Температура при которой жидкость кипит называют. Температура кипения это

В последнее время меня стала увлекать тема обучения детей чтению на английском языке: я пересматриваю свои прошлые наработки, без сожалений избавляюсь от отжившего и с удовольствием пополняю свою базовую коллекцию новым. Видимо, эта тема небезынтересна и вам, но, судя по большому количеству просмотров и отсутствию комментариев к теме форума , готовых ответов у вас нет.

Между тем, вопросы заданы абсолютно правомерные. Педагогам известно, что один из самых трудных аспектов, связанных с обучением английскому языку, является именно обучение чтению. Говоря простым языком, можно обозначить проблему следующим образом: в английском языке слишком много правил чтения для того, чтобы их игнорировать, но при этом они не достаточно часто соблюдаются для того, чтобы им безоговорочно следовать. Эта дуальность нашла отражение и в школьной программе: в сегодняшних школах прослеживаются две чётко разграниченные тенденции.

Одних учеников совсем не учат читать - вместо этого их внимание акцентируется на повторении, запоминании и развитии разговорных навыков. Этот метод получил название "метода обучения чтению целым словом" и он применяется даже к новорожденным детям (см. на эту тему). У школьников, которые "обучались" чтению по этому методу, как правило, довольно сносное - а порой и вовсе удивляющее своей чистотой - произношение и они могут что-то сказать. Но при этом они совершенно не умеют ни читать, ни (как правило) писать.

Других школьников (справедливости ради надо заметить, что сейчас таких меньшинство, т.к. образовательная система накренилась в сторону коммуникативности) обучают правилам чтения. Отмечу, что дефицит правил чтения на уроках английского характерен не только для России, но и для англоговорящих стран. Например, вот как обстоит ситуация в Штатах:

Much research has been done to find a sound basis for teaching children to read. Today, there are two main approaches to reading instruction. The first approach is commonly referred to as the whole word method or whole language. The second is a more traditional method called phonics.

Whole-word reading instruction is not only the most widely used method in the United States, but for over a decade has been the dominate teaching approach in most English-speaking countries. The whole word method is based on the theory that that children should learn to read in a way similar to how the y learn to speak. The main idea behind this approach is that reading is natural. Whole word requires children to memorize thousands of words, each as a discrete and separate unit.

This method stresses reading aloud from children"s literature. The sounding out of words is not taught. Instead, children are encouraged to sight-read words. advocates argue that the whole sounding out of words is cumbersome, time consuming and unnecessary. As reading is supposed to be just like learning how to speak, the child needs to be exposed to good children"s literature, using books and stories which use natural or "normal" language.

One of the problems with whole word learning is that there are more than 500,000 words in the English language. By the time children complete the fourth grade they may be able to recognize only around 1,400 simple words. Children should not be expected to guess words based on the context of a story. This method will not produce good readers. Instead of merely memorizing words, children should learn how words work, how they are put together and how they sound. Knowing the sounds of the alphabet and learning how to properly piece letters and sounds together is much more beneficial to children than simply memorizing words.

The other method used to teach reading is phonics. The phonetic approach is quite different from whole word. Phonics is based on sounding out and blending letters. With phonics, children can read and understand as many words as they have in their spoken vocabulary. They learn the 44 phenomes, or sounds of the alphabet. Once they know the sounds of the alphabet, they can break down multi-syllabic words into their discrete sounds. Phonics instruction teaches children how to use letter-sound relations to read or spell words and how to manipulate phenomes in spoken syllables and words.

Phonics advocates believe children should know how the sounds on words work before they learn to read. Children who have phonemic awareness skills will have an easier time learning to read than children who have little or none of these skills. The main focus of phonics is to help children understand how letters are linked to sounds to form letter-sound correspondences and spelling patterns and to help them learn how to apply this to their reading. Since there are 26 letters in the English alphabet but there are 44 sounds to the alphabet, phonics is a much easier and more efficient approach to reading instruction.

