С 42 графическое решение уравнений. Графический способ решения уравнений

На этом видеоуроке к изучению предлагается тема «Функция y=x 2 . Графическое решение уравнений». В ходе этого занятия учащиеся смогут познакомиться с новым способом решения уравнений - графическим, который основан на знании свойств графиков функций. Учитель покажет, как можно решить графическим способом функцию y=x 2 .

Тема: Функция

Урок: Функция . Графическое решение уравнений

Графическое решение уравнений основано на знании графиков функций и их свойств. Перечислим функции, графики которых мы знаем:

1) , графиком является прямая линия, параллельная оси абсцисс, проходящая через точку на оси ординат. Рассмотрим пример: у=1:

При различных значениях мы получаем семейство прямых параллельных оси абсцисс.

2) Функция прямой пропорциональности график данной функции - это прямая, проходящая через начало координат. Рассмотрим пример:

Данные графики мы уже строили в предыдущих уроках, напомним, что для построения каждой прямой нужно выбрать точку, удовлетворяющую ей, а второй точкой взять начало координат.

Напомним роль коэффициента k: при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. Кроме того, между двумя параметрами k одного знака существует следующее соотношение: при положительных k чем он больше, тем быстрее функция возрастает, а при отрицательных - функция быстрее убывает при больших значениях k по модулю.

3) Линейная функция . При - получаем точку пересечения с осью ординат и все прямые такого вида проходят через точку (0; m). Кроме того, при функция возрастает, угол между прямой и положительным направлением оси х острый; при функция убывает, угол между прямой и положительным направлением оси х тупой. И конечно величина k влияет на скорость изменения значения функции.

4). Графиком данной функции является парабола.

Рассмотрим примеры.

Пример 1 - графически решить уравнение:

Функции подобного вида мы не знаем, поэтому нужно преобразить заданное уравнение, чтобы работать с известными функциями:

Мы получили в обоих частях уравнения знакомые функции:

Построим графики функций:

Графики имеют две точки пересечения: (-1; 1); (2; 4)

Проверим, правильно ли найдено решение, подставим координаты в уравнение:

Первая точка найдена правильно.

, , , , , ,

Вторая точка также найдена верно.

Итак, решениями уравнения являются и

Поступаем аналогично предыдущему примеру: преобразуем заданное уравнение до известных нам функций, построим их графики, найдем токи пересечения и отсюда укажем решения.

Получаем две функции:

Построим графики:

Данные графики не имеют точек пересечения, значит заданное уравнение не имеет решений

Вывод: в данном уроке мы провели обзор известных нам функций и их графиков, вспомнили их свойства и рассмотрели графический способ решения уравнений.

1. Дорофеев Г.В., Суворова С.Б., Бунимович Е.А. и др. Алгебра 7. 6 издание. М.: Просвещение. 2010 г.

2. Мерзляк А.Г., Полонский В.Б., Якир М.С. Алгебра 7. М.: ВЕНТАНА-ГРАФ

3. Колягин Ю.М., Ткачёва М.В., Фёдорова Н.Е. и др. Алгебра 7 .М.: Просвещение. 2006 г.

Задание 1: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 494, ст.110;

Задание 2: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 495, ст.110;

Задание 3: Макарычев Ю.Н., Миндюк Н.Г., Нешков К.И. и др. Алгебра 7, № 496, ст.110;

Пусть имеется полное квадратное уравнение: A*x2+B*x+C=0, где A, B и C - любые числа, причем A не равно нулю. Это общий случай квадратного уравнения. Существует также приведенный вид, в котором A=1. Чтобы решить графически любое уравнение, нужно перенести в другую часть слагаемое с наибольшей степенью и приравнять обе части к какой-либо переменной.

После этого в левой части уравнения останется A*x2, а в правой - B*x-C (можно предположить, что B - отрицательное число, сути это не меняет). Получится уравнение A*x2=B*x-C=y. Для наглядности в этом случае обе части приравнены к переменной y.

Построение графиков и обработка результатов

Теперь можно записать два уравнения: y=A*x2 и y=B*x-C. Далее необходимо построить график каждой из этих функций. График y=A*x2 представляет собой параболу с вершиной в начале координат, ветви которой направлены вверх или вниз, в зависимости от знака числа A. Если оно отрицательно, ветви направлены вниз, если положительно - вверх.

График y=B*x-C представляет собой обычную прямую линию. Если C=0, прямая проходит через начало координат. В общем случае она отсекает от оси ординат отрезок, равный С. Угол наклона этой прямой относительно оси абсцисс определяется коэффициентом B. Он равен тангенсу наклона этого угла.

После того как графики построены, будет видно, что они пересекутся в двух точках. Координаты этих точек по оси абсцисс определяют корни квадратного уравнения. Для их точного определения нужно четко строить графики и правильно выбрать масштаб.

