Жизнь, отданная науке - Б.Н.Петров - Управление лунным космическим кораблем.

::: Как управлять космическим кораблем: Инструкция Корабли серии «Союз», которым почти полвека назад сулили лунное будущее, так и не покинули околоземную орбиту, зато завоевали себе репутацию самого надежного пассажирского космического транспорта. Посмотрим же на них взглядом командира корабля.

Космический корабль «Союз-ТМА» состоит из приборно-агрегатного отсека (ПАО), спускаемого аппарата (СА) и бытового отсека (БО), причем СА занимает центральную часть корабля. Подобно тому как в авиалайнере во время взлета и набора высоты нам предписывают пристегнуть ремни и не покидать кресел, космонавты также обязаны на этапе выведения корабля на орбиту и маневра находиться в своих креслах, быть пристегнутыми и не снимать скафандров. После окончания маневра экипажу, состоящему из командира корабля, бортинженера-1 и бортинженера-2, разрешается снять скафандры и переместиться в бытовой отсек, где можно поесть и сходить в туалет. Полет к МКС занимает около двух суток, возврат на Землю - 3−5 часов. Применяемая в «Союзе-ТМА» система отображения информации (СОИ) «Нептун-МЭ» относится к пятому поколению СОИ для кораблей серии «Союз». Как известно, модификация «Союз-ТМА» создавалась специально под полеты к  Международной космической станции, что предполагало участие астронавтов NASA с их более объемными скафандрами. Чтобы астронавты смогли пробираться через люк, соединяющий бытовой блок со спускаемым аппаратом, потребовалось уменьшить глубину и высоту пульта, естественно, при сохранении его полной функциональности. Проблема также состояла в том, что ряд приборных узлов, использовавшихся в предыдущих версиях СОИ, уже не мог быть произведен из-за дезинтеграции бывшей советской экономики и прекращения некоторых производств. Tренажерный комплекс «Союз-ТМА», находящийся в Центре подготовки космонавтов им. Гагарина (Звездный городок), включает в себя макет спускаемого аппарата и бытового отсека. Поэтому всю СОИ пришлось принципиально переработать. Центральным элементом СОИ корабля стал интегрированный пульт управления, аппаратно совместимый с компьютером типа IBM PC. Космический пульт

Cистема отображения информации (СОИ) в корабле «Союз-ТМА» носит название «Нептун-МЭ». В настоящее время существует более новая версия СОИ для так называемых цифровых «Союзов» - кораблей типа «Союз-ТМА-М». Однако изменения затронули в основном электронную начинку системы - в частности, аналоговая система телеметрии заменена на цифровую. В основном же преемственность «интерфейса» сохранена. 1. Интегрированный пульт управления (ИнПУ). Всего на борту спускаемого аппарата два ИнПУ - один у командира корабля, второй у сидящего слева бортинженера-1. 2. Цифровая клавиатура для введения кодов (для навигации по дисплею ИнПУ). 3. Блок управления маркером (применяется для навигации по дисплею ИнПУ). 4. Блок электролюминесцентной индикации текущего состояния систем (ТС). 5. РПВ-1 и РПВ-2 - ручные поворотные вентили. Они отвечают за наполнение магистралей кислородом из шаробаллонов, один из которых расположен в приборно-агрегатном отсеке, а другой - в самом спускаемом аппарате. 6. Электропневмоклапан подачи кислорода при посадке. 7. Визир специальный космонавта (ВСК). Во время стыковки командир корабля смотрит на стыковочный узел и наблюдает за стыковкой корабля. Для передачи изображения применяется система зеркал, примерно такая же, как в перископе на подводной лодке. 8. Ручка управления движением (РУД). С ее помощью командир корабля управляет двигателями для придания «Союзу-ТМА» линейного (положительного или отрицательного) ускорения. 9. Ручкой управления ориентацией (РУО) командир корабля задает вращение «Союза-ТМА» вокруг центра масс. 10. Холодильно-сушильный агрегат (ХСА) выводит из корабля тепло и влагу, неизбежно накапливающиеся в воздухе ввиду присутствия на борту людей. 11. Тумблеры включения вентиляции скафандров при посадке. 12. Вольтметр. 13. Блок предохранителей. 14. Кнопка запуска консервации корабля после стыковки. Ресурс «Союза-ТМА» всего четверо суток, поэтому его надо беречь. После стыковки электропитание и вентиляция поставляются уже самой орбитальной станцией. Статья опубликована в журнале «Популярная механика»

Игры про космос сложно представить без управления космическим кораблем . Тем не менее в большинстве космостратегий корабли представляют собой лишь еще один юнит, который можно обвести рамочкой и отправить крушить противника. Список игр, в которых менеджмент корабля занимает столь же важное место в геймплее, как и «пиу-пыщ» в невесомости, значительно короче. Поэтому в нашем топе вы найдете экшены и симуляторы космических полетов на PC, в которых для достижения победы вам нужно осваивать и апгрейдить свой крафт .

ММО

1. Star Conflict

Эта сессионая онлайн игра про космические корабли , разработанная российской студией StarGem Inc и издаваемая настоящим монстром российского геймдева, компанией Gaijin Entertainment, предлагает вам сесть за штурвал выбранного вами корабля и с головой окунуться в динамичные сражения против ботов, рейд-боссов и живых противников. Кроме сессионного формата, здесь доступна и сюжетная кампания в открытом мире .

Игру отличает яркая и сочная графика, достаточно удобное управление (что в целом нехарактерно в полном 3D), огромный выбор доступных для прокачки кораблей и высокий онлайн на серверах. Скачать клиент игры можно на официальном сайте Gaijin.

2. Star Trek Online

Хорошие игры по кино, к сожалению, считаются огромной редкостью. Хорошие игры по телесериалам и вовсе можно пересчитать по пальцам. И пусть Star Trek Online не назовешь шедевром космических ММОРПГ , но звание как минимум «неплохой игры» этот проект все-таки заслуживает.