Learning to read can be a very difficult task for some children. Phonics is one key that simplifies this task. While whole word requires children to memorize hundreds of words, phonics helps children sound out words. There is no guesswork with the phonics method, whereas whole word requires children to guess words based on the context in which they are used. While it is good for children to be exposed to literature and encouraged to read books, this alone is not a good means to teach reading. If children know the sounds of the alphabet and can manipulate and put letters together, they will be able to read many more words and will greatly enhance their reading fluency and comprehension. Reading instruction that teaches the rules of phonics clearly will ultimately be more successful than teaching that does not.

Как видите, автор статьи видит решение проблемы безграмотности во внедрении в школах звукового метода обучения грамоте (Phonics). В сети можно найти множество материалов, позволяющих сделать это весело и интересно, превратив занятие в игру.

В одной из ближайших заметок я собираюсь дать обзор ресурсов, которыми пользуюсь сама, а пока хочу обратить ваше внимание на недостатки этого метода. Во-первых, направляя фокус урока на такие "мелочи", как сочетания букв, регулярность появления одних и тех же звуков в одних и тех же положениях, вы замедляете темп занятия. Соответственно, и прогресс идёт медленнее - а мы все знаем, как младших школьников демотивирует отсутствие быстрого результата.

Во-вторых, применение звукового метода обучения грамоте требует тщательнейшего подбора материалов. Поставив фонетику во главу угла, вы уже не сможете принести своим учащимся любой простой короткий текст для чтения - вам придётся самостоятельно сочинять или приобретать такие тексты, каждое слово которых будет состоять только из изученных звуков. А это не только очень трудоёмко для учителя, но и...

В-третьих, когда материалы содержат исключительно знакомые явления и ничего нового - это безумно скучно. Имея дело только с "причёсанными", выверенными и тщательно отфильтрованными материалами, ученики начинают скучать - скучать, не смотря на игровую форму, широкую улыбку учителя и прочие атрибуты бодрого фасада - ведь они лишены каких бы то ни было трудностей, а следовательно, и пространства для роста.

Таким образом, оба подхода к обучению ребёнка чтению имеют свои плюсы и минусы. Что касается меня, то я не являюсь фанатом ни метода обучения чтению целым словом, ни звукового метода в чистом виде. В своей работе я применяю элементы обеих методик, беря лучшее из каждой. А о том, как именно я это делаю, речь пойдёт в другой раз.

А какой подход применяете в свой работе вы, уважаемые учителя?

Кипение жидкостей

При достаточно низкой температуре испарение жидкости происходит с ее свободной поверхности и носит спокойный характер. По достижении определенной температуры, называемой температурой кипения , парообразование начинает происходить не только со свободной поверхности, но и в объеме жидкости. Внутри нее возникают, увеличиваются в размерах и поднимаются на поверхность пузыри пара. Парообразование приобретает бурный характер и называется кипением. Механизм кипения заключается в следующем.

В жидкости всегда есть мельчайшие пузырьки воздуха, которые, подобно броуновским частицам, совершают медленные беспорядочные перемещения в объеме жидкости. Внутри пузырьков, наряду с воздухом, имеется также насыщенный пар окружающей жидкости. Условием стабильности размера пузырька является равенство внутреннего и внешнего давлений на его поверхность. Внешнее давление равно сумме атмосферного давления и гидростатического давления на глубине, где находится пузырек. Внутреннее давление равно сумме парциальных давлений воздуха и пара внутри пузырька. Таким образом,

.

Для малых глубин, на которых гидростатическое давление мало по сравнению с атмосферным, можно положить , и последнее равенство примет вид:

Если несколько увеличить температуру, то давление насыщенного пара в пузырьке возрастет и размер пузырька увеличится, давление воздуха внутри него уменьшится, так что сумма останется неизменной и условие равновесия (13.19) будет выполняться при возросшей температуре для пузырька с увеличившимся размером. Однако, если температуру увеличить настолько, что давление насыщенного пара в пузырьке станет равно атмосферному давлению,

то равенство (13.19) перестанет выполняться. Размер пузырька и масса пара в нем будут возрастать, пузырек под действием выталкивающей (архимедовой) силы устремится к поверхности жидкости.Жидкость начнет кипеть. Итак, равенство (13.20) является условием кипения жидкости в сосуде на малой глубине: кипение жидкости на малой глубине происходит при такой температуре, при которой давление насыщенных паров этой жидкости становится равным атмосферному давлению. Таким образом, температура кипения зависит от атмосферного давления.

