Неопределенность вида 0 на бесконечность. Правило Лопиталя: теория и примеры решений

Методы решения пределов. Неопределённости.
Порядок роста функции. Метод замены

Пример 4

Найти предел

Это более простой пример для самостоятельного решения. В предложенном примере снова неопределённость ( более высокого порядка роста, чем корень ).

Если «икс» стремится к «минус бесконечности»

Призрак «минус бесконечности» уже давно витал в этой статье. Рассмотрим пределы с многочленами, в которых . Принципы и методы решения будут точно такими же, что и в первой части урока, за исключением ряда нюансов.

Рассмотрим 4 фишки, которые потребуются для решения практических заданий:

1) Вычислим предел

Значение предела зависит только от слагаемого , поскольку оно обладает самым высоким порядком роста. Если , то бесконечно большое по модулю отрицательное число в ЧЁТНОЙ степени , в данном случае – в четвёртой, равно «плюс бесконечности»: . Константа («двойка») положительна , поэтому:

2) Вычислим предел

Здесь старшая степень опять чётная , поэтому: . Но перед расположился «минус» (отрицательная константа –1), следовательно:

3) Вычислим предел

Значение предела зависит только от . Как вы помните из школы, «минус» «выскакивает» из-под нечётной степени, поэтому бесконечно большое по модулю отрицательное число в НЕЧЁТНОЙ степени равно «минус бесконечности», в данном случае: .
Константа («четвёрка») положительна , значит:

4) Вычислим предел

Первый парень на деревне снова обладает нечётной степенью, кроме того, за пазухой отрицательная константа, а значит: Таким образом:
.

Пример 5

Найти предел

Используя вышеизложенные пункты, приходим к выводу, что здесь неопределённость . Числитель и знаменатель одного порядка роста, значит, в пределе получится конечное число. Узнаем ответ, отбросив всех мальков:

Решение тривиально:

Пример 6

Найти предел

Это пример для самостоятельного решения. Полное решение и ответ в конце урока.

А сейчас, пожалуй, самый тонкий из случаев:

Пример 7

Найти предел

Рассматривая старшие слагаемые, приходим к выводу, что здесь неопределённость . Числитель более высокого порядка роста, чем знаменатель, поэтому сразу можно сказать, что предел равен бесконечности. Но какой бесконечности, «плюс» или «минус»? Приём тот же – в числителе и знаменателе избавимся от мелочи:

Решаем:

Разделим числитель и знаменатель на

Пример 15

Найти предел

Это пример для самостоятельного решения. Примерный образец чистового оформления в конце урока.

Ещё пара занятных примеров на тему замены переменной:

Пример 16

Найти предел

При подстановке единицы в предел получается неопределённость . Замена переменной уже напрашивается, но сначала преобразуем тангенс по формуле . Действительно, зачем нам тангенс?

Заметьте, что , поэтому . Если не совсем понятно, посмотрите значения синуса в тригонометрической таблице . Таким образом, мы сразу избавляемся от множителя , кроме того, получаем более привычную неопределённость 0:0. Хорошо бы ещё и предел у нас стремился к нулю.

Проведем замену:

Если , то

Под косинусом у нас находится «икс», который тоже необходимо выразить через «тэ».
Из замены выражаем: .

Завершаем решение:

(1) Проводим подстановку

(2) Раскрываем скобки под косинусом.

(4) Чтобы организовать первый замечательный предел , искусственно домножаем числитель на и обратное число .

Задание для самостоятельного решения:

Пример 17

Найти предел

Полное решение и ответ в конце урока.

Это были несложные задачи в своём классе, на практике всё бывает хуже, и, помимо формул приведения , приходится использовать самые разные тригонометрические формулы , а также прочие ухищрения. В статье Сложные пределы я разобрал пару настоящих примеров =)

В канун праздника окончательно проясним ситуацию ещё с одной распространённой неопределённостью:

Устранение неопределённости «единица в степени бесконечность»

Данную неопределённость «обслуживает» второй замечательный предел , и во второй части того урока мы очень подробно рассмотрели стандартные примеры решений, которые в большинстве случаев встречаются на практике. Сейчас картина с экспонентами будет завершена, кроме того, заключительные задания урока будут посвящены пределам-«обманкам», в которых КАЖЕТСЯ, что необходимо применить 2-й замечательный предел, хотя это вовсе не так.