3. Entropia Universe

4. Звездные Призраки

5. EVE Online

Топ игр про космические корабли на ПК немыслим без этой грандиозной ММО со сверхмасштабными сражениями и огромным количеством игроков на серверах, ведь в каждый момент времени в игровом мире находятся десятки тысяч геймеров – и это несмотря на то, что в мае 2018 года EVE исполнилось солидные 15 лет.

Мало ММО могут похвастаться такой продолжительностью жизни. Достигнуть такого успеха игре помог гигантский игровой мир, огромное разнообразие кораблей и модулей и множество доступных для изучения профессий, среди которых как боевые скиллы, так и навыки крафта.

6. Elite: Dangerous

Играть в «Элиту» – удел избранных ценителей жанра хардкорных космосимов . Никто не будет вести вас за ручку, разжевывать детали управления или подкидывать на старте крутой шмот – у вас только корабль, 1000 кредитов и множество лежащих перед вами путей.

Одиночные

1. FTL: Faster Than Light

В отличие от большинства игр нашей подборки, в которых перед игроком ставятся масштабные и амбиционзные цели, в FTL на первый взгляд все куда проще – нужно всего лишь довести корабль из пункта А в пункт Б.

Дьявол, как всегда, кроется в деталях – гибель каждого члена экипажа здесь почти необратима, потеря корабля означает провал миссии, а путешествие оказывается полным встреч с повстанцами, пиратами, агрессивными космитами. Суть геймплея состоит в грамотном распределении экипажа и энергии корабельного реактора между разными отсеками.

2. Space Rangers HD: A War Apart

HD-переиздание легендарного хита начала двухтысячных годов порадует геймеров не только заметно похорошевшей графикой, но и тоннами новых квестов (включая так полюбившиеся игрокам текстовые).

Не обошлось и без нового оборудования и корпусов кораблей и даже дополнительной сюжетной кампаниеи, посвященной противостоянию мощному пиратскому флоту, решившему вторгнуться в системы Коалиции прямо посреди хаоса войны с Доминаторами.

3. Rebel Galaxy

Если большинство игр нашего топа предлагают вам попробовать себя в роли пилота звездного истребителя, то Rebel Galaxy целиком и полностью посвящена управлению грандиозными линейными кораблями, несущими тысячи истребителей и сотни оружейных турелей.

Геймплей здесь больше похож на морские сражения XVII века, чем на скоростные зарубы типа Star Conflict – корабли степенно сходятся, разворачиваются бортами и обрушивают друг на друга тераватты лазерно-плазменной ярости.

4. Серия Х

Игры этой знаменитой серии позволяют геймером почувствовать себя настоящим адмиралом звездного флота – ведь в этом космосиме можно не только лично пилотировать истребители и огромные линкоры, но и создавать соединения из принадлежащих вам кораблей и отправлять их выполнять задания самостоятельно.

В итоге каждая из игр серии сочетает драйв заруб в духе Elite с размахом стратегий типа Master of Orion.

5. Everspace

Во времена, когда даже создатели серии Elite сдались и клепают ММО, немецкая компания Rock Fish Games отважилась выпустить сингл-онли космосим.

Everspace удается сочетать качественную графику, вменяемую оптимизацию движка (что редкость для игр 2017 года), динамичный геймплей, продуманную систему повреждений модулей корабля и удобное управление (что не очень характерно для космосимов). А вот по хардкорности и закрученности сюжета Everspace уступает многим другим играм из нашего топа.

6. Freelancer

В первые месяцы после релиза российские геймеры встретили эту игру чуть ли не восторженно – ведь по сути она воспроизводила тот самый геймплей «Космических рейнджеров», да еще и в полном 3D и с возможностью лично побегать по планетам и космическим базам.

Что еще нужно для счастья? Как оказалось – нужны побочные квесты, которыми пестрят более успешные игры из нашего топа. Freelancer можно пройти один раз, восхититься замечательной по меркам 2003 года графикой и разнообразием доступных кораблей.

Где купить: найти игру в официальных цифровых сервисах не удалось.


Корабли серии «Союз», которым почти полвека назад сулили лунное будущее, так и не покинули околоземную орбиту, зато завоевали себе репутацию самого надежного пассажирского космического транспорта. Посмотрим же на них взглядом командира корабля

Космический корабль «Союз-ТМА» состоит из приборно-агрегатного отсека (ПАО), спускаемого аппарата (СА) и бытового отсека (БО), причем СА занимает центральную часть корабля. Подобно тому как в авиалайнере во время взлета и набора высоты нам предписывают пристегнуть ремни и не покидать кресел, космонавты также обязаны на этапе выведения корабля на орбиту и маневра находиться в своих креслах, быть пристегнутыми и не снимать скафандров. После окончания маневра экипажу, состоящему из командира корабля, бортинженера-1 и бортинженера-2, разрешается снять скафандры и переместиться в бытовой отсек, где можно поесть и сходить в туалет. Полет к МКС занимает около двух суток, возврат на Землю — 3−5 часов.

Применяемая в «Союзе-ТМА» система отображения информации (СОИ) «Нептун-МЭ» относится к пятому поколению СОИ для кораблей серии «Союз».

Как известно, модификация «Союз-ТМА» создавалась специально под полеты к  Международной космической станции, что предполагало участие астронавтов NASA с их более объемными скафандрами.

Чтобы астронавты смогли пробираться через люк, соединяющий бытовой блок со спускаемым аппаратом, потребовалось уменьшить глубину и высоту пульта, естественно, при сохранении его полной функциональности.

Проблема также состояла в том, что ряд приборных узлов, использовавшихся в предыдущих версиях СОИ, уже не мог быть произведен из-за дезинтеграции бывшей советской экономики и прекращения некоторых производств.

Tренажерный комплекс «Союз-ТМА», находящийся в Центре подготовки космонавтов им. Гагарина (Звездный городок), включает в себя макет спускаемого аппарата и бытового отсека.

Поэтому всю СОИ пришлось принципиально переработать. Центральным элементом СОИ корабля стал интегрированный пульт управления, аппаратно совместимый с компьютером типа IBM PC.