Другой способ графического решения

Существует еще один способ графического решения квадратного уравнения. Необязательно переносить B*x+C в другую часть уравнения. Можно сразу построить график функции y=A*x2+B*x+C. Такой график представляет собой параболу с вершиной в произвольной точке. Этот способ сложнее предыдущего, зато можно построить только один график, чтобы .

Сначала нужно определить вершину параболы с координатами x0 и y0. Ее абсцисса вычисляется по формуле x0=-B/2*a. Для определения ординаты нужно подставить полученное значение абсциссы в исходную функцию. Математически это утверждение записывается так: y0=y(x0).

Затем требуется найти две точки, симметричные оси параболы. В них исходная функция должна обращаться в ноль. После этого можно строить параболу. Точки ее пересечения с осью Х дадут два корня квадратного уравнения.

С квадратными уравнениями вы уже встречались в курсе алгебры 7-го класса. Напомним, что квадратным уравнением называют уравнение вида ах 2 + bх + с = 0, где а, b, с — любые числа (коэффициенты), причем а . Используя наши знания о некоторых функциях и их графиках, мы в состоянии уже теперь, не дожидаясь систематического изучения темы «Квадратные уравнения», решать некоторые квадратные уравнения, причем различными способами; мы рассмотрим эти способы на примере одного квадратного уравнения.

Пример. Решить уравнение х 2 - 2х - 3 = 0.
Решение.
I способ . Построим график функции у = х 2 - 2х - 3, воспользовавшись алгоритмом из § 13:

1) Имеем: а = 1, b = -2, х 0 = = 1, у 0 = f(1)= 1 2 - 2 - 3= -4. Значит, вершиной параболы служит точка (1; -4), а осью параболы — прямая х = 1.

2) Возьмем на оси х две точки, симметричные относительно оси параболы, например точки х = -1 и х = 3.

Имеем f(-1) = f(3) = 0. Построим на координатной плоскости точки (-1; 0) и (3; 0).

3) Через точки (-1; 0), (1; -4), (3; 0) проводим параболу (рис. 68).

Корнями уравнения х 2 - 2х - 3 = 0 являются абсциссы точек пересечения параболы с осью х; значит, корни уравнения таковы: х 1 = - 1, х 2 — 3.

II способ. Преобразуем уравнение к виду х 2 = 2х + 3. Построим в одной системе координат графики функций у — х 2 и у = 2х + 3 (рис. 69). Они пересекаются в двух точках А(- 1; 1) и В(3; 9). Корнями уравнения служат абсциссы точек А и В, значит, х 1 = - 1, х 2 — 3.


III способ . Преобразуем уравнение к виду х 2 - 3 = 2х. Построим в одной системе координат графики функций у = х 2 - 3 и у = 2х (рис. 70). Они пересекаются в двух точках А(-1; - 2) и В (3; 6). Корнями уравнения являются абсциссы точек А и В, поэтому х 1 = - 1, х 2 = 3.

IV способ. Преобразуем уравнение к виду х 2 -2х 4-1-4 = 0
и далее
х 2 - 2х + 1 = 4, т. е. (х - IJ = 4.
Построим в одной системе координат параболу у = (х - 1) 2 и прямую y = 4 (рис. 71). Они пересекаются в двух точках А(-1; 4) и В(3; 4). Корнями уравнения служат абсциссы точек А и В, поэтому х 1 = -1, х 2 = 3.

V способ. Разделив почленно обе части уравнения на х, получим


Построим в одной системе координат гиперболу и прямую у = х - 2 (рис. 72).

Они пересекаются в двух точках А (-1; -3) и В(3; 1). Корнями уравнения являются абсциссы точек А и В, следовательно, х 1 = - 1, х 2 = 3.

Итак, квадратное уравнение х 2 - 2х - 3 = 0 мы решили графически пятью способами. Давайте проанализируем, в чем суть этих способов.

I способ. Строят график функции у точки его пересечения с осью х.

II способ. Преобразуют уравнение к виду ах 2 = -bх - с, строят параболу у = ах 2 и прямую у = -bх - с, находят точки их пересечения (корнями уравнения служат абсциссы точек пересечения, если, разумеется, таковые имеются).

III способ. Преобразуют уравнение к виду ах 2 + с = - bх,строят параболу у — ах 2 + с и прямую у = -bх (она проходит через начало координат); находят точки их пересечения.

IV способ. Применяя метод выделения полного квадрата, преобразуют уравнение к виду

Строят параболу у = а (х + I) 2 и прямую у = - m, параллельную оси х; находят точки пересечения параболы и прямой.

V способ. Преобразуют уравнение к виду


Строят гиперболу (это — гипербола при условии, что ) и прямую у = — ах — b; находят точки их пересечения.