Недостаток двух рабочих формул 2-го замечательного предела состоит в том, что аргумент должен стремиться к «плюс бесконечности» либо к нулю. Но что делать, если аргумент стремится к другому числу?

На помощь приходит универсальная формула (которая на самом деле является следствием второго замечательного предела):

Неопределённость можно устранить по формуле:

Где-то вроде уже пояснял, что обозначают квадратные скобки. Ничего особенного, скобки как скобки. Обычно их используют, чтобы чётче выделить математическую запись.

Выделим существенные моменты формулы:

1) Речь идёт только о неопределённости и никакой другой .

2) Аргумент «икс» может стремиться к произвольному значению (а не только к нулю или ), в частности, к «минус бесконечности» либо к любому конечному числу.

С помощью данной формулы можно решить все примеры урока Замечательные пределы , которые относятся ко 2-му замечательному пределу. Например, вычислим предел :

В данном случае , и по формуле :

Правда, делать так не советую, в традициях всё-таки применять «обычное» оформление решения, если его можно применить. Однако с помощью формулы очень удобно выполнять проверку «классических» примеров на 2-й замечательный предел.

В разделе на вопрос А когда считаешь предел и получается ноль умножить на бесконечность - это ноль или неопределённость? заданный автором James Bond лучший ответ это Мистер Бонд, прочтите первый том "Курса дифференциального и интегрального исчисления" Г. М. Фихтенгольца. Ноль * Бесконечность - это неопределенность. Она сводится к неопределенности типа 0 / 0 или Бесконечность / Бесконечность, которые дальше можно раскрыть, например, применяя правила Лопиталя.
Не хотите открывать Фихтенгольца - суньтесь в Яндекс. Вот ссылочка первая же по запросу "Неопределенность, Правило Лопиталя"
Успехов в решении! И не забывайте о том, что Джеймс Бонд всегда находил решения самых трудных задач.



Ответ от Олег Филоненко [гуру]
Нуль


Ответ от RevArt [активный]
Сколько раз ни складывай ноль с нулем, ноль никогда не сдвинется с места, даже если бесконечное число раз. Это очевидно, поэтому результат всегда равен нулю.
Другие числа могут получиться, если считать предел произведения функций, одна из которых стремится к нулю, а другая к бесконечности, в этом случае все зависит от их скоростей стремления к нулю или к бесконечности.


Ответ от Игорь [новичек]
?


Ответ от Артур Валиев [гуру]
Это вы предел не доразложили. Непонятно какой ноль и какая бесконечность.
Например:
1. Lnx/x при x стремящемся к бесконечности - 0
2. e^x/x при x стремящемся к бесконечности - бесконечность
3. sin2x/x при x стремящемся к 0 равно 2
Поэтому, прежде чем считать предел типа f(x)/g(x) при x стремящемся к x0 надо провести разложение в окрестности x0 обоих функций и после сокращения в числителе или знаменателе у вас останется константа - а далее все просто.


Ответ от Виола [гуру]
Иногда так хочется,чтоб ноль стал бесконечностью...


Ответ от Бакыр [гуру]
нуль. Нуль деленная на беск-ть=неопред-ть.


Ответ от урманчи [гуру]
не слушай троечников - неопределенность, разумеется! И может получиться любое число в результате.


Ответ от Lenore ((Little Bunny Foo-Foo)) [гуру]
ноль...
т.к. если любое число из этого бесконечного ряда чисел умножать на ноль, все равно будет 0...


Ответ от Пользователь удален [гуру]
к сожалению только ноль...


Ответ от Вау-Вау Оцень [гуру]
А что у нас "ноль"? Ноль величина абстрактная и в природе не имеющая места быть вообще.

В предыдущей статье мы рассказывали, как правильно вычислять пределы элементарных функций. Если же мы возьмем более сложные функции, то у нас в расчетах появятся выражения с неопределенным значением. Они и называются неопределенностями.

Yandex.RTB R-A-339285-1

Выделяют следующие основные виды неопределенностей:

  1. Деление 0 на 0 0 0 ;
  2. Деление одной бесконечности на другую ∞ ∞ ;
  3. 0 , возведенный в нулевую степень 0 0 ;

  4. бесконечность, возведенная в нулевую степень ∞ 0 .

