Когда квадратное уравнение имеет два различных корня. Квадратные уравнения

Просто. По формулам и чётким несложным правилам. На первом этапе

надо заданное уравнение привести к стандартному виду, т.е. к виду:

Если уравнение вам дано уже в таком виде - первый этап делать не нужно. Самое главное - правильно

определить все коэффициенты, а , b и c .

Формула для нахождения корней квадратного уравнения.

Выражение под знаком корня называется дискриминант . Как видим, для нахождения икса, мы

используем только a, b и с . Т.е. коэффициенты из квадратного уравнения . Просто аккуратно подставляем

значения a, b и с в эту формулу и считаем. Подставляем со своими знаками!

Например , в уравнении:

а =1; b = 3; c = -4.

Подставляем значения и записываем:

Пример практически решён:

Это ответ.

Самые распространённые ошибки - путаница со знаками значений a, b и с . Вернее, с подстановкой

отрицательных значений в формулу для вычисления корней. Здесь спасает подробная запись формулы

с конкретными числами. Если есть проблемы с вычислениями, так и делайте!

Предположим, надо вот такой пример решить:

Здесь a = -6; b = -5; c = -1

Расписываем все подробно, внимательно, ничего не упуская со всеми знаками и скобками:

Часто квадратные уравнения выглядят слегка иначе. Например, вот так:

А теперь примите к сведению практические приёмы, которые резко снижают количество ошибок.

Приём первый . Не ленитесь перед решением квадратного уравнения привести его к стандартному виду.

Что это означает?

Допустим, после всяких преобразований вы получили вот такое уравнение:

Не бросайтесь писать формулу корней! Почти наверняка, вы перепутаете коэффициенты a, b и с.

Постройте пример правильно. Сначала икс в квадрате, потом без квадрата, потом свободный член. Вот так:

Избавьтесь от минуса. Как? Надо умножить всё уравнение на -1. Получим:

А вот теперь можно смело записывать формулу для корней, считать дискриминант и дорешивать пример.

Дорешайте самостоятельно. У вас должны получиться корни 2 и -1.

Приём второй. Проверяйте корни! По теореме Виета .

Для решения приведённых квадратных уравнений, т.е. если коэффициент

x 2 +bx+c=0,

тогда x 1 x 2 =c

x 1 +x 2 =− b

Для полного квадратного уравнения, в котором a≠1 :

x 2 + b x+ c =0,

делим все уравнение на а:

где x 1 и x 2 - корни уравнения.

Приём третий . Если в вашем уравнении есть дробные коэффициенты, - избавьтесь от дробей! Домножьте

уравнение на общий знаменатель.

Вывод. Практические советы:

1. Перед решением приводим квадратное уравнение к стандартному виду, выстраиваем его правильно .

2. Если перед иксом в квадрате стоит отрицательный коэффициент, ликвидируем его умножением всего

уравнения на -1.

3. Если коэффициенты дробные - ликвидируем дроби умножением всего уравнения на соответствующий

множитель.

4. Если икс в квадрате - чистый, коэффициент при нём равен единице, решение можно легко проверить по

В современном обществе умение производить действия с уравнениями, содержащими переменную, возведённую в квадрат, может пригодиться во многих областях деятельности и широко применяется на практике в научных и технических разработках. Свидетельством тому может служить конструирование морских и речных судов, самолётов и ракет. При помощи подобных расчётов определяют траектории перемещения самых разных тел, в том числе и космических объектов. Примеры с решением квадратных уравнений находят применение не только в экономическом прогнозировании, при проектировании и строительстве зданий, но и в самых обычных житейских обстоятельствах. Они могут понадобиться в туристических походах, на спортивных состязаниях, в магазинах при совершении покупок и в других весьма распространённых ситуациях.

Разобьём выражение на составляющие множители

Степень уравнения определяется максимальным значением степени у переменной, которую содержит данное выражение. В случае, если она равна 2, то подобное уравнение как раз и называется квадратным.

Если изъясняться языком формул, то указанные выражения, как бы они ни выглядели, всегда можно привести к виду, когда левая часть выражения состоит из трёх слагаемых. Среди них: ax 2 (то есть переменная, возведённая в квадрат со своим коэффициентом), bx (неизвестное без квадрата со своим коэффициентом) и c (свободная составляющая, то есть обычное число). Всё это в правой части приравнивается 0. В случае, когда у подобного многочлена отсутствует одно из его составляющих слагаемых, за исключением ax 2 , оно называется неполным квадратным уравнением. Примеры с решением таких задач, значение переменных в которых найти несложно, следует рассмотреть в первую очередь.