Заметим, что первые четыре способа применимы к любым уравнениям вида ах 2 + bх + с = 0, а пятый — только к тем, у которых с . На практике можно выбирать тот способ, который вам кажется наиболее приспособленным к данному уравнению или который вам больше нравится (или более понятен).

Замечание . Несмотря на обилие способов графического решения квадратных уравнений, уверенности в том, что любое квадратное уравнение мы
сможем решить графически, нет. Пусть, например, нужно решить уравнение х 2 - х - 3 = 0 (специально возьмем уравнение, похожее на то, что было в
рассмотренном примере). Попробуем его решить, например, вторым способом: преобразуем уравнение к виду х 2 = х + 3, построим параболу у = х 2 и
прямую у = х + 3, они пересекаются в точках А и В (рис. 73), значит, уравнение имеет два корня. Но чему равны эти корни, мы с помощью чертежа
сказать не можем — точки А и В имеют не такие «хорошие» координаты, как в приведенном выше примере. А теперь рассмотрим уравнение
х 2 - 16х— 95 = 0. Попробуем его решить, скажем, третьим способом. Преобразуем уравнение к виду х 2 — 95 = 16х. Здесь надо построить параболу
у = х 2 - 95 и прямую у = 16х. Но ограниченные размеры листа тетради не позволяют этого сделать, ведь параболу у = х 2 надо опустить на 95 клеток вниз.

Итак, графические способы решения квадратного уравнения красивы и приятны, но не дают стопроцентной гарантии решения любого квадратного уравнения. Учтем это в далнейшем.

>>Математика: Графическое решение уравнений

Графическое решение уравнений

Подытожим наши знания о графиках функций. Мы с вами научились строить графики следующих функций:

у =b (прямую, параллельную оси х);

y = kx (прямую, проходящую через начало координат);

y - kx + m (прямую);

у = х 2 (параболу).

Знание этих графиков позволит нам в случае необходимости заменить аналитическую модель геометрической (графической), например, вместо модели у = х 2 (которая представляет собой равенство с двумя переменными х и у) рассматривать параболу в координатной плоскости. В частности, это иногда полезно для решения уравнений. Как это делается, обсудим на нескольких примерах.

А. В. Погорелов, Геометрия для 7-11 классов, Учебник для общеобразовательных учреждений

Содержание урока конспект урока опорный каркас презентация урока акселеративные методы интерактивные технологии Практика задачи и упражнения самопроверка практикумы, тренинги, кейсы, квесты домашние задания дискуссионные вопросы риторические вопросы от учеников Иллюстрации аудио-, видеоклипы и мультимедиа фотографии, картинки графики, таблицы, схемы юмор, анекдоты, приколы, комиксы притчи, поговорки, кроссворды, цитаты Дополнения рефераты статьи фишки для любознательных шпаргалки учебники основные и дополнительные словарь терминов прочие Совершенствование учебников и уроков исправление ошибок в учебнике обновление фрагмента в учебнике элементы новаторства на уроке замена устаревших знаний новыми Только для учителей идеальные уроки календарный план на год методические рекомендации программы обсуждения Интегрированные уроки

Одним из способов решения уравнений является графический способ. Он основан на построении графиков функции и определения точек их пересечения. Рассмотрим графический способ решения квадратного уравнения a*x^2+b*x+c=0.

Первый способ решения

Преобразуем уравнение a*x^2+b*x+c=0 к виду a*x^2 =-b*x-c. Строим графики двух функций y= a*x^2 (парабола) и y=-b*x-c (прямая). Ищем точки пересечения. Абсциссы точек пересечения и будут являться решением уравнения.

Покажем на примере: решить уравнение x^2-2*x-3=0.

Преобразуем его в x^2 =2*x+3. Строим в одной системе координат графики функции y= x^2 и y=2*x+3.

Графики пересекаются в двух точках. Их абсциссы будут являться корнями нашего уравнения.

Решение по формуле

Для убедительности проверим это решение аналитическим путем. Решим квадратное уравнение по формуле:

D = 4-4*1*(-3) = 16.

X1= (2+4)/2*1 = 3.

X2 = (2-4)/2*1 = -1.

Значит, решения совпадают.

Графический способ решения уравнений имеет и свой недостаток, с помощью него не всегда можно получить точное решение уравнения. Попробуем решить уравнение x^2=3+x.

Построим в одной системе координат параболу y=x^2 и прямую y=3+x.

Опять получили похожий рисунок. Прямая и парабола пересекаются в двух точках. Но точные значения абсцисс этих точек мы сказать не можем, только лишь приближенные: x≈-1,3 x≈2,3.

Если нас устраивают ответы такой точности, то можно воспользоваться этим методом, но такое бывает редко. Обычно нужны точные решения. Поэтому графический способ используют редко, и в основном для проверки уже имеющихся решений.

Нужна помощь в учебе?



Предыдущая тема: