Свойства касательных проведенных из одной точки якласс. Справочные материалы хорда, секущая, касательная орпеделения, теоремы

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности. ДОКАЗАТЕЛЬСТВО. А. 3. В. 4. 1. 2. С. О. По теореме о свойстве касательной углы 1 и 2 прямые, поэтому треугольники АВО и АСО прямоугольные. Они равны, т.к. имеют общую гипотенузу ОА и равные катеты ОВ и ОС. Следовательно, АВ=АС и угол 3= углу 4, что и требовалось доказать.

Слайд 4 из презентации ««Окружность» геометрия» . Размер архива с презентацией 316 КБ.

Геометрия 8 класс

краткое содержание других презентаций

«Свойства четырёхугольников» - Трапеция. Незнайка исправил двойку. Диагонали делят углы пополам. Определения четырехугольников. Диагонали. Диктант. Квадратом называется прямоугольник, у которого все стороны равны. Все углы прямые. Противоположные углы. Элементы параллелограмма. Конструктор. Ромб. Свойства четырехугольников. Стороны. Четырехугольники и их свойства. Четырехугольник. Помогите Незнайке исправить двойку. Диагональ. Противоположные стороны.

«Векторы 8 класс» - Цели урока. Назовите равные и противоположные векторы. Определите координаты вектора. Равные вектора. Векторы на уроках физики. Продолжите фразу. Найдите и назовите равные векторы на данном рисунке. Координаты вектора. Практическая работа. Абсолютная величина вектора. Абсолютная величина вектора. Самостоятельная работа в парах. Явления природы описываются физическими величинами. Векторы. Координаты вектора.

«Скалярное произведение в координатах» - Математическая разминка. Решение треугольника. Теорема Наполеона. Новый материал. Обменяйтесь карточками. Решим задание. Геометрия. Имя автора теоремы. Следствие. Вектор. Свойства скалярного произведение векторов. Скалярное произведение в координатах и его свойства. Доказательство теоремы Пифагора. Математический тест.

«Осевая симметрия в геометрии» - Фигура называется симметричной относительно прямой a. Фигуры, обладающие двумя осями симметрии. Фигуры, обладающие одной осью симметрии. Постройте треугольники, симметричные данным, относительно прямой С. Содержание. Постройте точки А" и В". Определение. Симметрия в поэзии. Осевая симметрия. Начертите две прямые а и b и отметьте две точки А и В. Как же получить фигуру, симметричную данной. Слова, имеющие ось симметрии.

««Осевая и центральная симметрия» геометрия» - Опишите фигуру. Вейль Герман. Симметрия в мире растений. Науки. Симметрия в мире насекомых. Углы треугольника. Поворотная симметрия. Соразмерность. Алгоритм построения. Осевая и центральная симметрия. Симметричность точек относительно центра. Симметричность точек относительно прямой. Знакомые черты. Что Вас привлекло в этих фотографиях. Точка О. Центральная и осевая симметрия. Симметричность фигуры относительно прямой.

««Теорема Фалеса» 8 класс» - Отрезок. Навыки решения задач. Диагональ. Анализ. Задачи на готовых чертежах. Доказательство. Исследование. Параллельные прямые. Фалес известен как геометр. Фалес Милетский. Середины боковых сторон. Теорема Фалеса. Изречения Фалеса. Задача. Найти углы трапеции. Доказать.

1. Две касательные из одной точки.

Пусть к окружности с центром в точке $$O$$ проведены две касательные $$AM$$ и $$AN$$, точки $$M$$ и $$N$$ лежат на окружности (рис. 1).

По определению касательной $$OM \perp AM$$ и $$ON \perp AN$$. В прямоугольных треугольниках $$AOM$$ и $$AON$$ гипотенуза $$AO$$ общая, катеты $$OM$$ и $$ON$$ равны, значит, $$\Delta AOM = \Delta AON$$. Из равенства этих треугольников следует $$AM=AN$$ и $$\angle MAO = \angle NAO$$. Таким образом, если из точки к окружности проведены две касательные, то:

1.1$${\!}^{\circ}$$. отрезки касательных от этой точки до точек касания равны;

1.2$${\!}^{\circ}$$. прямая, проходящая через центр окружности и заданную точку, делит угол между касательными пополам.

Используя свойство 1.1$${\!}^{\circ}$$, легко решим следующие две задачи. (В решении используется тот факт, что в каждый треугольник можно вписать окружность).