Если выражение на вид выглядит таким образом, что слагаемых у выражения в правой части два, точнее ax 2 и bx, легче всего отыскать х вынесением переменной за скобки. Теперь наше уравнение будет выглядеть так: x(ax+b). Далее становится очевидно, что или х=0, или задача сводится к нахождению переменной из следующего выражения: ax+b=0. Указанное продиктовано одним из свойств умножения. Правило гласит, что произведение двух множителей даёт в результате 0, только если один из них равен нулю.

Пример

x=0 или 8х - 3 = 0

В результате получаем два корня уравнения: 0 и 0,375.

Уравнения такого рода могут описывать перемещение тел под действием силы тяжести, начавших движение из определённой точки, принятой за начало координат. Здесь математическая запись принимает следующую форму: y = v 0 t + gt 2 /2. Подставив необходимые значения, приравняв правую часть 0 и найдя возможные неизвестные, можно узнать время, проходящее с момента подъёма тела до момента его падения, а также многие другие величины. Но об этом мы поговорим позднее.

Разложение выражения на множители

Описанное выше правило даёт возможность решать указанные задачи и в более сложных случаях. Рассмотрим примеры с решением квадратных уравнений такого типа.

X 2 - 33x + 200 = 0

Этот квадратный трёхчлен является полным. Для начала преобразуем выражение и разложим его на множители. Их получается два: (x-8) и (x-25) = 0. В результате имеем два корня 8 и 25.

Примеры с решением квадратных уравнений в 9 классе позволяют данным методом находить переменную в выражениях не только второго, но даже третьего и четвёртого порядков.

Например: 2x 3 + 2x 2 - 18x - 18 = 0. При разложении правой части на множители с переменной, их получается три, то есть (x+1),(x-3) и (x+3).

В результате становится очевидно, что данное уравнение имеет три корня: -3; -1; 3.

Извлечение квадратного корня

Другим случаем неполного уравнения второго порядка является выражение, на языке букв представленное таким образом, что правая часть строится из составляющих ax 2 и c. Здесь для получения значения переменной свободный член переносится в правую сторону, а после этого из обеих частей равенства извлекается квадратный корень. Следует обратить внимание, что и в данном случае корней уравнения обычно бывает два. Исключением могут служить лишь только равенства, вообще не содержащие слагаемое с, где переменная равна нулю, а также варианты выражений, когда правая часть оказывается отрицательной. В последнем случае решений вообще не существует, так как указанные выше действия невозможно производить с корнями. Примеры решений квадратных уравнений такого типа необходимо рассмотреть.

В данном случае корнями уравнения окажутся числа -4 и 4.

Вычисление пощади земельного участка

Потребность в подобного рода вычислениях появилась в глубокой древности, ведь развитие математики во многом в те далёкие времена было обусловлено необходимостью определять с наибольшей точностью площади и периметры земельных участков.

Примеры с решением квадратных уравнений, составленных на основе задач такого рода, следует рассмотреть и нам.

Итак, допустим имеется прямоугольный участок земли, длина которого на 16 метров больше, чем ширина. Следует найти длину, ширину и периметр участка, если известно, что его площадь равна 612 м 2 .

Приступая к делу, сначала составим необходимое уравнение. Обозначим за х ширину участка, тогда его длина окажется (х+16). Из написанного следует, что площадь определяется выражением х(х+16), что, согласно условию нашей задачи, составляет 612. Это значит, что х(х+16) = 612.

Решение полных квадратных уравнений, а данное выражение является именно таковым, не может производиться прежним способом. Почему? Хотя левая часть его по-прежнему содержит два множителя, произведение их совсем не равно 0, поэтому здесь применяются другие методы.

Дискриминант

Прежде всего произведём необходимые преобразования, тогда внешний вид данного выражения будет выглядеть таким образом: x 2 + 16x - 612 = 0. Это значит, мы получили выражение в форме, соответствующей указанному ранее стандарту, где a=1, b=16, c=-612.

Это может стать примером решения квадратных уравнений через дискриминант. Здесь необходимые расчёты производятся по схеме: D = b 2 - 4ac. Данная вспомогательная величина не просто даёт возможность найти искомые величины в уравнении второго порядка, она определяет количество возможных вариантов. В случае, если D>0, их два; при D=0 существует один корень. В случае, если D<0, никаких шансов для решения у уравнения вообще не имеется.

О корнях и их формуле

В нашем случае дискриминант равен: 256 - 4(-612) = 2704. Это говорит о том, что ответ у нашей задачи существует. Если знать, к , решение квадратных уравнений нужно продолжать с применением ниже приведённой формулы. Она позволяет вычислить корни.

Это значит, что в представленном случае: x 1 =18, x 2 =-34. Второй вариант в данной дилемме не может являться решением, потому что размеры земельного участка не могут измеряться в отрицательных величинах, значит х (то есть ширина участка) равна 18 м. Отсюда вычисляем длину: 18+16=34, и периметр 2(34+18)=104(м 2).

Примеры и задачи

Продолжаем изучение квадратных уравнений. Примеры и подробное решение нескольких из них будут приведены далее.

1) 15x 2 + 20x + 5 = 12x 2 + 27x + 1

Перенесём всё в левую часть равенства, сделаем преобразование, то есть получим вид уравнения, который принято именовать стандартным, и приравняем его нулю.

15x 2 + 20x + 5 - 12x 2 - 27x - 1 = 0

Сложив подобные, определим дискриминант: D = 49 - 48 = 1. Значит у нашего уравнения будет два корня. Вычислим их согласно приведённой выше формуле, а это значит, что первый из них буде равен 4/3, а второй 1.

2) Теперь раскроем загадки другого рода.

Выясним, есть ли вообще здесь корни x 2 - 4x + 5 = 1? Для получения исчерпывающего ответа приведём многочлен к соответствующему привычному виду и вычислим дискриминант. В указанном примере решение квадратного уравнения производить не обязательно, ведь суть задачи заключается совсем не в этом. В данном случае D = 16 - 20 = -4, а значит, корней действительно нет.

Теорема Виета

Квадратные уравнения удобно решать через указанные выше формулы и дискриминант, когда из значения последнего извлекается квадратный корень. Но это бывает не всегда. Однако способов для получения значений переменных в данном случае существует множество. Пример: решения квадратных уравнений по теореме Виета. Она названа в честь который жил в XVI веке во Франции и сделал блестящую карьеру благодаря своему математическому таланту и связям при дворе. Портрет его можно увидеть в статье.

Закономерность, которую заметил прославленный француз, заключалась в следующем. Он доказал, что корни уравнения в сумме численно равны -p=b/a, а их произведение соответствует q=c/a.

Теперь рассмотрим конкретные задачи.

3x 2 + 21x - 54 = 0

Для простоты преобразуем выражение:

x 2 + 7x - 18 = 0

Воспользуемся теоремой Виета, это даст нам следующее: сумма корней равна -7, а их произведение -18. Отсюда получим, что корнями уравнения являются числа -9 и 2. Сделав проверку, убедимся, что эти значения переменных действительно подходят в выражение.

График и уравнение параболы

Понятия квадратичная функция и квадратные уравнения тесно связаны. Примеры подобного уже были приведены ранее. Теперь рассмотрим некоторые математические загадки немного подробнее. Любое уравнение описываемого типа можно представить наглядно. Подобная зависимость, нарисованная в виде графика, называется параболой. Различные её виды представлены на рисунке ниже.

Любая парабола имеет вершину, то есть точку, из которой выходят её ветви. В случае если a>0, они уходят высоко в бесконечность, а когда a<0, они рисуются вниз. Простейшим примером подобной зависимости является функция y = x 2 . В данном случае в уравнении x 2 =0 неизвестное может принимать только одно значение, то есть х=0, а значит существует только один корень. Это неудивительно, ведь здесь D=0, потому что a=1, b=0, c=0. Выходит формула корней (точнее одного корня) квадратного уравнения запишется так: x = -b/2a.

Наглядные изображения функций помогают решать любые уравнения, в том числе и квадратные. Этот метод называется графическим. А значением переменной х является координата абсцисс в точках, где происходит пересечение линии графика с 0x. Координаты вершины можно узнать по только что приведённой формуле x 0 = -b/2a. И, подставив полученное значение в изначальное уравнение функции, можно узнать y 0 , то есть вторую координату вершины параболы, принадлежащую оси ординат.

