трем годам в основном заканчивается миелинизация нервных волокон, рост в длину миелиновой оболочки и осевого цилиндра продолжается и после трехлетнего возраста.
^

2.5. Строение синапса. Механизм передачи возбуждения
в синапсах


Синапс состоит из пресинаптического и постсинаптического отделов, между которыми имеется небольшое пространство, получившее название синоптической щели (рис. 4).


^ Рис. 4. Межнейрональный синапс:

1 - аксон; 2 - синаптические пузырьки; 3 - синаптическая щель;

4 - хеморецепторы постсинаптической мембраны; 5 - поссинаптическая мембрана; 6 - синаптическая бляшка; 7 - митохондрия

Благодаря электронно-микроскопической технике исследования обнаружены синаптические контакты между различными образованиями нейронов. Синапсы, образованные аксоном и телом (сомой) клетки, называют аксосоматическими, аксоном и дендритом аксодендритическими. В последнее время изучены контакты между аксонами двух нейронов - они получили название аксо-аксональных синапсов. Соответственно контакты между дендритами двух нейронов называют дендро-дендритическими синапсами.

Синапсы между окончанием аксона и иннервируемым органом (мышцей) получили название нервно-мышечных синапсов или концевых пластинок. Пресинаптический отдел синапса представлен конечной веточкой аксона, которая на расстоянии 200-300 мкм от контакта теряет миелиновую оболочку. В пресинаптическом отделе синапса содержится большое количество митохондрий и пузырьков (везикул) округлой или овальной формы размером от 0,02 до 0,05 мкм. В везикулах содержится вещество, способствующее передаче возбуждения с одного нейрона на другой, которое называют медиатором. Везикулы концентрируются вдоль поверхности пресинаптического волокна, находящейся против синаптической щели, ширина которой равна 0,0012-0,03 мкм. Постсинаптический отдел синапса образуется мембраной сомы клетки или ее отростков, а в концевой пластинке - мембраной мышечного волокна. Пресинаптическая и постсинаптическая мембраны имеют специфические особенности строения, связанные с передачей возбуждения: они несколько утолщены (их диаметр около 0,005 мкм). Длина этих участков составляет 150-450 мкм. Утолщения могут быть сплошными и прерывистыми. Постсинаптическая мембрана у некоторых синапсов складчатая, что увеличивает поверхность соприкосновения ее с медиатором. Аксо-аксональные синапсы имеют строение, подобное аксо-дендритическим, в них везикулы располагаются в основном с одной (пресинаптической) стороны.

^ Механизм передачи возбуждения в концевой пластинке. В настоящее время представлено много доказательств химической природы передачи импульса и изучен ряд медиаторов, т. е. веществ, способствующих передаче возбуждения с нерва на рабочий орган или с одной нервной клетки на другую.

В нервно-мышечных синапсах, в синапсах парасимпатической нервной системы, в ганглиях симпатической нервной системы, в ряде синапсов центральной нервной системы медиатором является ацетилхолин. Эти синапсы названы холинэргическими.

Обнаружены синапсы, в которых передатчиком возбуждения является адреналиноподобное вещество; они названы адреналеэгическими. Выделены и другие медиаторы: гаммааминомасляная кислота (ГАМК), глютаминовая и др.

Прежде всего было изучено проведение возбуждения в концевой пластинке, так как она более доступна для исследования. Последующими экспериментами было установлено, что в синапсах центральной нервной системы осуществляются аналогичные процессы. Во время возникновения возбуждения в пресинаптической части синапса увеличивается количество везикул и скорость их движения. Соответственно увеличивается количество ацетилхолина и фермента холинацетилазы, способствующего его образованию. При раздражении нерва в пресинаптической части синапса одновременно разрушается от 250 до 500 везикул, соответственно выделяется в синаптическую щель такое же количество квантов ацетилхолина. Это связано с влиянием, ионов кальция. Его количество в наружной среде (со стороны щели) в 1000 раз больше, чем внутри пресинаптического отдела синапса. Во время деполяризации увеличивается проницаемость пресинаптической мембраны для ионов кальция. Они входят в пресинаптическое окончание и способствуют вскрытию везикул, обеспечивая выход ацетилхолина в синаптическую щель.