Пример 13.4. Вода при нормальном атмосферном давлении кипит при температуре . Следовательно, давление насыщенных паров воды при этой температуре равно нормальному атмосферному давлению.

Пример 13.5. При температуре объем пузырька, находящегося в воде на малой глубине, равен . Температура воды стала равна . Каким станет объем пузырька при температуре ?Атмосферное давление нормальное. Давление насыщенных паров воды при температуре равно , а при температуре оно равно .

Обозначим через массу воздуха в пузырьке. Имеем:

,

где - молярная масса воздуха, - давление воздуха в пузырьке объема при температуре . В соответствии с условием равновесия размера пузырька (13.19) следует положить . Получим:

Применяя последнее равенство при двух различных температурах и , получим:

Из последних равенств находим:

.

Пример 13.6. Рассмотрим раствор нелетучего вещества в некотором растворителе . Применяя закон Рауля (13.3), получим для давления насыщенного пара над раствором:

.

Ввиду нелетучести вещества имеем , и последнее равенство примет вид:

.

Итак, давление насыщенного пара над раствором меньше, чем над чистым растворителем (при одной и той же температуре). Отсюда следует, что раствор нужно нагреть до более высокой температуры, чем чистый растворитель, для того, чтобы давление насыщенного пара сравнялось с атмосферным и началось кипение. Таким образом, температура кипения рассматриваемого раствора выше, чем температура кипения чистого растворителя.

Задача 13.5. Найти температуру кипения воды в горах на высоте над уровнем моря. Атмосферное давление на уровне моря считать нормальным. Температуру атмосферы принять равной .

Ответ: , где - температура кипения воды при нормальном атмосферном давлении, - молярная масса воздуха, - скрытая молярная теплота испарения воды при температурах, близких к .

Указание. Для нахождения давления атмосферы на уровне воспользоваться барометрической формулой. Для нахождения давления насыщенного пара при температуре воспользоваться формулой (13.17). Использовать условие кипения (13.20).

13.7. Превращения «жидкость - твердое тело»

При достаточно низких температурах все жидкости, за исключением жидкого гелия, переходят в твердое состояние.

Рассмотрим превращение однокомпонентной, то есть состоящей из атомов одного сорта жидкости в твердое тело. Этот процесс называется кристаллизацией . Кристаллизация является переходом системы атомов в состояние с более высокой степенью порядка и происходит при определенной температуре, называемой температурой плавления (отвердевания ). При этой температуре кинетическая энергия теплового движения атомов становится достаточно малой и силы взаимодействия между атомами могут удерживать атомы в определенных положениях - узлах кристаллической решетки.

Процесс превращения твердого тела в жидкость называется плавлением и является процессом, обратным кристаллизации. Происходит этот процесс при той же температуре, что и плавление.

Если непрерывно подводить к твердому телу тепло, то его температура будет меняться со временем так, как показано на рис. 13.4 а. Участок соответствует нагреванию твердого тела, участок - двухфазному состоянию вещества, при котором находятся в равновесии твердая и жидкая фазы этого вещества. Таким образом, участок соответствует плавлению твердого тела. В точке все вещество становится жидким и дальнейший подвод тепла сопровождается повышением температуры жидкости.

Тепло, которое подводится к системе «твердое тело - жидкость» на этапе плавления, не приводит к изменению температуры системы и идет на разрушение связей между атомами. Это тепло называется скрытой теплотой плавления .

Если жидкость отдает тепло, то ее температура зависит от времени так, как показано на рис. 13.4 б. Стадия соответствует охлаждению жидкости, стадия - ее кристаллизации (двухфазным состояниям системы), и стадия -охлаждению твердого тела. Тепло, которое отдает система на стадии кристаллизации, называется скрытой теплотой кристаллизации . Она равна скрытой теплоте плавления.



Зависимости температуры системы от времени, изображенные на рис. 13.4, характерны именно для кристаллических тел. Для аморфных веществ при их нагревании (охлаждении) график зависимости температуры от времени является монотонной кривой, что соответствует постепенному размягчению (отвердеванию) аморфного вещества при возрастании (уменьшении) его температуры.

Начинается кристаллизация в жидкости вблизи центра или центров кристаллизации. Ими служат случайные объединения атомов, к которым затем присоединяются, выстраиваясь, другие атомы, пока вся жидкость не превратится в твердое тело. Роль центров кристаллизации могут играть также инородные макроскопические частицы, если они присутствуют в жидкости.

Обычно в жидкости при ее охлаждении возникает много центров кристаллизации. Вокруг этих центров формируются структуры атомов, которые в конечном итоге образуют поликристалл , состоящий из множества малых кристаллов. Условная схема поликристалла изображена на рис. 13.5.

При особых условиях оказывается возможным получить («вырастить») одиночный кристалл - монокристалл , образующийся вокруг единого центра кристаллизации. Если при этом для всех направлений обеспечены одинаковые условия для присоединения частиц из жидкости к образующемуся кристаллу, то он получится правильно ограненным соответственно его свойствам симметрии.

Температура плавления вообще-то зависит от давления, которому подвергается твердое тело, возможный ход этой зависимости изображен графически на рис. 13.6. Снять опытную зависимость можно, например, поместив тигель с расплавляемым веществом в атмосферу газа, давление которого можно менять. Кривая зависимости является кривой равновесия жидкой и твердой фаз. Точки под кривой соответствуют твердому состоянию вещества, а над кривой - жидкому состоянию. Если при неизменной температуре увеличивать давление над жидкостью от точки , то при давлении (точка ) в жидкости возникнет твердая фаза, а при дальнейшем увеличении давления вся жидкость отвердеет (точка ).

Теоретическую связь между давлением и температурой плавления можно установить, рассмотрев цикл Карно, совершаемый двухфазной системой «твердое тело - жидкость» совершенно аналогично тому, как была установлена связь (13.12) между давлением насыщенного пара над жидкостью и температурой. Произведя в (13.12) формальные замены , , , где - скрытая молярная теплота плавления, - молярный объем твердой фазы, - молярный объем жидкой фазы, получим:

. (13.21)

Если вещество не является чистым, а представляет собой сплав , то есть содержит разнородные атомы, то в общем случае отвердевание может происходить в некотором интервале температур, а не при определенной температуре, как у чистых веществ.

Задача 13.6 . Уксусная кислота при атмосферном давлении плавится при температуре . Разность удельных объемов (то есть объемов единицы массы кислоты) жидкой и твердой фаз . Точка плавления уксусной кислоты смещается на при изменении давления на . Найти удельную (то есть отнесенную к единице массы) теплоту плавления уксусной кислоты.

Ответ: .

Указание. Воспользоваться формулой (13.21). Учесть, что молярный объем связан с удельным объемом соотношением , где - молярная масса. Молярная теплота плавления связана с удельной теплотой плавления соотношением .

Все, что окружает нас в повседневной жизни, можно представить в виде физических и химических процессов. Мы постоянно производим массу манипуляций, которые выражаются формулами и уравнениями, даже не подозревая об этом. Одним из таких процессов является кипение. Это то явление, которое используют абсолютно все хозяйки во время приготовления пищи. Оно кажется нам абсолютно обыденным. Но давайте взглянем на процесс кипения с точки зрения науки.

Кипение - это что такое?

Еще со школьного курса физики известно, что вещество может быть в жидком и газообразном состоянии. Процесс трансформации жидкости в состояние пара - кипение. Это происходит только при достижении или превышении определенного температурного режима. Участвует в данном процессе и давление, его необходимо обязательно учитывать. У каждой жидкости существует собственная температура кипения, запускающая процесс образования пара.

В этом заключается существенная разница между кипением и испарением, происходящим при любом температурном режиме жидкости.

Как происходит кипение?

Если вы когда-нибудь кипятили воду в стеклянной посуде, то наблюдали за образованием пузырьков на стенках емкости в процессе нагревания жидкости. Они образовываются благодаря тому, что в микротрещинах посуды скапливается воздух, который при нагревании начинает расширяться. Пузырьки состоят из паров жидкости, находящихся под давлением. Эти пары называют насыщенными. По мере нагревания жидкости увеличивается давление в пузырьках воздуха и они увеличиваются в размерах. Естественно, что они начинают подниматься наверх.

Но, если жидкость еще не достигла температуры кипения, то в верхних слоях пузырьки охлаждаются, давление снижается и они оказываются на дне емкости, где снова нагреваются и поднимаются вверх. Этот процесс знаком каждой хозяйке, вода будто начинает шуметь. Как только температура жидкости в верхних и нижних слоях сравнивается, пузырьки начинаются подниматься на поверхность и лопаться - происходит кипение. Это возможно только тогда, когда давление внутри пузырьков становится одинаковым с давлением самой жидкости.

Как мы уже упоминали, каждая жидкость имеет свой температурный режим, при котором начинается процесс закипания. Причем в течение всего процесса температура вещества остается неизменной, вся выделенная энергия затрачивается на парообразование. Поэтому у нерадивых хозяек сгорают кастрюли - все их содержимое выкипает и начинает нагреваться сама емкость.

Температура кипения находится в прямо пропорциональной зависимости от давления, оказываемого на всю жидкость, точнее, на ее поверхность. В школьном курсе физике указано, что вода начинает кипеть при температуре в сто градусов по Цельсию. Но мало кто помнит, что данное утверждение верно только в условиях нормального давления. За норму принято считать величину в сто один килопаскаль. Если увеличить давление, то кипение жидкости будет происходить при другой температуре.

Это физическое свойство используют производители современных бытовых приборов. Примером может послужить скороварка. Всем хозяйками известно, что в подобных устройствах пища готовится гораздо быстрее, чем в обычных кастрюлях. С чем это связано? С давлением, которое образуется в скороварке. Оно в два раза превышает норму. Поэтому и кипение воды происходит приблизительно при ста двадцати градусов по Цельсию.

Если вы когда-либо были в горах, то наблюдали обратный процесс. На высоте вода начинает закипать при девяноста градусах, что существенно затрудняет процесс приготовления пищи. С этими трудностями хорошо знакомы местные жители и альпинисты, проводящие в горах все свободное время.

Еще немного о кипении

Многие слышали такое выражение, как "точка кипения" и, вероятно, удивились, что мы его не упомянули в статье. На самом деле мы уже его описали. Не спешите перечитывать текст. Дело в том, что в физике точка и температура процесса кипения считаются идентичными.

В научном мире разделение в данной терминологии производится только в случае смешения различных жидких веществ. В такой ситуации определяется именно точка кипения, причем наименьшая из всех возможных. Именно она и берется за норму для всех составных частей смеси.

Вода: интересные факты о физических процессах

В лабораторных опытах физики всегда берут жидкость без примесей и создают абсолютно идеальные внешние условия. Но в жизни все происходит немного иначе, ведь зачастую мы подсаливаем воду или добавляем в нее различные приправы. Какова будет температура кипения в этом случае?

Соленая вода требует более высокой температуры для закипания, чем пресная. Это связано с примесями натрия и хлора. Их молекулы сталкиваются между собой, и на их нагревание требуется значительно более высокая температура. Существует определенная формула, позволяющая вычислить температуру кипения соленой воды. Учтите, что шестьдесят граммов соли на один литр воды, увеличивают температуру кипения на десять градусов.

А может ли кипеть вода в вакууме? Ученые доказали, что может. Вот только температура кипения в этом случае должна достигать предела трехсот градусов по Цельсию. Ведь в вакууме давление составляет всего лишь четыре килопаскаля.

Все мы кипятим воду в чайнике, поэтому знакомы с таким неприятным явлением, как "накипь". Что это такое и почему она образуется? На самом деле все просто: пресная вода имеет разную степень жесткости. Она определяется количеством примесей в жидкости, чаще всего в ней содержатся различные соли. В процессе кипячения они трансформируются в осадок и в больших количествах превращаются в накипь.

Может ли кипеть спирт?

Кипение спирта используется в процессе самогоноварения и называется дистилляцией. Этот процесс напрямую зависит от количества воды в спиртовом растворе. Если взять за основу чистый этиловый спирт, то температура его кипения будет приближена к семидесяти восьми градусам по Цельсию.