На основании $$AC$$ равнобедренного треугольника $$ABC$$ расположена точка $$D$$, при этом $$DA = a$$, $$DC = b$$ (рис. 2). Окружности, вписанные в треугольники $$ABD$$ и $$DBC$$ , касаются прямой $$BD$$ в точках $$M$$ и $$N$$ соответственно. Найти отрезок $$MN$$.

.

$$\triangle$$ Пусть $$a > b $$. Обозначим $$x = MN$$, $$y = ND$$, $$z = BM$$.

По свойству касательных $$DE = y$$, $$KD = x + y $$, $$AK = AP = a - (x + y)$$, $$CE = CF = b - y$$, $$BP = z$$, и $$BF = z + x$$. Выразим боковые стороны (рис. 2а): $$AB = z+a-x-y$$, $$BC=z+x-b-y$$. По условию $$AB=BC$$, поэтому $$z+a-x -y = z+x+b-y$$. Отсюда находим $$x=\frac{(a-b)}{2}$$, т. е. $$MN=\frac{(a-b)}{2}$$. Если $$a \lt b$$, то $$MN=\frac{(b-a)}{2}$$. Итак, $$MN=\frac{1}{2}|a-b|$$. $$\blacktriangle$$

ОТВЕТ

$$\frac{|a-b|} {2}$$

Доказать, что в прямоугольном треугольнике сумма катетов равна удвоенной сумме радиусов вписанной и описанной окружностей, т. е. $$a+b=2R+2r$$.

$$\triangle$$ Пусть $$M$$, $$N$$ и $$K$$ - точки касания окружностью сторон прямоугольного треугольника $$ABC$$ (рис. 3), $$AC=b$$, $$BC=a$$, $$r$$ - радиус вписанной окружности, $$R$$ - радиус описанной окружности. Вспомним, что гипотенуза есть диаметр описанной окружности: $$AB=2R$$. Далее, $$OM \perp AC$$, $$BC \perp AC$$, значит, $$OM \parallel BC$$, аналогично $$ON \perp BC$$, $$AC \perp BC$$, значит, $$ON \parallel AC$$. Четырёхугольник $$MONC$$ по определению есть квадрат, все его стороны равны $$r$$, поэтому $$AM = b - r$$ и $$BN = a - r $$.

По свойству касательных $$AK=AM$$ и $$BK=BN$$, поэтому $$AB = AK + KB = a+b-2r$$, а т. к. $$AB=2R$$ , то получаем $$a+b=2R+2r$$. $$\blacktriangle$$

Свойство 1.2$${\!}^{\circ}$$ сформулируем по другому: центр окружности, вписанной в угол, лежит на биссектрисе этого угла.

Около окружности с центром в точке $$O$$ описана трапеция $$ABCD$$ с основаниями $$AD$$ и $$BC$$ (рис. 4а).

а) Доказать, что $$\angle AOB = \angle COD = $$90$${\!}^{\circ}$$ .

б) Найти радиус окружности, если $$BO = \sqrt{5}$$ и $$AO = 2 \sqrt{5}$$. (рис. 4б)

$$\triangle$$ а) Окружность вписана в угол $$BAD$$, по свойству 1.2$${\!}^{\circ}$$ $$AO$$ - биссектриса угла $$A$$, $$\angle 1 = \angle 2 = \frac{1}{2} \angle A$$; $$BO$$ - биссектриса угла $$B$$, $$\angle 3 = \angle 4 = \frac{1}{2} \angle B$$. Из параллельности прямых $$AD$$ и $$BC$$ следует, что $$\angle A + \angle B = 180^{\circ}$$,поэтому в треугольнике $$AOB$$ из $$\angle 1 + \angle 3 = \frac{1}{2} (\angle A + \angle B) = 90^{\circ}$$ следует $$\angle AOB = 90^{\circ}$$.

Аналогично $$CO$$ и $$DO$$ биссектрисы углов $$C$$ и $$D$$ трапеции, $$\angle COD = 180^{\circ} - \frac{1}{2}(\angle C + \angle D) = 90^{\circ}$$.

б) Треугольник $$AOB$$ прямоугольный с катетами $$AO = 2 \sqrt{5}$$ и $$BO = \sqrt{5}$$. Находим гипотенузу $$AB=\sqrt{20+5} = 5$$. Если окружность касается стороны $$AB$$ в точке $$K$$, то $$OK \perp AB$$ и $$OK$$ - радиус окружности. По свойству прямоугольного треугольника $$AB \cdot OK = AO \cdot BO$$, откуда $$OK = \frac{2\sqrt{5}\cdot \sqrt{5}}{5} = 2$$. $$\blacktriangle$$

ОТВЕТ

2. Угол между касательной и хордой с общей точкой на окружности.