Мы перечислили все основные неопределенности. Другие выражения в различных условиях могут принимать конечные или бесконечные значения, следовательно, они не могут считаться неопределенностями.

Раскрытие неопределенностей

Раскрыть неопределенность можно:

  1. С помощью упрощения вида функции (использование формул сокращенного умножения, тригонометрических формул, дополнительное умножение на сопряженные выражения и последующее сокращение и др.);
  2. С помощью замечательных пределов;

    С помощью правила Лопиталя;

    Заменив одно бесконечно малое выражение на эквивалентное ему выражение (как правило, это действие выполняется с помощью таблицы бесконечно малых выражений).

Всю информацию, представленную выше, можно наглядно представить в виде таблицы. С левой стороны в ней приводится вид неопределенности, с правой – подходящий метод ее раскрытия (нахождения предела). Этой таблицей очень удобно пользоваться при расчетах, связанных с нахождением пределов.

Неопределенность Метод раскрытия неопределенности
1. Деление 0 на 0 Преобразование и последующее упрощение выражения. Если выражение имеет вид sin (k x) k x или k x sin (k x) то нужно использовать первый замечательный предел. Если такое решение не подходит, пользуемся правилом Лопиталя или таблицей эквивалентных бесконечно малых выражений
2. Деление бесконечности на бесконечность Преобразование и упрощение выражения либо использование правила Лопиталя
3. Умножение нуля на бесконечность или нахождение разности между двумя бесконечностями Преобразование в 0 0 или ∞ ∞ с последующим применением правила Лопиталя
4. Единица в степени бесконечности Использование второго замечательного предела
5. Возведение нуля или бесконечности в нулевую степень Логарифмирование выражения с применением равенства lim x → x 0 ln (f (x)) = ln lim x → x 0 f (x)

Разберем пару задач. Эти примеры довольно простые: в них ответ получается сразу после подстановки значений и неопределенности при этом не возникает.

Пример 1

Вычислите предел lim x → 1 x 3 + 3 x - 1 x 5 + 3 .

Решение

Выполняем подстановку значений и получаем ответ.

lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 1 3 + 3 · 1 - 1 1 5 + 3 = 3 4 = 3 2

Ответ: lim x → 1 x 3 + 3 x - 1 x 5 + 3 = 3 2 .

Пример 2

Вычислите предел lim x → 0 (x 2 + 2 , 5) 1 x 2 .

Решение

У нас есть показательно степенная функция, в основание которой нужно подставить x = 0 .

(x 2 + 2 , 5) x = 0 = 0 2 + 2 , 5 = 2 , 5

Значит, мы можем преобразовать предел в следующее выражение:

lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2

Теперь разберемся с показателем – степенной функцией 1 x 2 = x - 2 . Заглянем в таблицу пределов для степенных функций с показателем меньше нуля и получим следующее: lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞ и lim x → 0 + 0 1 x 2 = lim x → 0 + 0 x - 2 = + ∞

Таким образом, можно записать, что lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ .

Теперь берем таблицу пределов показательных функций с основаниями, большими 0 , и получаем:

lim x → 0 (x 2 + 2 , 5) 1 x 2 = lim x → 0 2 , 5 1 x 2 = 2 , 5 + ∞ = + ∞

Ответ: lim x → 0 (x 2 + 2 , 5) 1 x 2 = + ∞ .

Пример 3

Вычислите предел lim x → 1 x 2 - 1 x - 1 .

Решение

Выполняем подстановку значений.

lim x → 1 x 2 - 1 x - 1 = 1 2 - 1 1 - 1 = 0 0

В итоге у нас получилась неопределенность. Используем таблицу выше, чтобы выбрать метод решения. Там указано, что нужно выполнить упрощение выражения.

lim x → 1 x 2 - 1 x - 1 = 0 0 = lim x → 1 (x - 1) · (x + 1) x - 1 = = lim x → 1 (x - 1) · (x + 1) · (x + 1) x - 1 = lim x → 1 (x + 1) · x - 1 = = 1 + 1 · 1 - 1 = 2 · 0 = 0

Как мы видим, упрощение привело к раскрытию неопределенности.

Ответ: lim x → 1 x 2 - 1 x - 1 = 0

Пример 4

Вычислите предел lim x → 3 x - 3 12 - x - 6 + x .

Решение

Подставляем значение и получаем запись следующего вида.

lim x → 3 x - 3 12 - x - 6 + x = 3 - 3 12 - 3 - 6 + 3 = 0 9 - 9 = 0 0

Мы пришли к необходимости делить нуль на нуль, что является неопределенностью. Посмотрим нужный метод решения в таблице – это упрощение и преобразование выражения. Выполним дополнительное умножение числителя и знаменателя на сопряженное знаменателю выражение 12 - x + 6 + x:

lim x → 3 x - 3 12 - x - 6 + x = 0 0 = lim x → 3 x - 3 12 - x + 6 + x 12 - x - 6 + x 12 - x + 6 + x

Домножение знаменателя выполняется для того, чтобы потом можно было воспользоваться формулой сокращенного умножения (разность квадратов) и выполнить сокращение.

lim x → 3 x - 3 12 - x + 6 + x 12 - x - 6 + x 12 - x + 6 + x = lim x → 3 x - 3 12 - x + 6 + x 12 - x 2 - 6 + x 2 = lim x → 3 (x - 3) 12 - x + 6 + x 12 - x - (6 + x) = = lim x → 3 (x - 3) 12 - x + 6 + x 6 - 2 x = lim x → 3 (x - 3) 12 - x + 6 + x - 2 (x - 3) = = lim x → 3 12 - x + 6 + x - 2 = 12 - 3 + 6 + 3 - 2 = 9 + 9 - 2 = - 9 = - 3

Как мы видим, в результате этих действий нам удалось избавиться от неопределенности.

Ответ: lim x → 3 x - 3 12 - x - 6 + x = - 3 .

Важно отметить, что при решении подобных задач подход с использованием домножения используется очень часто, так что советуем запомнить, как именно это делается.

Пример 5

Вычислите предел lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 .

Решение

Выполняем подстановку.

lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 1 2 + 2 · 1 - 3 3 · 1 2 - 5 · 1 + 2 = 0 0

В итоге у нас вышла неопределенность. Рекомендуемый способ решения задачи в таком случае – упрощение выражения. Поскольку при значении x , равном единице, числитель и знаменатель обращаются в 0 , то мы можем разложить их на множители и потом сократить на х - 1 ,и тогда неопределенность исчезнет.

Выполняем разложение числителя на множители:

x 2 + 2 x - 3 = 0 D = 2 2 - 4 · 1 · (- 3) = 16 ⇒ x 1 = - 2 - 16 2 = - 3 x 2 = - 2 + 16 2 = 1 ⇒ x 2 + 2 x - 3 = x + 3 x - 1

Теперь делаем то же самое со знаменателем:

3 x 2 - 5 x + 2 = 0 D = - 5 2 - 4 · 3 · 2 = 1 ⇒ x 1 = 5 - 1 2 · 3 = 2 3 x 2 = 5 + 1 2 · 3 = 1 ⇒ 3 x 2 - 5 x + 3 = 3 x - 2 3 x - 1

Мы получили предел следующего вида:

lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 0 0 = lim x → 1 x + 3 · x - 1 3 · x - 2 3 · x - 1 = = lim x → 1 x + 3 3 · x - 2 3 = 1 + 3 3 · 1 - 2 3 = 4

Как мы видим, в ходе преобразования нам удалось избавиться от неопределенности.

Ответ: lim x → 1 x 2 + 2 x - 3 3 x 2 - 5 x + 2 = 4 .

Далее нам нужно рассмотреть случаи пределов на бесконечности от степенных выражений. Если показатели этих выражений будут больше 0 , то предел на бесконечности также окажется бесконечным. При этом основное значение имеет самая большая степень, а остальные можно не учитывать.

Например, lim x → ∞ (x 4 + 2 x 3 - 6) = lim x → ∞ x 4 = ∞ или lim x → ∞ x 4 + 4 x 3 + 21 x 2 - 11 5 = lim x → ∞ x 4 5 = ∞ .

Если под знаком предела у нас стоит дробь со степенными выражениями в числителе и знаменателе, то при x → ∞ у нас возникает неопределенность вида ∞ ∞ . Чтобы избавиться от этой неопределенности, нам нужно разделить числитель и знаменатель дроби на x m a x (m , n) . Приведем пример решения подобной задачи.