Если вы добавляете в спирт воду, то температура кипения жидкости увеличивается. В зависимости от концентрации раствора он будет закипать в промежутке от семидесяти восьми градусов до ста градусов по Цельсию. Естественно, что в процессе кипения спирт превратится в пар за более короткий временной интервал, чем вода.

ТЕМПЕРАТУРА КИПЕНИЯ
(точка кипения) - температура, при которой жидкость столь интенсивно превращается в пар (т.е. газ), что в ней образуются паровые пузырьки, которые поднимаются на поверхность и лопаются. Бурное образование пузырьков во всем объеме жидкости и называется кипением. В отличие от простого испарения при кипении жидкость переходит в пар не только со свободной поверхности, но и по всему объему - внутрь образующихся пузырьков. Температура кипения любой жидкости постоянна при заданном атмосферном или ином внешнем давлении, но повышается с повышением давления и понижается с его понижением. Например, при нормальном атмосферном давлении, равном 100 кПа (таково давление на уровне моря), температура кипения воды составляет 100° С. На высоте же 4000 м над уровнем моря, где давление падает до 60 кПа, вода кипит примерно при 85° С, и для того, чтобы сварить пищу в горах, требуется больше времени. По той же причине пища готовится быстрей в кастрюле-"скороварке": давление в ней повышается, а вслед за этим повышается и температура кипящей воды.
ТЕМПЕРАТУРА КИПЕНИЯ НЕКОТОРЫХ ВЕЩЕСТВ (на уровне моря)

Вещество __ Температура, °С
Золото ___________2600
Серебро __________1950
Ртуть _____________356,9
Этиленгликоль _____197,2
Морская вода ______100,7
Вода ______________100,0
Изопропиловый спирт 82,3
Этиловый спирт _____78,3
Метиловый спирт ____64,7
Эфир _______________34,6


Температура кипения вещества зависит также от наличия примесей. Если в жидкости растворено летучее вещество, то температура кипения раствора понижается. И наоборот, если в растворе содержится вещество менее летучее, чем растворитель, то температура кипения раствора будет выше, чем у чистой жидкости.
См. также
ТЕМПЕРАТУРА ЗАТВЕРДЕВАНИЯ ;
ТЕПЛОТА ;
ЖИДКОСТЕЙ ТЕОРИЯ .
ЛИТЕРАТУРА
Крокстон К. Физика жидкого состояния. М., 1978 Новиков И.И. Термодинамика. М., 1984

Энциклопедия Кольера. - Открытое общество . 2000 .

Смотреть что такое "ТЕМПЕРАТУРА КИПЕНИЯ" в других словарях:

    Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения при нормальном атмосферном давлении (1013,25 гПа, или 760 мм рт. ст.) называют нормальной температурой кипения или точкой кипения … Большой Энциклопедический словарь

    ТЕМПЕРАТУРА КИПЕНИЯ, температура, при которой вещество переходит из одного состояния (фазы) в другое, т. е. из жидкости в пар или газ. Температура кипения возрастает при увеличении внешнего давления и понижается при его уменьшении. Обычно ее… … Научно-технический энциклопедический словарь

    - (обозначается Ткип, Ts), температура равновесного перехода жидкости в пар при пост. внеш. давлении. При Т. к. давление насыщ. пара над плоской поверхностью жидкости становится равным внеш. давлению, вследствие чего по всему объёму жидкости… … Физическая энциклопедия

    - – температура, при которой жидкость под воздействием нагревания переходит из жидкого состояния в газовое; эта температура кипения зависит от давления. EdwART. Словарь автомобильного жаргона, 2009 … Автомобильный словарь

    Температура, достигаемая жидкостью при бурлении * * * (Источник: «Объединенный словарь кулинарных терминов») … Кулинарный словарь

    температура кипения - — [А.С.Гольдберг. Англо русский энергетический словарь. 2006 г.] Тематики энергетика в целом EN boiling temperature … Справочник технического переводчика

    Температура кипения, точка кипения температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения соответствует температуре насыщенного пара над плоской поверхностью кипящей жидкости, так как … Википедия

    температура кипения - (Tкип, tкип) температура равновесного перехода жидкости в пар при постоянном внешнем давлении. При температура кипения давление насыщенного пара над плоской поверхностью жидкости становится равным внешнему давлению,… … Энциклопедический словарь по металлургии