Напомним, что градусная мера вписанного угла равна половине градусной меры дуги, на которую он опирается.

Теорема 1. Мера угла между касательной и хордой, имеющими общую точку на окружности, равна половине градусной меры дуги, заключённой между его сторонами.

$$\square$$ Пусть $$O$$ - центр окружности, $$AN$$ - касательная (рис. 5). Угол между касательной $$AN$$ и хордой $$AB$$ обозначим $$\alpha$$. Соединим точки $$A$$ и $$B$$ с центром окружности.

Таким образом, градусная мера угла между касательной и хордой равна половине градусной меры дуги $$AnB$$, которая заключена между его сторонами, и, значит, угол $$BAN$$ равен любому вписанному углу, опирающемуся на дугу $$AnB$$. (Аналогичные рассуждения можно провести и для угла $$MAB$$). $$\blacksquare$$

Точка $$C$$ лежит на окружности и отстоит от касательных, проведённых из точки $$M$$ к окружности, на расстоянии $$CS = a$$ и $$CP = b$$ (рис. 6). Доказать, что $$CK = \sqrt{ab}$$.

$$\triangle$$ Проведём хорды $$CA$$ и $$CB$$. Угол $$SAC$$ между касательной $$SA$$ и хордой $$AC$$ равен вписанному углу $$ABC$$. А угол $$PBC$$ между касательной $$PB$$ и хордой $$BC$$ равен вписанному углу $$BAC$$. Получили две пары подобных прямоугольных треугольников $$\Delta ASC \sim\Delta BKC$$ и $$\Delta BPC \sim \Delta AKC$$. Из подобия имеем $$\dfrac{a}{AC}=\dfrac{x}{BC}$$ и $$\dfrac{b}{BC}=\dfrac{x}{AC}$$, откуда следует $$ab=x^2$$, $$x=\sqrt{ab}$$. (Если проекция точки $$C$$ на прямую $$AB$$ лежит вне отрезка $$AB$$, доказательство изменяется не сильно). (Ч. т. д.) $$\blacktriangle$$

Приём , применённый в решении, - проведение «недостающих» хорд - часто помогает в задачах и теоремах с окружностью и касательной, как, например, в доказательстве следующей теоремы «о касательной и секущей» .

Теорема 2. Если из одной точки $$M$$ к окружности проведены касательная $$MA$$ и секущая $$MB$$, пересекающая окружность в точке $$C$$ (рис. 7), то справедливо равенство $$MA^2 = MB \cdot MC$$, т. е. если из точки $$M$$ к окружности проведены касательная и секущая, то квадрат отрезка касательной от точки $$M$$ до точки касания равен произведению длин отрезков секущей от точки $$M$$ до точек её пересечения с окружностью.

$$\square$$ Проведём хорды $$AC$$ и $$AB$$. Угол $$MAC$$ между касательной и хордой равен вписанному углу $$ABC$$, оба измеряются половиной градусной меры дуги $$AnC$$. В треугольниках $$MAC$$ и $$MBA$$ равны углы $$MAC$$ и $$MBA$$, а угол при вершине $$M$$ общий. Эти треугольники по-
добны, из подобия имеем $$MA/MB = MC/MA$$, откуда следует $$MA^2 = MB \cdot MC$$. $$\blacksquare$$

Радиус окружности равен $$R$$. Из точки $$M$$ проведены касательная $$MA$$ и секущая $$MB$$, проходящая через центр $$O$$ окружности (рис. 8). Найти расстояние между точкой $$M$$ и центром окружности, если $$MB = 2MA$$.

$$\triangle$$ Обозначим искомое расстояние $$x: \: x=MO$$, тогда $$MB = x+R$$, $$MC=x-R$$ и по условию $$MA=MB/2=(x+R)/2$$. По теореме о касательной и секущей $$(x+R)^2/4=(x+R)(x-R)$$, откуда, сокращая на $$(x+R)$$, получаем $$(x+R)/4=x-R$$. Легко находим $$x = \dfrac{5}{3}R$$. $$\blacktriangle$$

ОТВЕТ

$$\dfrac{5}{3}R$$

3. Свойство хорд окружности.

Полезно доказать эти свойства самостоятельно (лучше закрепляется), можете разобрать доказательства по учебнику.

1.3$${\!}^{\circ}$$. Диаметр, перпендикулярный хорде, делит её пополам. Обратно: диаметр, проходящей через середину хорды (не являющуюся диаметром) перпендикулярен ей.

1.4$${\!}^{\circ}$$. Равные хорды окружности находятся на равном расстоянии от центра окружности. Обратно: на равном расстоянии от центра окружности находятся равные хорды.