Пример 6

Вычислите предел lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 .

Решение

lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = ∞ ∞

Степени числителя и знаменателя равны 7 . Делим их на x 7 и получаем:

lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = lim x → ∞ x 7 + 2 x 5 - 4 x 7 3 x 7 + 12 x 7 = = lim x → ∞ 1 + 2 x 2 - 4 x 7 3 + 12 x 7 = 1 + 2 ∞ 2 - 4 ∞ 7 3 + 12 ∞ 7 = 1 + 0 - 0 3 + 0 = 1 3

Ответ: lim x → ∞ x 7 + 2 x 5 - 4 3 x 7 + 12 = 1 3 .

Пример 7

Вычислите предел lim x → ∞ x 8 + 11 3 x 2 + x + 1 .

Решение

lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞

Числитель имеет степень 8 3 , а знаменатель 2 . Выполним деление числителя и знаменателя на x 8 3:

lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ ∞ = lim x → ∞ x 8 + 11 3 x 8 3 x 2 + x + 1 x 8 3 = = lim x → ∞ 1 + 11 x 8 3 1 x 2 3 + 1 x 5 3 + 1 x 8 3 = 1 + 11 ∞ 3 1 ∞ + 1 ∞ + 1 ∞ = 1 + 0 3 0 + 0 + 0 = 1 0 = ∞

Ответ: lim x → ∞ x 8 + 11 3 x 2 + x + 1 = ∞ .

Пример 8

Вычислите предел lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 .

Решение

lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = ∞ ∞

У нас есть числитель в степени 3 и знаменатель в степени 10 3 . Значит, нам нужно разделить числитель и знаменатель на x 10 3:

lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = ∞ ∞ = lim x → ∞ x 3 + 2 x 2 - 1 x 10 3 x 10 + 56 x 7 + 12 3 x 10 3 = = lim x → ∞ 1 x 1 3 + 2 x 4 3 - 1 x 10 3 1 + 56 x 3 + 12 x 10 3 = 1 ∞ + 2 ∞ - 1 ∞ 1 + 56 ∞ + 12 ∞ 3 = 0 + 0 - 0 1 + 0 + 0 3 = 0

Ответ: lim x → ∞ x 3 + 2 x 2 - 1 x 10 + 56 x 7 + 12 3 = 0 .

Выводы

В случае с пределом отношений возможны три основных варианта:

    Если степень числителя равна степени знаменателя, то предел будет равен отношению коэффициентов при старших степенях.

    Если степень числителя будет больше степени знаменателя, то предел будет равен бесконечности.

    Если степень числителя меньше степени знаменателя, то предел будет равен нулю.

Другие методы раскрытия неопределенностей мы разберем в отдельных статьях.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Очень часто многие задаются вопросом, почему же нельзя использовать деление на ноль? В этой статье мы очень подробно расскажем о том, откуда появилось это правило, а также о том, какие действия можно выполнять с нолем.

Вконтакте

Ноль можно назвать одной из самых интересных цифр. У этой цифры нет значения , она означает пустоту в прямом смысле слова. Однако, если ноль поставить рядом с какой-либо цифрой, то значение этой цифры станет больше в несколько раз.

Число очень загадочно само по себе. Его использовал еще древний народ майя. У майя ноль означал «начало», а отсчет календарных дней также начинался с нуля.

Очень интересным фактом является то, что знак ноля и знак неопределенности у них были похожи. Этим майя хотели показать, что ноль является таким же тождественным знаком, как и неопределенность. В Европе же обозначение нуля появилось сравнительно недавно.

Также многим известен запрет, связанный с нолем. Любой человек скажет, что на ноль нельзя делить . Это говорят учителя в школе, а дети обычно верят им на слово. Обычно детям либо просто не интересно это знать, либо они знают, что будет, если, услышав важный запрет, сразу же спросить «А почему нельзя делить на ноль?». Но когда становишься старше, то просыпается интерес, и хочется побольше узнать о причинах такого запрета. Однако существует разумное доказательство.

Действия с нулем

Для начала необходимо определить, какие действия с нулем можно выполнять. Существует несколько видов действий :

  • Сложение;
  • Умножение;
  • Вычитание;
  • Деление (ноля на число);
  • Возведение в степень.