Выделившийся ацетилхолин диффундирует к постсинаптической мембране и действует на участки, особенно к нему чувствительные,- холинорецепторы, вызывая возбуждение в постсинаптической мембране. На проведение возбуждения через синаптическую щель затрачивается около 0,5 м/с. Это время получило название синаптической задержки. Оно слагается из времени, в течение которого происходит освобождение ацетилхолина, диффузии его от пресинаптической мембраны
к постсинаптической и воздействия на холинорецепторы. В результате действия ацетилхолина на холинорецепторы открываются поры постсинаптической мембраны (мембрана разрыхляется и становится на короткое время проницаемой для всех ионов). При этом в постсинаптической мембране возникает деполяризация. Одного кванта медиатора достаточно для того, чтобы слабо деполяризовать мембрану и вызвать потенциал амплитудой 0,5 мВ. Такой потенциал называют миниатюрным потенциалом концевой пластинки (МПКП). При одновременном освобождении 250-500 квантов ацетилхолина, т. е. 2,5-5 млн молекул, наступает максимальное увеличение числа миниатюрных потенциалов.

Миелиновая оболочка нервных волокон в центральной нервной системе образуется отростками олигодендроцитов. Как правило, миелиновыми оболочками покрыты аксоны, иногда обнаруживаются миелинизированные дендриты и, как редкое исключение – клеточные тела. Отростки олигодендроцитов, окружая нервные волокна, образуют мезаксон, который вращается вокруг них, образуя ламеллы. Мезаксон имеет пятислойную структуру: белок-липид-белок-липид-белок. Эта структура,многократно закручиваясь вокруг аксона, конденсируется в компактную миелиновую оболочку. На электронных микрофотографиях миелин представляет собой серию чередующихся липидных и белковых слоёв, число которых может достигать у крупных аксонов 100 и более. Сплав цитоплазматических поверхностей мембраны олигодендроцита образует темную линию (главный период), а сплав экстраклеточных поверхностей – половинный или промежуточный период (более светлая линия). Повторяющийся период миелина определяется толщиной составляющего его липидного бислоя, расположенного между двумя белковыми слоями. Из всех биологических мембран миелин имеет самое низкое содержание воды и самое высокое отношение липидов к белку. Здесь белки составляют 15-30 %, а липиды – 70-85 % сухой массы. Липиды и белки миелина обладают высокой гидрофобностью, что определяет свойство миелина как электроизолятора.
В отличие от периферических нервных волокон, где один сегмент миелиновой оболочки представлен одной шванновской клеткой (см. выше), миелиновая оболочка одного сегмента нервных волокон в центральной нервной системе образуется, как правило, отростками нескольких близлежащих олигодендроцитов. С другой стороны, показано, что отростки одного олигодендроцита могут участвовать в образовании миелинового футляра для нескольких волокон. Толщина миелиновой оболочки в волокнах центральной нервной системы обычно невелика и количество ламелл редко достигает нескольких десятков и сотен. Миелинизируются даже очень тонкие волокна – от 0,3 мкм в диаметре. В целом, при одинаковом диаметре аксона, миелиновые оболочки в центральной нервной системе тоньше, чем в периферической, при этом сохраняется правило – чем тоньше волокно, там короче миелиновые сегменты.
Миелинизация нервных волокон у человека начинается на 5-6 месяце пренатального развития в спинном мозге. В дальнейшем число миелинизированных волокон нарастает, при этом процесс развивается неравномерно в разных структурах центральной нервной системы, по мере формирования их функций. К моменту рождения миелинизировано значительное количество волокон спинного мозга, стволовых ядер. Большинство проводящих путей миелинизируется в начальные годы постнатального периода. Процесс миелинизации проводящих путей завершается, в основном к 7-9 летнему возрасту. Позже других миелинизируются волокна ассоциативных путей переднего мозга. В коре больших полушарий миелинизированные волокна появляются после рождения, у новорожденных в коре встречаются лишь одиночные миелизированные волокна. Процесс миелинизации в ограниченных масштабах продолжается в течение всей жизни.