1.5$${\!}^{\circ}$$. Дуги окружности, заключённые между параллельными хордами, равны (рис. 9 подскажет путь доказательства).

1.6$${\!}^{\circ}$$. Если две хорды $$AB$$ и $$CD$$ пересекаются в точке $$M$$, то $$AM \cdot MB = CM \cdot MD$$, т. е. произведение длин отрезков одной хорды равно произведению длин отрезков другой хорды (на рис. 10 $$\Delta AMC \sim \Delta DMB$$).

Следующее утверждение докажем.

1.7$${\!}^{\circ}$$. Если в окружности радиуса $$R$$ вписанный угол, опирающийся на хорду длины $$a$$, равен $$\alpha$$,то $$a = 2R\textrm{sin}\alpha$$.

$$\blacksquare$$ Пусть в окружности радиуса $$R$$ хорда $$BC = a$$, вписанный угол $$BAC$$ опирается на хорду $$a$$, $$\angle BAC = \alpha$$ (рис. 11 а,б).

Проведём диаметр $$BA^{"}$$ и рассмотрим прямоугольный треугольник $$BA^{"}C$$ ($$\angle BCA^{"}= 90^{\circ}$$, опирается на диаметр).

Если угол $$A$$ острый (рис. 11а), то центр $$O$$ и вершина $$A$$ лежат по одну сторону от прямой $$BC$$, $$\angle A^{"} = \angle A$$ и $$BC = BA^{"} \cdot \textrm{sin}A^{"}$$, т. е. $$a=2R\textrm{sin}A^{"}$$ .

Если угол $$A$$ тупой, центр $$O$$ и вершина $$A$$ лежат по разные стороны от прямой $$BC$$ (рис. 11б), тогда $$\angle A^{"} = 180^{\circ} - \angle A$$ и $$BC = BA^{"} \cdot \textrm{sin}A^{"}$$, т. е. $$a=2R\textrm{sin}(180-A^{"})=2R\textrm{sin}A^{"}$$.

Если $$\alpha = 90^{\circ}$$, то $$BC$$ - диаметр, $$BC = 2R = 2R\textrm{sin}90^{\circ}$$.

Во всех случаях справедливо равенство $$a=2R\textrm{sin}A^{"}$$ . $$\blacktriangle$$

Итак, $$\boxed{a = 2R\textrm{sin}\alpha}$$ или $$\boxed{R = \dfrac{a}{2\textrm{sin}\alpha}}$$. (*)

Найти радиус окружности, описанной около треугольника $$ABC$$, в котором $$AB = 3\sqrt{3}$$, $$BC = 2$$ и угол $$ABC = 150^{\circ}$$.

$$\triangle$$ В описанной около треугольника $$ABC$$ окружности известен угол $$B$$ , опирающийся на хорду $$AC$$. Из доказанной формулы следует $$R = \dfrac{AC}{2\textrm{sin}B}$$.

Применим теорему косинусов к треугольнику $$ABC$$ (рис. 12) при этом учтём, что

$$\textrm{cos}150^{\circ} = \textrm{cos}(180^{\circ}-30^{\circ}) = -\textrm{cos}30^{\circ} = -\dfrac{\sqrt{3}}{2}$$, получим

$$AC^2 = 27+4+2\cdot 3\sqrt{3} \cdot 2 \cdot \dfrac{\sqrt{3}}{2} = 49,\: AC=7$$.

Находим $$R = \dfrac{AC}{2\textrm{sin}150^{\circ}} = \dfrac{7}{2\textrm{sin}30^{\circ}} = 7$$. $$\blacktriangle$$

ОТВЕТ

Используем свойство пересекающихся хорд для доказательства следующей теоремы.

Теорема 3. Пусть $$AD$$ - биссектриса треугольника $$ABC$$, тогда

$$AD^2 = AB\cdot AC - BD\cdot CD$$, т.е. если $$AB=c,\: AC=b,\: BD=x,\:DC=y$$, то $$AD^2 = bc-xy$$ (рис. 13а).

$$\square$$ Опишем около треугольника $$ABC$$ окружность (рис. 13б) и точку пересечения продолжения биссектрисы $$AD$$ с окружностью обозначим $$B_1$$. Обозначим $$AD = l $$ и $$DB_1 = z $$. Вписанные углы $$ABC$$ и $$AB_1C$$ равны, $$AD$$ - биссектриса угла $$A$$, поэтому $$\Delta ABD \sim \Delta AB_1C$$ (по двум углам). Из подобия имеем $$\dfrac{AD}{AC} = \dfrac{AB}{AB_1}$$, т. е. $$\dfrac{l}{b} = \dfrac{c}{l+z}$$, откуда $$l^2=bc-lz$$. По свойству пересекающихся хорд $$BD\cdot DC = AD \cdot DB_1$$, т. е. $$xy=lz$$, поэтому получаем $$l^2=bc-xy$$ . $$\blacksquare$$

4. Две касающиеся окружности

В заключении параграфа рассмотрим задачи с двумя касающимися окружностями. Две окружности, имеющие общую точку и общую касательную в этой точке, называются касающимися . Если окружности расположены по одну сторону от общей касательной, они называются касающимися внутренне (рис. 14а), а если расположены по разные стороны от касательной, то они называются касающимися внешне (рис. 14б).

Если $$O_1$$ и $$O_2$$ - центры окружностей, то по определению касательной $$AO_1 \perp l$$, $$AO_2 \perp l$$, следовательно, в обоих случаях общая точка касания лежит на линии центров.

Две окружности радиусов $$R_1$$ и $$R_2$$ ($$R_1 > R_2$$) внутренне касаются в точке $$A$$. Через точку $$B$$, лежащую на большей окружности, проведена прямая, касающаяся меньшей окружности в точке $$C$$ (рис. 15). Найти $$AB$$, если $$BC = a$$.

$$\triangle$$ Пусть $$O_1$$ и $$O_2$$ - центры большей и меньшей окружностей, $$D$$ - точка пересечения хорды $$AB$$ с меньшей окружностью. Если $$O_1N \perp AB$$ и $$O_2M \perp AB$$, то $$AN=AB/2$$ и $$AM=AD/2$$ (т. к. радиус, перпендикулярный хорде, делит её пополам). Из подобия треугольников $$AO_2M$$ и $$AO_1N$$ следует $$AN:AM = AO_1:AO_2$$ и, значит, $$AB:AD = R_1:R_2$$.

По теореме о касательной и секущей имеем:

$$BC^2 = AB\cdot BD = AB (AB-AD) = AB^2(1 - \dfrac{AD}{AB})$$,

т. е. $$a^2 = AB^2(1-\dfrac{R_2}{R_1})$$.

Итак, $$AB = a \sqrt{\dfrac{R_1}{R_1-R_2}}$$. $$\blacktriangle$$

Две окружности радиусов $$R_1$$ и $$R_2$$ внешне касаются в точке $$A$$ (рис. 16). Их общая внешняя касательная касается большей окружности в точке $$B$$ и меньшей - в точке $$C$$. Найти радиус окружности, описанной около треугольника $$ABC$$.

$$\triangle$$ Соединим центры $$O_1$$ и $$O_2$$ с точками $$B$$ и $$C$$. По определению касательной, $$O_1B \perp BC$$ и $$O_2C \perp BC$$. Следовательно, $$O_1B \parallel O_2C$$ и $$\angle BO_1O_2 + \angle CO_2O_1 = 180^{\circ}$$. Так как $$\angle ABC = \dfrac{1}{2} \angle BO_1A$$ и $$\angle ACB = \dfrac{1}{2} \angle CO_2A$$, то $$\angle ABC + \angle ACB = 90^{\circ}$$. Отсюда следует, что $$\angle BAC = 90^{\circ}$$ , и поэтому радиус окружности, описанной около прямоугольного треугольника $$ABC$$ , равен половине гипотенузы $$BC$$.

Найдём $$BC$$. Пусть $$O_2K \perp O_1B$$, тогда $$KO_2 = BC,\: O_1K = R_1-R_2,\: O_1O_2 = R_1+R_2$$. По теореме Пифагора находим:

$$KO_2 = \sqrt{O_1O_2^2 - O_1K^2}= 2\sqrt{R_1R_2}, \: \underline{BC = 2\sqrt{R_1R_2} }$$.

Итак, радиус окружности, описанной около треугольника $$ABC$$ равен $$\sqrt{R_1R_2}$$. В решении $$R_1 > R_2$$, при $$R_1

ОТВЕТ

$$\sqrt{R_1R_2}$$

Определение. Касательная к окружности — это прямая на плоскости, имеющая ровно одну общую точку с окружностью.

Вот парочка примеров:

Окружность с центром O касается прямой l в точке A Из любой точки M за пределами окружности можно провести ровно две касательных Различие между касательной l , секущей BC и прямой m , не имеющей общих точек с окружностью

На этом можно было бы закончить, однако практика показывает, что недостаточно просто зазубрить определение — нужно научиться видеть касательные на чертежах, знать их свойства и вдобавок как следует попрактиковаться в применении этих свойств, решая реальные задачи. Всем этим всем мы сегодня и займёмся.

Основные свойства касательных

Для того, чтобы решать любые задачи, нужно знать четыре ключевых свойства. Два из них описаны в любом справочнике / учебнике, а вот последние два — про них как-то забывают, а зря.

1. Отрезки касательных, проведённых из одной точки, равны

Чуть выше мы уже говорили про две касательных, проведённых из одной точки M. Так вот:

Отрезки касательных к окружности, проведённых из одной точки, равны.

Отрезки AM и BM равны

2. Касательная перпендикулярна радиусу, проведённому в точку касания

Ещё раз посмотрим на картинку, представленную выше. Проведём радиусы OA и OB , после чего обнаружим, что углы OAM и OBM — прямые.

Радиус, проведённый в точку касания, перпендикулярен касательной.

Этот факт можно использовать без доказательства в любой задаче:

Радиусы, проведённые в точку касания, перпендикулярны касательным

Кстати, заметьте: если провести отрезок OM , то мы получим два равных треугольника: OAM и OBM .

3. Соотношение между касательной и секущей

А вот это уже факт посерьёзнее, и большинство школьников его не знают. Рассмотрим касательную и секущую, которые проходят через одну и ту же общую точку M . Естественно, секущая даст нам два отрезка: внутри окружности (отрезок BC — его ещё называют хордой) и снаружи (его так и называют — внешняя часть MC ).

Произведение всей секущей на её внешнюю часть равно квадрату отрезка касательной

Соотношение между секущей и касательной

4. Угол между касательной и хордой

Ещё более продвинутый факт, который часто используется для решения сложных задач. Очень рекомендую взять на вооружение.

Угол между касательной и хордой равен вписанному углу, опирающемуся на эту хорду.

Откуда берётся точка B ? В реальных задачах она обычно «всплывает» где-то в условии. Поэтому важно научиться распознавать данную конфигурацию на чертежах.


Иногда всё-таки касается:)

Понятие касательной к окружности

Окружность имеет три возможных взаимных расположений относительно прямой:

    Если расстояние от центра окружности до прямой меньше радиуса, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой равно радиусу, то прямая имеет две точки пересечения с окружностью.

    Если расстояние от центра окружности до прямой больше радиуса, то прямая имеет две точки пересечения с окружностью.

Введем теперь понятие касательной прямой к окружности.

Определение 1

Касательной к окружности называется прямая, которая имеет с ней одну точку пересечения.

Общая точка окружности и касательной называется точкой касания (рис 1).

Рисунок 1. Касательная к окружности

Теоремы, связанные с понятием касательной к окружности

Теорема 1

Теорема о свойстве касательной : касательная к окружности перпендикулярна к радиусу, проведенному в точку касания.

Доказательство.

Рассмотрим окружность с центром $O$. Проведем в точке $A$ касательную $a$. $OA=r$ (Рис. 2).

Докажем, что $a\bot r$

Будем доказывать теорему методом «от противного». Предположим, что касательная $a$ не перпендикулярна радиусу окружности.

Рисунок 2. Иллюстрация теоремы 1

То есть $OA$ - наклонная к касательной. Так как перпендикуляр к прямой $a$ всегда меньше наклонной к этой же прямой, то расстояние от центра окружности до прямой меньше радиуса. Как нам известно, в этом случае прямая имеет две точки пересечения с окружностью. Что противоречит определению касательной.

Следовательно, касательная перпендикулярна к радиусу окружности.

Теорема доказана.

Теорема 2

Обратная теореме о свойстве касательной : Если прямая, проходящая через конец радиуса какой-либо окружности перпендикулярна радиусу, то данная прямая является касательной к этой окружности.

Доказательство.

По условию задачи мы имеем, что радиус -- перпендикуляр, проведенный из центра окружности к данной прямой. Следовательно, расстояние от центра окружности до прямой равняется длине радиуса. Как мы знаем, в этом случае окружность имеет только одну точку пересечения с этой прямой. По определению 1 и получаем, что данная прямая -- касательная к окружности.

Теорема доказана.

Теорема 3

Отрезки касательных к окружности, проведенные из одной точки, равны и составляют равные углы с прямой, проходящей через эту точку и центр окружности.

Доказательство.

Пусть дана окружность с центром в точке $O$. Из точки $A$ (лежащей все окружности) проведены две различные касательные. Из точки касания соответственно $B$ и $C$ (Рис. 3).

Докажем, что $\angle BAO=\angle CAO$ и что $AB=AC$.