    Температура, при которой происходит кипение жидкости, находящейся под постоянным давлением. Температура кипения при нормальном атмосферном давлении (1013,25 гПа, или 760 мм рт. ст.) называют нормальной температурой кипения или точкой кипения. * * … Энциклопедический словарь

    температура кипения - 2.17 температура кипения: Температура жидкости, кипящей при давлении окружающей атмосферы 101,3 кПа (760 мм рт. ст). Источник: ГОСТ Р 51330.9 99: Электрооборудование взрывозащищенное. Часть 10. Классификация взрывоопасных зон … Словарь-справочник терминов нормативно-технической документации

Книги

  • , Ю. А. Лебедев, А. Н. Кизин, Т. С. Папина, И. Ш. Сайфуллин, Ю. Е. Мошкин. В настоящей книге представлены важнейшие численные характеристики ряда углеводородов, среди которых рассматриваются следующие физико-химические константы: молекулярная масса, температура…
  • Характеристики углеводородов. Анализ численных данных и их рекомендованные значения. Справочное издание , Лебедев Ю.А.. В настоящей книге представлены важнейшие численные характеристики ряда углеводородов, среди которых рассматриваются следующие физико-химические константы: молекулярная масса, температура…

1.5. Кипение и перегревание жидкости.

Если жидкость в сосуде нагревать при постоянном внешнем давлении со свободной поверхности жидкости. Такой процесс парообразования называется испарением. По достижении определенной температуры, называемом температурой кипения, образование пара начинает происходить не только со свободной поверхности, растут и поднимаются на поверхность пузыри пара, увлекая за собой и саму жидкость. Процесс парообразования приобретает бурный характер. Это явление называется кипением.

По существу кипения есть особый вид испарения. Дело в том, что жидкость никогда не бывает физически однородной. В ней всегда имеются пузырьки воздуха или других газов, но часто настолько малые, что они не видимы невооруженным глазом. На поверхности каждого пузырька непрерывно идет испарение жидкости и конденсация пара, пока не наступит состояние динамического равновесия, в котором эти два противоположно направленные процесса компенсируют друг друга. В состоянии механического равновесия сумма давлений воздуха и пара внутри пузырька должна равняться внешнему давлению вне пузырька. Последнее слагается из давления атмосферы и гидростатического давления окружающей жидкости. Если нагреть жидкость до такой температуры, чтобы давление насыщенного пара превзошло давление вне пузырька, то пузырек начнет расти за счет испарения жидкости с его внутренней поверхности и подниматься вверх под действием архимедовой подъемной силы. Двухфазная система – жидкость с воздушными пузырьками – становится механически неустойчивой, и начинается процесс кипения. Граница неустойчивости определяется такой температурой, при которой давление становится насыщенного пара равно сумме атмосферного и гидростатического давления на рассматриваемой высоте. Это и есть температура кипения.

В отличие от температуры тройной точки, которая для всякого вещества является вполне определенной величиной, температура кипения жидкости зависит от внешнего давления. Она повышается при увеличении внешнего давления и понижается при уменьшении. Так, воду можно заставить кипеть при комнатной температуре. Для демонстрации стеклянную колбу с водопроводной водой помещают под колпак воздушного насоса. При откачке воздуха давление на поверхность воды понижается, и при достижении определенной степени раздражения вода закипает. Теплота, необходимая для превращении жидкости в пар, заимствуется у самой жидкости, поэтому она охлаждается. При продолжительной откачке вода может замерзнуть. Для ускорения процесса замерзания воду наливают в мелкое блюдце, чтобы увеличить свободную поверхность, с которой происходит испарение. Для той же цели под колпак воздушного насоса помещается крепкий раствор серной кислоты, поглощающий водные пары. После одной – двух минут откачка воды в блюдце замерзнет.

Понижение температуры кипения жидкости при уменьшении внешнего давления можно демонстрировать и без воздушного насоса. Берется круглодонная колба среднего размера, наполненная наполовину водопроводной водой. Вода в колбе кипятится в течении 15 минут, чтобы образовавшиеся водяные пары вытеснили из колбы воздух. Затем колба снимается, быстро закупоривается каучуковой пробкой, переворачивается вверх дном и помещается на кольцеобразную подставку. Если колба сверху поливать холодной водой, то часть водяных паров конденсируется в жидкость, давление на поверхность воды уменьшается, и она закипает.

Из изложенного следует, что кипение возможно только тогда, когда внутри жидкости имеются пузырьки газа. Если же таковых нет, т.е. жидкость вполне физически однородна, то парообразование внутри жидкости, т.е. кипение, становится невозможным. Такую жидкость можно нагреть выше температуры кипения. Физически однородную жидкость, температура которой при заданном внешнем давлении превосходит температуру кипения, называется перегретой. Можно сказать иначе. Перегретой называется жидкость, находящаяся под давлением ниже давления ее насыщенных паров при заданной температуре. На изотерме Ван – дер – Ваальса перегретая жидкость изображается точками участка LB , так как давление жидкости на этом участке ниже давления на изотерме – изобаре LCG , где оно равно давлению насыщенного пара. Перегретая жидкость метастабильна, или малоустойчива. Пока нет зародышей более устойчивой парообразной фазы, перегретая жидкость может существовать как физически однородное тело. Однако при наличие таких зародышей, например пузырькового воздуха, она становится неустойчивое и переходит в более устойчивое при данной температуре состояние – пар.

Перегретую воду можно получить, например, в кварцевую колбу с гладкими стенками. Колба тщательно промывать сначала серной, азотной или какой – либо другой кислотой, а затем дистиллированной водой. В промытую колбу наливается дистиллированная вода, из которой продолжительным кипячением удаляется растворенный в ней воздух. После этого воду в колбе можно нагреть на газовой горелке до температуры, значительно превышающей температуру кипения, и тем не менее она не будет кипеть, а только интенсивно испаряться со свободной поверхности. Лишь изредка на дне колбы образуется пузырек пара, который быстро растет, отделяется от дна и поднимается на поверхность жидкости, причем размеры его при поднятии сильно возрастают. Затем вода длительное время остается спокойной. Если в такую воду ввести зародыш газообразной формы, например бросить щепотку чая, то она будет бурно закипать, а ее температура быстро понижается до температуры кипения. Это эффективный опыт носит характер взрыва. Для успеха опыта важно, чтобы стенки колбы были гладкими. Всякие шероховатости и острые края способствуют образованию зародышей газообразной формы. От них непрерывно отделяются и поднимаются на поверхность воды пузырьки пара – вода кипит со дна или стенки колбы, перегревание ее трудно и даже совсем невозможно.

Возникает, однако следующий вопрос. Сколько бы ни очищали воду от растворенного в ней воздуха, последний всегда остается в каком – то, хотя и ничтожном, количестве в виде мельчайших пузырьках. Если даже воду полностью очистить от растворенных в ней газов, то в ней все же могут возникать пузырьки пара флуктуационного происхождения.


Порядка 40%), имеет небольшую прочность и твердость (HB = 65 - I30, в зависимости от величины зерна). Феррит, в зависимости от характера протекающих фазовых превращений, в структуре железоуглеродистых сплавов может находиться в виде различных структурных состояний: феррит, как основа структуры сплава (Ф); феррит, как вторая (избыточная) фаза, располагающаяся по границам перлитных колоний, в виде...




Как в азеотропных смесях коннода вертикальна, нода вырождается в точку. 3. Фазовые эффекты и уравнение Ван-дер-Ваальса для бинарных азеотропных смесей. Фазовые эффекты в бинарных азеотропных смесях. На рисунках 3.1 - 3.4 изображены диаграммы объем - состав фаз, и энтропия – состав фаз для азеотропа с минимумом температуры кипения. Если рассматриваемый состав равен составу...




Si, поскольку эвтектическая температура этой системы крайне мала по сравнению с температурами плавления чистого золота или чистого кремния (рис 9). Растворимости золота в кремнии и кремния в золоте слишком малы, чтобы их отобразить на обычной фазовой диаграмме состояний. Из-за низкой эвтектической температуры оказывается выгодно устанавливать кристаллы микросхем на золотые подложки, держатели или...