Важно! Если при сложении к любому числу прибавить ноль, то это число останется прежним и не поменяет своего числового значения. То же произойдет, если от любого числа отнять ноль.

При умножении и делении все обстоит немного иначе. Если умножить любое число на ноль , то и произведение тоже станет нулевым.

Рассмотрим пример:

Запишем это как сложение:

Всего складываемых нолей пять, вот и получается, что


Попробуем один умножить на ноль
. Результат также будет нулевым.

Ноль также можно разделить на любое другое число, не равное ему. В этом случае получится , значение которой также будет нулевым. Это же правило действует и для отрицательных чисел. Если ноль делить на отрицательное число, то получится ноль.

Также можно возвести любое число в нулевую степень . В таком случае получится 1. При этом важно помнить, что выражение «ноль в нулевой степени» абсолютно бессмысленно. Если попытаться возвести ноль в любую степень, то получится ноль. Пример:

Пользуемся правилом умножения, получаем 0.

Так можно ли делить на ноль

Итак, вот мы и подошли к главному вопросу. Можно ли делить на ноль вообще? И почему же нельзя разделить число на ноль при том, что все остальные действия с нулем вполне существуют и применяются? Для ответа на этот вопрос необходимо обратиться к высшей математике.

Начнем вообще с определения понятия, что же такое ноль? Школьные учителя утверждают, что ноль-это ничто. Пустота. То есть когда ты говоришь, что у тебя 0 ручек, это значит, что у тебя совсем нет ручек.

В высшей математике понятие «ноль» более широкое. Оно вовсе не означает пустоту. Здесь ноль называют неопределенностью, так как если провести небольшое исследование, то получается, что при делении ноля на ноль мы можем в результате получить любое другое число, которое не обязательно может быть нолем.

Знаете ли вы, что те простые арифметические действия, которые вы изучали в школе не так равноправны между собой? Самыми базовыми действиями являются сложение и умножение .

Для математиков не существует понятий « » и «вычитание». Допустим: если от пяти отнять три, то останется два. Так выглядит вычитание. Однако, математики запишут это таким образом:

Таким образом, получается, что неизвестной разностью является некое число, которое нужно прибавить к 3, чтобы получить 5. То есть, не нужно ничего вычитать, нужно просто найти подходящее число. Это правило действует для сложения.

Немного иначе дела обстоят с правилами умножения и деления. Известно, что умножение на ноль приводит к нулевому результату. Например, если 3:0=х, тогда, если перевернуть запись, получится 3*х=0. А число, которое умножалось на 0 даст ноль и в произведении. Получается, что числа, которое бы давало в произведении с нолем какую-либо величину, отличную от ноля, не существует. А значит, деление на ноль бессмысленно, то есть оно подходит к нашему правилу.

Но что будет, если попытаться разделить сам ноль на себя же? Возьмем как х некое неопределенное число. Получается уравнение 0*х=0. Его можно решить.

Если мы попробуем взять вместо х ноль, то мы получим 0:0=0. Казалось бы, логично? Но если мы попробуем вместо х взять любое другое число, например, 1, то в конечном итоге получится 0:0=1. Та же ситуация будет, если взять любое другое число и подставить его в уравнение .

В этом случае получится, что мы можем как множитель взять любое другое число. Итогом будет бесконечное множество разных чисел. Порой все же деление на 0 в высшей математике имеет смысл, но тогда обычно появляется некое условие, благодаря которому мы сможем все-таки выбрать одно подходящее число. Это действие называется «раскрытием неопределенности». В обычной же арифметике деление на ноль снова потеряет свой смысл, так как мы не сможем выбрать из множества какое-то одно число.

Важно! На ноль нельзя разделить ноль.

Ноль и бесконечность

Бесконечность очень часто можно встретить в высшей математике. Так как школьникам просто не важно знать о том, что существуют еще математические действия с бесконечностью, то и объяснить детям, почему делить на ноль нельзя, учителя как следует не могут.

Основные математические секреты ученики начинают узнавать лишь на первом курсе института. Высшая математика предоставляет большой комплекс задач, которые не имеют решения. Самыми известными задачами являются задачи с бесконечностью. Их можно решить при помощи математического анализа.

К бесконечности также можно применить элементарные математические действия: сложение, умножение на число. Обычно еще применяют вычитание и деление, но в конечном итоге они все равно сводятся к двум простейшим операциям.