Рисунок 3. Иллюстрация теоремы 3

По теореме 1, имеем:

Следовательно, треугольники $ABO$ и $ACO$ -- прямоугольные. Так как$OB=OC=r$, а гипотенуза $OA$ -- общая, то эти треугольники равны по гипотенузе и катету.

Отсюда и получаем, что $\angle BAO=\angle CAO$ и $AB=AC$.

Теорема доказана.

Пример задачи на понятие касательной к окружности

Пример 1

Дана окружность с центром в точке $O$ и радиусом $r=3\ см$. Касательная $AC$ имеет точку касания $C$. $AO=4\ см$. Найти $AC$.

Решение.

Изобразим вначале все на рисунке (Рис. 4).

Рисунок 4.

Так как $AC$ касательная, а $OC$ радиус, то по теореме 1, получаем, что$\angle ACO={90}^{{}^\circ }$. Получили, что треугольник $ACO$ -- прямоугольный, значит, по теореме Пифагора, имеем:

\[{AC}^2={AO}^2+r^2\] \[{AC}^2=16+9\] \[{AC}^2=25\] \

Секущие, касательные - все это сотни раз можно было слышать на уроках геометрии. Но выпуск из школы позади, проходят года, и все эти знания забываются. Что следует вспомнить?

Сущность

Термин "касательная к окружности" знаком, наверное, всем. Но вряд ли у всех получится быстро сформулировать его определение. Между тем касательной называют такую прямую, лежащую в одной плоскости с окружностью, которая пересекает ее только в одной точке. Их может существовать огромное множество, но все они обладают одинаковыми свойствами, о которых речь пойдет ниже. Как нетрудно догадаться, точкой касания называют то место, где окружность и прямая пересекаются. В каждом конкретном случае она одна, если же их больше, то это будет уже секущая.

История открытия и изучения

Понятие касательной появилось еще в древности. Построение этих прямых сначала к окружности, а потом к эллипсам, параболам и гиперболам с помощью линейки и циркуля проводилось еще на начальных этапах развития геометрии. Разумеется, история не сохранила имя первооткрывателя, но очевидно, что еще в то время людям были вполне известны свойства касательной к окружности.

В Новое время интерес к этому явлению разгорелся вновь - начался новый виток изучения этого понятия в сочетании с открытием новых кривых. Так, Галилей ввел понятие циклоиды, а Ферма и Декарт построили к ней касательную. Что же касается окружностей, кажется, еще для древних не осталось секретов в этой области.

Свойства

Радиус, проведенный в точку пересечения, будет Это

основное, но не единственное свойство, которое имеет касательная к окружности. Еще одна важная особенность включает в себя уже две прямые. Так, через одну точку, лежащую вне окружности, можно провести две касательные, при этом их отрезки будут равны. Есть и еще одна теорема по этой теме, однако ее редко проходят в рамках стандартного школьного курса, хотя для решения некоторых задач она крайне удобна. Звучит она следующим образом. Из одной точки, расположенной вне окружности, проведены касательная и секущая к ней. Образуются отрезки AB, AC и AD. А - пересечение прямых, B точка касания, C и D - пересечения. В этом случае будет справедливым следующее равенство: длина касательной к окружности, возведенная в квадрат, будет равна произведению отрезков AC и AD.

Из вышесказанного есть важное следствие. Для каждой точки окружности можно построить касательную, но при этом только одну. Доказательство этого достаточно просто: теоретически опустив на нее перпендикуляр из радиуса, выясняем, что образованный треугольник существовать не может. И это значит, что касательная - единственная.

Построение

Среди прочих задач по геометрии есть особая категория, как правило, не

пользующаяся любовью учеников и студентов. Для решения заданий из этой категории нужны лишь циркуль и линейка. Это задачи на построение. Есть они и на построение касательной.

Итак, даны окружность и точка, лежащая вне ее границ. И необходимо провести через них касательную. Как же это сделать? Прежде всего, нужно провести отрезок между центром окружности О и заданной точкой. Затем с помощью циркуля следует разделить его пополам. Чтобы это сделать, необходимо задать радиус - чуть более половины расстояния между центром изначальной окружности и данной точкой. После этого нужно построить две пересекающиеся дуги. Причем радиус у циркуля менять не надо, а центром каждой части окружности будут изначальная точка и О соответственно. Места пересечений дуг нужно соединить, что разделит отрезок пополам. Задать на циркуле радиус, равный этому расстоянию. Далее с центром в точке пересечения построить еще одну окружность. На ней будет лежать как изначальная точка, так и О. При этом будет еще два пересечения с данной в задаче окружностью. Именно они и будут точками касания для изначально заданной точки.

Именно построение касательных к окружности привело к рождению

дифференциального исчисления. Первый труд по этой теме был опубликован известным немецким математиком Лейбницем. Он предусматривал возможность нахождения максимумов, минимумов и касательных вне зависимости от дробных и иррациональных величин. Что ж, теперь оно используется и для многих других вычислений.

Кроме того, касательная к окружности связана с геометрическим смыслом тангенса. Именно от этого и происходит его название. В переводе с латыни tangens - "касательная". Таким образом, это понятие связано не только с геометрией и дифференциальным исчислением, но и с тригонометрией.

Две окружности

Не всегда касательная затрагивет лишь одну фигуру. Если к одной окружности можно провести огромное множество прямых, то почему же нельзя наоборот? Можно. Вот только задача в этом случае серьезно усложняется, ведь касательная к двум окружностям может проходить не через любые точки, а взаимное расположение всех этих фигур может быть очень

разным.

Типы и разновидности

Когда речь идет о двух окружностях и одной или нескольких прямых, то даже если известно, что это касательные, не сразу становится ясно, как все эти фигуры расположены по отношению друг к другу. Исходя из этого, различают несколько разновидностей. Так, окружности могут иметь одну или две общие точки или не иметь их вовсе. В первом случае они будут пересекаться, а во втором - касаться. И вот тут различают две разновидности. Если одна окружность как бы вложена во вторую, то касание называют внутренним, если нет - то внешним. Понять взаимное расположение фигур можно не только, исходя из чертежа, но и располагая информацией о сумме их радиусов и расстоянии между их центрами. Если две эти величины равны, то окружности касаются. Если первая больше - пересекаются, а если меньше - то не имеют общих точек.

Так же и с прямыми. Для любых двух окружностей, не имеющих общих точек, можно

построить четыре касательные. Две из них будут пересекаться между фигурами, они называются внутренними. Пара других - внешние.

Если речь идет об окружностях, которые имеют одну общую точку, то задача серьезно упрощается. Дело в том, что при любом взаимном расположении в этом случае касательная у них будет только одна. И проходить она будет через точку их пересечения. Так что построение трудности не вызовет.

Если же фигуры имеют две точки пересечения, то для них может быть построена прямая, касательная к окружности как одной, так и второй, но только внешняя. Решение этой проблемы аналогично тому, что будет рассмотрено далее.

Решение задач

Как внутренняя, так и внешняя касательная к двум окружностям, в построении не так уж просты, хоть эта проблема и решаема. Дело в том, что для этого используется вспомогательная фигура, так что додуматься до такого способа самостоятельно

довольно проблематично. Итак, даны две окружности с разным радиусом и центрами О1 и О2. Для них нужно построить две пары касательных.

Прежде всего, около центра большей окружности нужно построить вспомогательную. При этом на циркуле должна быть установлена разница между радиусами двух изначальных фигур. Из центра меньшей окружности строятся касательные к вспомогательной. После этого из О1 и О2 проводятся перепендикуляры к этим прямым до пересечения с изначальными фигурами. Как следует из основного свойства касательной, искомые точки на обеих окружностях найдены. Задача решена, по крайнем мере, ее первая часть.

Для того чтобы построить внутренние касательные, придется решить практически

аналогичную задачу. Снова понадобится вспомогательная фигура, однако на этот раз ее радиус будет равен сумме изначальных. К ней строятся касательные из центра одной из данных окружностей. Дальнейший ход решения можно понять из предыдущего примера.

Касательная к окружности или даже двум и больше - не такая уж сложная задача. Конечно, математики давно перестали решать подобные проблемы вручную и доверяют вычисления специальным программам. Но не стоит думать, что теперь необязательно уметь делать это самостоятельно, ведь для правильного формулирования задания для компьютера нужно многое сделать и понять. К сожалению, есть опасения, что после окончательного перехода на тестовую форму контроля знаний задачи на построение будут вызывать у учеников все больше трудностей.

Что же касается нахождения общих касательных для большего количества окружностей, это не всегда возможно, даже если они лежат в одной плоскости. Но в некоторых случаях можно найти такую прямую.

Примеры из жизни

Общая касательная к двум окружностям нередко встречается и на практике, хоть это и не всегда заметно. Конвейеры, блочные системы, передаточные ремни шкивов, натяжение нити в швейной машинке, да даже просто велосипедная цепь - все это примеры из жизни. Так что не стоит думать, что геометрические задачи остаются лишь в теории: в инженерном деле, физике, строительстве и многих других областях они находят практическое применение.