Космический пульт

Cистема отображения информации (СОИ) в корабле «Союз-ТМА» носит название «Нептун-МЭ». В настоящее время существует более новая версия СОИ для так называемых цифровых «Союзов» — кораблей типа «Союз-ТМА-М». Однако изменения затронули в основном электронную начинку системы — в частности, аналоговая система телеметрии заменена на цифровую. В основном же преемственность «интерфейса» сохранена.

1. Интегрированный пульт управления (ИнПУ). Всего на борту спускаемого аппарата два ИнПУ — один у командира корабля, второй у сидящего слева бортинженера-1.

2. Цифровая клавиатура для введения кодов (для навигации по дисплею ИнПУ).

3. Блок управления маркером (применяется для навигации по дисплею ИнПУ).

4. Блок электролюминесцентной индикации текущего состояния систем (ТС).

5. РПВ-1 и РПВ-2 - ручные поворотные вентили. Они отвечают за наполнение магистралей кислородом из шаробаллонов, один из которых расположен в приборно-агрегатном отсеке, а другой — в самом спускаемом аппарате.

6. Электропневмоклапан подачи кислорода при посадке.

7. Визир специальный космонавта (ВСК). Во время стыковки командир корабля смотрит на стыковочный узел и наблюдает за стыковкой корабля. Для передачи изображения применяется система зеркал, примерно такая же, как в перископе на подводной лодке.

8. Ручка управления движением (РУД). С ее помощью командир корабля управляет двигателями для придания «Союзу-ТМА» линейного (положительного или отрицательного) ускорения.

9. Ручкой управления ориентацией (РУО) командир корабля задает вращение «Союза-ТМА» вокруг центра масс.

10. Холодильно-сушильный агрегат (ХСА) выводит из корабля тепло и влагу, неизбежно накапливающиеся в воздухе ввиду присутствия на борту людей.

11. Тумблеры включения вентиляции скафандров при посадке.

12. Вольтметр.

13. Блок предохранителей.

14. Кнопка запуска консервации корабля после стыковки. Ресурс «Союза-ТМА» всего четверо суток, поэтому его надо беречь. После стыковки электропитание и вентиляция поставляются уже самой орбитальной станцией.

Много сложнейших задач автоматического управления космическими объектами возникает при управлении пилотируемыми ракетно-космическими комплексами, предназначенными для осуществления полета человека на Луну и возвращения на Землю. В качестве примера можно рассмотреть систему управления американским космическим кораблем «Аполлон», рассчитанным на экипаж, состоящий из трех человек.

В целом такой космический корабль состоит из трех отсеков, выводимых на траекторию полета к Луне с помощью мощной ракеты-носителя.

Командный отсек спроектирован для входа в атмосферу, и в нем большую часть полета находятся все три члена экипажа. Во вспомогательном отсеке расположены двигательные системы, обеспечивающие возможность выполнения маневров, источники питания и др. Для посадки на Луну предполагается использовать специальный отсек, в котором в это время будут находиться два члена экипажа, а третий астронавт будет при этом совершать полет по селеноцентрической орбите.

Система управления и навигации такого космического корабля является бортовой системой, применяемой для определения положения и скорости аппарата, а также для управления маневрами. Части этой системы расположены как в командном отсеке, так и в отсеке, предназначенном для совершения посадки на Луну. Каждая часть содержит устройства для запоминания ориентации в инерциальном пространстве и измерения перегрузок, устройства для проведения оптических измерений, приборные щиты и пульты управления, устройства для выведения данных на индикаторы и бортовую цифровую вычислительную машину.

Схема полета космического корабля «Аполлон»

Траектория полета лунного корабля состоит из активных участков и участков полета по инерции. Задачи системы управления на этих участках в некоторой степени различаются.

Во время полета по инерции необходимо знать положение аппарата и его скорость, т. е. решать навигационные задачи. При этом используется информация, получаемая с наземных станций слежения за полетом космического аппарата, данные по определению положения аппарата относительно звезд, Земли и Луны, полученные с помощью бортовых оптических устройств, и данные радиолокационных измерений. После сбора указанной информации становится возможным определение положения аппарата, его скорости и маневра, необходимого для попадания в заданную точку. На участках свободного полета, и особенно в периоды сбора навигационной информации, часто возникает необходимость в обеспечении ориентации аппарата. При выполнении маневров используется платформа, стабилизированная в пространстве с помощью гироскопов.

На платформе устанавливаются акселерометры, измеряющие ускорения и снабжающие информацией бортовую вычислительную машину. При управлении аппаратом перед посадкой на Луну необходимо знать его начальную скорость и положение. Информация об этих величинах формируется на участках полета по инерции.

Кратко рассмотрим задачи, которые должна решать система управления и навигации на различных этапах программы.

Выведение на геоцентрическую орбиту.При запуске ракеты-носителя управление осуществляется системой, установленной в передней части ракеты-носителя. На участке выведения, однако, система командного отсека вырабатывает команды, которые могут быть использованы в случае отказа системы управления ракеты-носителя. Кроме того, система управления командного отсека выдает экипажу информацию о точности выведения аппарата на заданную геоцентрическую орбиту.

Участок полета по геоцентрической орбите.Космический аппарат и последняя ступень ракеты-носителя совершают один или несколько витков по геоцентрической орбите. На этом этапе навигационные измерения, проводимые с помощью бортового оборудования, выполняются в основном с целью проверки правильности его функционирования. Оптические элементы системы управления командного отсека используются для уточнения положения и скорости аппарата. Данные, полученные с помощью бортовых устройств, используются совместно с данными, передаваемыми с наземных станций слежения.

Участок свободного полета к Луне.Аппарат отделяется от последней ступени ракеты-носителя вскоре после схода с геоцентрической орбиты. Начальные положения и скорость аппарата точно определяются как с помощью бортовых систем, так и наземных станций. Когда траектория аппарата точно определена, может производиться коррекция траектории. Обычно предусматривается возможность выполнения трех корректирующих маневров, причем каждый из них может привести к изменению скорости аппарата на величину до 3м/сек. Первая коррекция траектории может быть выполнена примерно через час после старта с геоцентрической орбиты.

Участок выведения лунного отсека на траекторию полета к поверхности Луны.Первая задача системы управления лунного отсека состоит в обеспечении точного выполнения маневра, при котором лунный отсек за счет изменения его скорости на несколько сот метров в секунду выводится на траекторию, заканчивающуюся на высоте 16 км в окрестностях заданной точки посадки. Начальные условия для выполнения этого маневра определяются с помощью навигационного оборудования командного отсека. Данные вводятся в систему управления лунного отсека вручную.

Участок посадки на поверхность Луны.В соответствующий момент времени, установленный системой управления лунного отсека, запускаются посадочные двигатели, уменьшающие скорость спуска лунного отсека. На начальном этапе наведения отсека с помощью инерциальной системы измеряются ускорения и обеспечивается необходимая ориентация аппарата. При дальнейшем управлении посадкой, после того как высота и скорость отсека упадут до заданных пределов, будет использоваться радиолокатор. В то же время члены экипажа обеспечивают ориентацию отсека с помощью специальных отметок, нанесенных на иллюминатор, и информации, поступающей с вычислительной машины. Система управления должна обеспечить наиболее эффективное использование топлива при осуществлении мягкой посадки в заданном месте.

Этап пребывания на поверхности Луны.Когда лунный отсек находится на поверхности Луны, специальный радиолокатор, который используется также и для обеспечения встречи отсеков на орбите, осуществляет слежение за командным отсеком для точного определения положения орбиты командного отсека относительно точки посадки.

Этап старта с поверхности Луны.Для соответствующих начальных условий вычислительная машина отсека определяет траекторию, обеспечивающую встречу с командным отсеком, совершающим полет по орбите спутника Луны, и выдается команда на взлет. С помощью инерциальной системы происходит наведение лунного отсека и определяется момент выключения двигателя. После выключения двигателя лунный отсек совершает свободный полет по траектории, близкой к траектории командного отсека.

Этап полета по промежуточной траектории.Радиолокатор, установленный на лунном отсеке, позволяет получить информацию об относительном положении обоих отсеков. После уточнения взаимного расположения траекторий можно производить их коррекцию аналогично тому, как это делалось на участке полета к Луне.

Этап встречи на селеноцентрической орбите.Когда отсеки сблизятся, по сигналам инерциальной и радиолокационной систем производится управление тягой двигателей, чтобы уменьшить относительную скорость между отсеками. Управление стыковкой отсеков может производиться вручную или автоматически.

Возвращение к Земле.Возвращение командного и вспомогательного отсека к Земле выполняется аналогично этапу полета к Луне с проведением корректирующих маневров. В конце этого участка навигационная система должна точно определить начальные условия для входа в атмосферу и обеспечить вход в относительно узкий «коридор», ограниченный сверху и снизу.

Вход в атмосферу.На участке входа в атмосферу по данным о перегрузках и ориентации аппарата, получаемым с инерциальной системы, производится управление движением отсека с помощью изменения его угла крена. Командный отсек является осесимметричным телом, но его центр массы не лежит на оси симметрии и при полете на балансировочном угле атаки аэродинамическое качество* аппарата составляет около 0,3. Это позволяет, изменяя угол крена, менять угол атаки и таким образом осуществлять управление полетом в продольной плоскости. При входе в атмосферу Земли происходит аэродинамическое торможение командного отсека. При этом его скорость снижается со второй космической до скорости, несколько меньшей, чем первая космическая (круговая). После первого погружения в атмосферу аппарат переходит на баллистическую траекторию, выходя за пределы атмосферы, а затем снова входит в плотные слои атмосферы и переходит на траекторию спуска. Этап управления космическим кораблем при первом погружении в атмосферу является чрезвычайно ответственным, так как, с одной стороны, система управления должна обеспечить поддержание перегрузок и аэродинамического нагрева в заданных пределах, а с другой - обеспечить требуемую величину подъемной силы, при которой будет достигнута необходимая дальность и приземление корабля в заданном районе.

* Аэродинамическим качеством называется отношение величины подъемной силы к силе лобового сопротивления.

Управление космическим кораблем на участке второго погружения может осуществляться по аналогии с управлением при снижении кораблей-спутников.

Наука и техника управления космическими летательными аппаратами находится еще в начальном периоде своего развития. За десятилетие, прошедшее со времени запуска первого искусственного спутника Земли, она сделала огромные успехи и разрешила многие труднейшие проблемы, однако перспективы ее развития еще более грандиозны.

Совершенствование средств вычислительной техники, микроминиатюризация элементов электронных устройств, развитие средств обработки и передачи информации, построение измерительно-информационных устройств на новых физических принципах, разработка новых принципов и устройств ориентации, стабилизации и управления открывают необозримые горизонты создания совершенных пилотируемых и беспилотных космических летательных аппаратов, которые помогут человеку познать тайны Вселенной и послужат решению многих практических задач.

КОСМИЧЕСКИЙ КОРАБЛЬ

Космическими кораблями в наше время называются аппараты, созданные для доставки космонавтов на околоземную орбиту и возвращения их потом на Землю. Понятно, что технические требования к космическому кораблю более жесткие, чем к любым другим космическим аппаратам. Условия полета (перегрузки, температурный режим, давление и т.п.) должны выдерживаться для них очень точно, дабы не создалась угроза жизни человека. В корабле, который на несколько часов или даже суток становится домом для космонавта, должны быть созданы нормальные человеческие условия - космонавт должен дышать, пить, есть, спать, отправлять естественные потребности. Он должен иметь возможность в процессе полета разворачивать корабль по своему усмотрению и менять орбиту, то есть корабль при своем движении в пространстве должен легко переориентироваться и управляться. Для возвращения на Землю космический корабль должен погасить всю ту огромную скорость, которую сообщила ему при старте ракета‑носитель. Если бы Земля не имела атмосферы, на это пришлось бы потратить столько же горючего, сколько было израсходовано при подъеме в космос. К счастью, в этом нет необходимости: если осуществлять посадку по очень пологой траектории, постепенно погружаясь в плотные слои атмосферы, то можно затормозить корабль о воздух с минимальной затратой горючего. Как советские «Востоки», так и американские «Меркурии» осуществляли посадку именно таким образом и этим объясняются многие особенности их конструкции. Поскольку значительная часть энергии при торможении идет на нагрев корабля, то без хорошей тепловой защиты он просто сгорит, как сгорает в атмосфере большая часть метеоритов и заканчивающих свое существование спутников. Поэтому приходится защищать корабли громоздкими жаропрочными теплозащитными оболочками. (Например, на советском «Востоке» ее вес составлял 800 кг - треть всего веса спускаемого аппарата.) Желая по возможности облегчить корабль, конструкторы снабжали этим экраном не весь корабль, а только корпус спускаемого аппарата. Таким образом, с самого начала утвердилась конструкция разделяющегося корабля (она была опробована на «Востоках», а потом стала классической для всех советских и многих американских космических кораблей). Корабль состоит как бы из двух самостоятельных частей: приборного отсека и спускаемого аппарата (последний служит во время полета кабиной космонавта).

Первый советский космический корабль «Восток» при общей массе 4, 73 т выводился на орбиту с помощью трехступенчатой ракеты‑носителя того же названия. Полная стартовая масса космического комплекса составляла 287 т. Конструктивно «Восток» состоял из двух основных отсеков: спускаемого аппарата и приборного отсека. Спускаемый аппарат с кабиной космонавта был выполнен в форме шара диаметром 2, 3 м и имел массу 2, 4 т.

Герметичный корпус изготовлялся из алюминиевого сплава. Внутри спускаемого аппарата конструкторы стремились расположить только те системы и приборы корабля, которые были необходимы в течение всего полета, или те, которыми непосредственно пользовался космонавт. Все остальные были вынесены в приборный отсек. Внутри кабины размещалось катапультируемое кресло космонавта. (На случай, если бы пришлось катапультироваться при старте, кресло снабжалось двумя пороховыми ускорителями.) Здесь же находились пульт управления, запасы пищи и воды. Система жизнеобеспечения была рассчитана на работу в течение десяти суток. Космонавт должен был в течение всего полета находиться в герметическом скафандре, но с открытым шлемом (этот шлем автоматически закрывался в случае внезапной разгерметизации кабины).

Внутренний свободный объем спускаемого аппарата составлял 1, 6 кубического метра. Необходимые условия в кабине космического корабля поддерживали две автоматические системы: система жизнеобеспечения и система терморегулирования. Как известно, человек в процессе жизнедеятельности потребляет кислород, выделяет углекислый газ, тепло и влагу. Эти две системы как раз и обеспечивали поглощение углекислого газа, пополнение кислородом, отбор из воздуха избыточной влаги и отбор тепла. В кабине «Востока» поддерживалось привычное на Земле состояние атмосферы с давлением 735‑775 мм рт. ст. и 20‑25% содержания кислорода. Устройство системы терморегулирования отчасти напоминало кондиционер. Она содержала воздушно‑жидкостной теплообменник, по змеевику которого протекала охлажденная жидкость (холодоноситель). Вентилятор прогонял через теплообменник теплый и влажный воздух кабины, который охлаждался на его холодных поверхностях. Влага при этом конденсировалась. Холодоноситель поступал в спускаемый аппарат из приборного отсека. Поглотившая тепло жидкость принудительно прогонялась насосом через радиатор‑излучатель, расположенный на наружной конической оболочке приборного отсека. Температура холодоносителя автоматически поддерживалась в нужном диапазоне при помощи специальных жалюзи, закрывавших радиатор. Створки жалюзи могли открываться или закрываться, изменяя потоки тепла, излучаемые радиатором. Чтобы поддерживать нужный состав воздуха, в кабине спускаемого аппарата имелось регенерационное устройство. Воздух кабины при помощи вентилятора непрерывно прогонялся через специальные сменные патроны, содержавшие надперекиси щелочных металлов. Такие вещества (например, K2O4) способны эффективно поглощать углекислый газ и выделять при этом кислород. Работой всей автоматики руководило бортовое программное устройство. Включение различных систем и приборов производилось как по командам с Земли, так и самим космонавтом. На «Востоке» имелся целый комплекс радиосредств, позволявший вести и поддерживать двухстороннюю связь, производить различные измерения, вести управление кораблем с Земли и многое другое. С помощью передатчика «Сигнал» постоянно поступала информация датчиков, расположенных на теле космонавта, относительно его самочувствия. Основу системы энергоснабжения составляли серебряно‑цинковые аккумуляторы: основная батарея размещалась в приборном отсеке, а дополнительная, обеспечивающая электропитание на спуске - в спускаемом аппарате.

Приборный отсек имел массу 2, 27 т. Вблизи его стыка со спускаемым аппаратом находились 16 сферических баллонов с запасами сжатого азота для микродвигателей ориентации и кислорода для системы жизнеобеспечения. Очень важное значение в любом космическом корабле играет система ориентации и управления движением. На «Востоке» она включала в себя несколько подсистем. Первая из них - навигационная - состояла из ряда датчиков положения космического корабля в пространстве (в том числе датчик Солнца, гироскопические датчики, оптическое устройство «Взор» и другие). Сигналы от датчиков поступали в управляющую систему, которая могла работать автоматически или с участием космонавта. На пульте космонавта имелась рукоятка ручного управления ориентацией космического корабля. Разворачивание корабля происходило при помощи целого набора расположенных определенным образом небольших реактивных сопел, в которые подавался из баллонов сжатый азот. Всего на приборном отсеке имелось два комплекта сопел (по восемь в каждом), которые могли подключаться к трем группам баллонов. Главная задача, которая решалась при помощи этих сопел, заключалась в том, чтобы правильно ориентировать корабль перед подачей тормозного импульса. Это требовалось сделать в определенном направлении и в строго определенное время. Ошибка здесь не допускалась.



Тормозная двигательная установка с тягой 15, 8 килоньютон находилась в нижней части отсека. Она состояла из двигателя, топливных баков и системы подачи горючего. Время ее работы составляло 45 секунд. Перед возвращением на Землю тормозную двигательную установку ориентировали таким образом, чтобы дать тормозной импульс около 100 м/с. Этого было достаточно для перехода на траекторию спуска. (При высоте полета 180‑240 км орбита была рассчитана таким образом, что даже при отказе тормозной установки корабль через десять суток все равно вошел бы в плотные слои атмосферы. Именно на этот срок и был рассчитан запас кислорода, питьевой воды, пищи, заряд аккумуляторов.) Затем происходило отделение спускаемого аппарата от приборного отсека. Дальнейшее торможение корабля шло уже за счет сопротивления атмосферы. При этом перегрузки достигали 10 g, то есть вес космонавта увеличивался в десять раз.

Скорость спускаемого аппарата в атмосфере снижалась до 150‑200 м/с. Но чтобы обеспечить безопасное приземление при соприкосновении с землей, его скорость не должна была превышать 10 м/с. Избыток скорости гасился за счет парашютов. Они раскрывались постепенно: сначала вытяжной, потом - тормозной и, наконец, основной. На высоте 7 км космонавт должен был катапультироваться и приземляться отдельно от спускаемого аппарата со скоростью 5‑6 м/с. Это осуществлялось при помощи катапультирующегося кресла, которое устанавливалось на специальных направляющих и выстреливалось из спускаемого аппарата после отделения крышки люка. Здесь также сначала раскрывался тормозной парашют кресла, а на высоте 4 км (при скорости 70‑80 м/с) космонавт отстегивался от кресла и дальше спускался на своем собственном парашюте.

Работа по подготовке пилотируемого полета в КБ Королева началась в 1958 году. Первый запуск «Востока» в беспилотном режиме был произведен 15 мая 1960 года. Из‑за неправильной работы одного из датчиков перед включением тормозной двигательной установки корабль оказался неправильно ориентирован и, вместо того чтобы опускаться, перешел на более высокую орбиту. Второй запуск (23 июля 1960 г.) был еще менее удачным - в самом начале полета произошла авария. Спускаемый аппарат отделился от корабля и разрушился при падении. Во избежание этой опасности на всех следующих кораблях была введена система аварийного спасения. Зато третий запуск «Востока» (19‑20 августа 1960 г.) был вполне успешным - на второй день спускаемый аппарат вместе со всеми подопытными животными: мышами, крысами и двумя собаками - Белкой и Стрелкой - благополучно совершил посадку в заданном районе. Это был первый в истории космонавтики случай возвращения живых существ на Землю после совершения космического полета. Но следующий полет (1 декабря 1960 г.) опять имел неблагополучный исход. Корабль вышел в космос и выполнил всю программу. Через сутки была подана команда к возвращению на землю. Однако из‑за отказа тормозной двигательной установки спускаемый аппарат вошел в атмосферу с чрезмерно большой скоростью и сгорел. Вместе с ним погибли подопытные собаки Пчелка и Мушка. Во время старта 22 декабря 1960 года произошла авария последней ступени, но система аварийного спасения сработала надлежащим образом - спускаемый аппарат приземлился без повреждений. Только шестой (9 марта 1961 г.) и седьмой (25 марта 1961 г.) старты «Востока» прошли вполне благополучно. Совершив по одному обороту вокруг Земли, оба корабля благополучно вернулись на Землю вместе со всеми подопытными животными. Эти два полета полностью моделировали будущий полет человека, так что даже в кресле находился специальный манекен. Первый в истории полет человека в космос состоялся, как известно, 12 апреля 1961 года. Советский космонавт Юрий Гагарин на корабле «Восток‑1» совершил один виток вокруг Земли и в тот же день благополучно возвратился на Землю (весь полет продолжался 108 минут). Так была открыта эра пилотируемых полетов.

В США подготовка к пилотируемому полету по программе «Меркурий» также началась в 1958 году. Вначале проводились беспилотные полеты, потом полеты по баллистической траектории. Первые два запуска «Меркурия» по баллистической траектории (в мае и июле 1961 г.) производились с помощью ракеты «Редстоун», а следующие выводились на орбиту с помощью ракеты‑носителя «Атлас‑D». 20 февраля 1962 года американский астронавт Джон Гленн на «Меркурии‑6» совершил первый орбитальный полет вокруг Земли.

Первый американский космический корабль был значительно меньше советского. Ракета‑носитель «Атлас‑D» при стартовой массе 111, 3 тонн была способна вывести на орбиту груз не более 1, 35 тонны. Поэтому корабль «Меркурий» проектировался при крайне жестких ограничениях по массе и габаритам. Основу корабля составляла возвращаемая на Землю капсула. Она имела форму усеченного конуса со сферическим днищем и цилиндрической верхней частью. На основании конуса размещалась тормозная установка из трех твердотопливных реактивных двигателей по 4, 5 килоньютон и временем работы 10 секунд. При спуске капсула входила в плотные слои атмосферы днищем вперед. Поэтому тяжелый теплозащитный экран располагался только здесь. В передней цилиндрической части находилась антенна и парашютная секция. Парашютов было три: тормозной, основной и запасной, которые выталкивались с помощью пневмобаллона.

Внутри кабины пилота имелся свободный объем 1, 1 кубических метра. Астронавт, одетый в герметический скафандр, располагался в кресле. Перед ним находились иллюминатор и пульт управления. На ферме над кораблем помещался пороховой двигатель САС. Система жизнеобеспечения на «Меркурии» существенно отличалась от той, что была на «Востоке». Внутри корабля создавалась чисто кислородная атмосфера с давлением 228‑289 мм рт. ст. По мере потребления кислород из баллонов подавался в кабину и скафандр астронавта. Для удаления углекислоты использовалась система с гидроокисью лития. Скафандр охлаждался кислородом, который, перед тем как использоваться для дыхания, подавался к нижней части тела. Температура и влажность поддерживались с помощью теплообменников испарительного типа - влага собиралась с помощью губки, которая периодически отжималась (оказалось, что в условиях невесомости такой способ не годился, поэтому он использовался только на первых кораблях). Энергопитание обеспечивалось аккумуляторными батареями. Вся система жизнеобеспечения была рассчитана только на 1, 5 суток. Для управления ориентацией «Меркурий» имел 18 управляемых двигателей, работавших на однокомпонентном топливе - перекиси водорода. Астронавт приводнялся вместе с кораблем на поверхность океана. Капсула имела неудовлетворительную плавучесть, поэтому на всякий случай на ней имелся надувной плот.

РОБОТ

Роботом называют автоматическое устройство, имеющее манипулятор - механический аналог человеческой руки - и систему управления этим манипулятором. Обе эти составные части могут иметь различное устройство - от очень простого до чрезвычайно сложного. Манипулятор обычно состоит из шарнирно соединенных звеньев, как рука человека состоит из костей, связанных суставами, и заканчивается охватом, который является чем‑то вроде кисти человеческой руки.

Звенья манипулятора подвижны друг относительно друга и могут совершать вращательные и поступательные движения. Иногда вместо схвата последним звеном манипулятора служит какой‑нибудь рабочий инструмент, например, дрель, гаечный ключ, краскораспылитель или сварочная горелка.

Перемещение звеньев манипулятора обеспечивают так называемые приводы - аналоги мускулов в руке человека. Обычно в качестве таковых используются электродвигатели. Тогда привод включает в себя еще редуктор (систему зубчатых передач, которые снижают число оборотов двигателя и увеличивают вращающие моменты) и электрическую схему управления, регулирующую скорость вращения электродвигателя.

Кроме электрического часто применяется гидравлический привод. Действие его очень просто. В цилиндр 1, в котором находится поршень 2, соединенный с помощью штока с манипулятором 3, поступает под давлением жидкость, которая передвигает поршень в ту или иную сторону, а вместе с ним и «руку» робота. Направление этого движения определяется тем, в какую часть цилиндра (в пространство над поршнем или под ним) попадает в данный момент жидкость. Гидропривод может сообщить манипулятору и вращательное движение. Точно так же действует пневматический привод, только вместо жидкости здесь применяется воздух.

Таково в общих чертах устройство манипулятора. Что касается сложности задач, которые может разрешать тот или иной робот, то они во многом зависят от сложности и совершенства управляющего устройства. Вообще, принято говорить о трех поколениях роботов: промышленных, адаптивных и роботах с искусственным интеллектом.

Самые первые образцы простых промышленных роботов были созданы в 1962 году в США. Это были «Версатран» фирмы «АМФ Версатран» и «Юнимейт» фирмы «Юнимейшн Инкорпорейтед». Эти роботы, а также те, что последовали за ними, действовали по жесткой, не меняющейся в процессе работы программе и были предназначены для автоматизации несложных операций при неизменном состоянии окружающей среды. В качестве управляющего устройства для таких роботов мог служить, например, «программируемый барабан». Действовал он так: на цилиндре, вращаемом электродвигателем, размещались контакты приводов манипулятора, а вокруг барабана - токопроводящие металлические пластины, замыкавшие эти контакты, когда те их касались. Расположение контактов было таким, чтобы при вращении барабана приводы манипулятора включались в нужное время, и робот начинал выполнять запрограммированные операции в нужной последовательности. Точно так же управление могло осуществляться с помощью перфокарты или магнитной ленты.

Очевидно, что даже малейшее изменение окружающей обстановки, малейший сбой в технологическом процессе, ведет к нарушению действий такого робота. Однако они обладают и немалыми преимуществами - они дешевы, просты, легко перепрограммируются и вполне могут заменить человека при выполнении тяжелых однообразных операций. Именно на такого типа работах и были впервые применены роботы. Они хорошо справлялись с простыми технологическими повторяющимися операциями: выполняли точечную и дуговую сварку, осуществляли загрузку и разгрузку, обслуживали прессы и штампы. Робот «Юнимейт», например, был создан для автоматизации контактной точечной сварки кузовов легковых автомобилей, а робот типа «SMART» устанавливал колеса на легковые автомобили.

Однако принципиальная невозможность автономного (без вмешательства человека) функционирования роботов первого поколения очень затрудняла их широкое внедрение в производство. Ученые и инженеры настойчиво старались устранить этот недостаток. Результатом их трудов стало создание гораздо более сложных адаптивных роботов второго поколения. Отличительная черта этих роботов состоит в том, что они могут изменять свои действия в зависимости от окружающей обстановки. Так, при изменении параметров объекта манипулирования (его угловой ориентации или местоположения), а также окружающей среды (скажем, при появлении каких‑то препятствий на пути движения манипулятора) эти роботы могут соответственно спроектировать свои действия.

Понятно, что, работая в изменяющейся среде, робот должен постоянно получать о ней информацию, иначе он не сможет ориентироваться в окружающем пространстве. В связи с этим адаптивные роботы имеют значительно более сложную, чем роботы первого поколения, систему управления. Эта система распадается на две подсистемы: 1) сенсорную (или очувствления) - в нее входят те устройства, которые собирают информацию о внешней окружающей среде и о местоположении в пространстве различных частей робота; 2) ЭВМ, которая анализирует эту информацию и в соответствии с ней и заданной программой управляет перемещением робота и его манипулятора.

К сенсорным устройствам относятся тактильные датчики осязания, фотометрические датчики, ультразвуковые, локационные, а также различные системы технического зрения. Последние имеют особенно важное значение. Главная задача технического зрения (собственно «глаза» робота) состоит в том, чтобы преобразовать изображения объектов окружающей среды в электрический сигнал, понятный для ЭВМ. Общий принцип систем технического зрения состоит в том, что с помощью телевизионной камеры в ЭВМ передается информация о рабочем пространстве. ЭВМ сравнивает ее с имеющимися в памяти «моделями» и выбирает соответствующую обстоятельствам программу. На этом пути одна из центральных проблем при создании адаптивных роботов заключалась в том, чтобы научить машину распознавать образы. Из многих объектов робот должен выделить те, которые ему необходимы для выполнения каких‑то действий. То есть он должен уметь различать признаки объектов и классифицировать объекты по этим признакам. Это происходит благодаря тому, что робот имеет в памяти прототипы образов нужных объектов и сравнивает с ними те, что попадают в поле его зрения. Обычно задача «узнавания» нужного объекта распадается на несколько более простых задач: робот ищет в окружающей среде нужный предмет путем изменения ориентации своего взгляда, измеряет дальность до объектов наблюдения, автоматически подстраивает чувствительный видеодатчик в соответствие с освещенностью предмета, сравнивает каждый предмете «моделью», которая хранится в его памяти, по нескольким признакам, то есть выделяет контуры, текстуру, цвет и другие признаки. В результате всего этого происходит «узнавание» объекта.

Следующим этапом работы адаптивного робота обычно являются какие‑то действия с этим предметом. Робот должен приблизиться к нему, захватить и переставить на другое место, притом не как попало, а определенным образом. Чтобы выполнить все эти сложные манипуляции, одних знаний об окружающей обстановке недостаточно - робот должен точно контролировать каждое свое движение и как бы «ощущать» себя в пространстве. С этой целью кроме сенсорной системы, отражающей внешнюю среду, адаптивный робот оснащается сложной системой внутренней информации: внутренние датчики постоянно передают ЭВМ сообщения о местоположении каждого звена манипулятора. Они как бы дают машине «внутреннее чувство». В качестве таких внутренних датчиков могут использоваться, например, высокоточные потенциометры.

Высокоточный потенциометр представляет собой прибор типа хорошо известного реостата, но отличающийся более высокой точностью. В нем вращающийся контакт не перескакивает с витка на виток, как при смещении ручки обычного реостата, а следует вдоль самих витков провода. Потенциометр крепится внутри манипулятора, так что при повороте одного звена относительно другого подвижный контакт тоже смещается и, следовательно, сопротивление прибора изменяется. Анализируя величину его изменения, ЭВМ судит о местоположении каждого из звеньев манипулятора. Скорость перемещения манипулятора связана со скоростью вращения электродвигателя в приводе. Имея всю эту информацию, ЭВМ может измерить скорость движения манипулятора и руководить его перемещением.

Каким же образом робот «планирует» свое поведение? В этой способности нет ничего сверхъестественного - «сообразительность» машины всецело зависит от сложности составленной для нее программы. В памяти ЭВМ адаптивного робота обычно заложено столько различных программ, сколько может возникнуть различных ситуаций. Пока ситуация не меняется, робот действует по базовой программе. Когда же внешние датчики сообщают ЭВМ об изменении ситуации, она анализирует ее и выбирает ту программу, которая более соответствует данной ситуации. Имея общую программу «поведения», запас программ для каждой отдельной ситуации, внешнюю информацию об окружающей среде и внутреннюю информацию о состоянии манипулятора, ЭВМ руководит всеми действиями робота.

Первые модели адаптивных роботов появились фактически одновременно с промышленными роботами. Прообразом для них послужил автоматически действующий манипулятор, разработанный в 1961 году американским инженером Эрнстом и названный впоследствии «рукой Эрнста». Этот манипулятор имел захватывающее устройство, снабженное различными датчиками - фотоэлектрическими, тактильными и другими. С помощью этих датчиков, а также управляющей ЭВМ он находил и брал заданные ему произвольно расположенные предметы. В 1969 году в Стэнфордском университете (США) был создан более сложный робот «Шейки». Эта машина также обладала техническим зрением, могла распознавать окружающие предметы и оперировать ими по заданной программе.

Робот приводился в движение с помощью двух шаговых электродвигателей, имеющих независимый привод к колесам на каждой стороне тележки. В верхней части робота, которая могла поворачиваться вокруг вертикальной оси, были установлены телевизионная камера и оптический дальномер. В центре располагался блок управления, который распределял команды, поступающие от ЭВМ к механизмам и устройствам, реализующим соответствующие действия. По периметру устанавливались сенсорные датчики для получения информации о столкновении робота с препятствиями. «Шейки» мог перемещаться по кратчайшему пути в заданное место помещения, вычисляя при этом траекторию таким образом, чтобы избежать столкновения (он воспринимал стены, двери, дверные проемы). ЭВМ из‑за своих больших габаритов находилась отдельно от робота. Связь между ними осуществлялась по радио. Робот мог выбирать нужные предметы и перемещать их «толканием» (манипулятора у него не было) в нужное место.

Позже появились другие модели. Например, в 1977 году фирмой «Quasar Industries» был создан робот, который умел подметать полы, вытирать пыль с мебели, работать с пылесосом и удалять растекшуюся по полу воду. В 1982 году фирма «Мицубиси» объявила о создании робота, который был настолько ловок, что мог зажигать сигарету и снимать телефонную трубку. Но самым замечательным был признан созданный в том же году американский робот, который с помощью своих механических пальцев, камеры‑глаза и компьютера‑мозга менее чем за четыре минуты собирал кубик Рубика. Серийный выпуск роботов второго поколения начался в конце 70‑х годов. Особенно важно то, что их можно успешно использовать на сборочных операциях (например, при сборке пылесосов, будильников и других несложных бытовых приборов) - этот вид работ до сих с большим трудом поддавался автоматизации. Адаптивные роботы стали важной составной частью многих гибких (быстро перестраивающихся на выпуски новой продукции) автоматизированных производств.

Третье поколение роботов - роботы с искусственным интеллектом - пока еще только проектируется. Их основное назначение - целенаправленное поведение в сложной, плохо организованной среде, притом в таких условиях, когда невозможно предусмотреть все варианты ее изменения. Получив какую‑то общую задачу, такой робот должен будет сам разработать программу ее выполнения для каждой конкретной ситуации (напомним, что адаптивный робот может лишь выбирать одну из предложенных программ). В случае, если операция не удалась, робот с искусственным интеллектом сможет проанализировать неудачу, составить новую программу и повторить попытку.