Пересечение ветвей параболы с осью абсцисс

Примеров с решением квадратных уравнений очень много, но существуют и общие закономерности. Рассмотрим их. Понятно, что пересечение графика с осью 0x при a>0 возможно только если у 0 принимает отрицательные значения. А для a<0 координата у 0 должна быть положительна. Для указанных вариантов D>0. В противном случае D<0. А когда D=0, вершина параболы расположена непосредственно на оси 0х.

По графику параболы можно определить и корни. Верно также обратное. То есть если получить наглядное изображение квадратичной функции нелегко, можно приравнять правую часть выражения к 0 и решить полученное уравнение. А зная точки пересечения с осью 0x, легче построить график.

Из истории

С помощью уравнений, содержащих переменную, возведённую в квадрат, в старину не только делали математические расчёты и определяли площади геометрических фигур. Подобные вычисления древним были нужны для грандиозных открытий в области физики и астрономии, а также для составления астрологических прогнозов.

Как предполагают современные деятели науки, одними из первых решением квадратных уравнений занялись жители Вавилона. Произошло это за четыре столетия до наступления нашей эры. Разумеется, их вычисления в корне отличались от ныне принятых и оказывались гораздо примитивней. К примеру, месопотамские математики понятия не имели о существовании отрицательных чисел. Незнакомы им были также другие тонкости из тех, которые знает любой школьник современности.

Возможно, ещё раньше учёных Вавилона решением квадратных уравнений занялся мудрец из Индии Баудхаяма. Произошло это примерно за восемь столетий до наступления эры Христа. Правда, уравнения второго порядка, способы решения которых он привёл, были самыми наипростейшими. Кроме него, подобными вопросами интересовались в старину и китайские математики. В Европе квадратные уравнения начали решать лишь в начале XIII столетия, но зато позднее их использовали в своих работах такие великие учёные, как Ньютон, Декарт и многие другие.

Начальный уровень

Квадратные уравнения. Исчерпывающий гид (2019)

В термине «квадратное уравнение» ключевым является слово «квадратное». Это значит, что в уравнении обязательно должна присутствовать переменная (тот самый икс) в квадрате, и при этом не должно быть иксов в третьей (и большей) степени.

Решение многих уравнений сводится к решению именно квадратных уравнений.

Давай научимся определять, что перед нами квадратное уравнение, а не какое-нибудь другое.

Пример 1.

Избавимся от знаменателя и домножим каждый член уравнения на

Перенесем все в левую часть и расположим члены в порядке убывания степеней икса

Теперь можно с уверенностью сказать, что данное уравнение является квадратным!

Пример 2.

Домножим левую и правую часть на:

Это уравнение, хотя в нем изначально был, не является квадратным!

Пример 3.

Домножим все на:

Страшно? Четвертая и вторая степени… Однако, если произвести замену, то мы увидим, что перед нами простое квадратное уравнение:

Пример 4.

Вроде бы есть, но давай посмотрим внимательнее. Перенесем все в левую часть:

Видишь, сократился - и теперь это простое линейное уравнение!

Теперь попробуй сам определить, какие из следующий уравнений являются квадратными, а какие нет:

Примеры:

Ответы:

  1. квадратное;
  2. квадратное;
  3. не квадратное;
  4. не квадратное;
  5. не квадратное;
  6. квадратное;
  7. не квадратное;
  8. квадратное.

Математики условно делят все квадратные уравнения на вида:

  • Полные квадратные уравнения - уравнения, в которых коэффициенты и, а также свободный член с не равны нулю (как в примере). Кроме того, среди полных квадратных уравнений выделяют приведенные - это уравнения, в которых коэффициент (уравнение из примера один является не только полным, но еще и приведенным!)
  • Неполные квадратные уравнения - уравнения, в которых коэффициент и или свободный член с равны нулю:

    Неполные они, потому что в них не хватает какого-то элемента. Но в уравнении всегда должен присутствовать икс в квадрате!!! Иначе это будет уже не квадратное, а какое-то другое уравнение.

Зачем придумали такое деление? Казалось бы, есть икс в квадрате, и ладно. Такое деление обусловлено методами решения. Рассмотрим каждый из них подробнее.

Решение неполных квадратных уравнений

Для начала остановимся на решении неполных квадратных уравнений - они гораздо проще!

Неполные квадратные уравнения бывают типов:

  1. , в этом уравнении коэффициент равен.
  2. , в этом уравнении свободный член равен.
  3. , в этом уравнении коэффициент и свободный член равны.

1. и. Поскольку мы знаем, как извлекать квадратный корень, то давайте выразим из этого уравнения

Выражение может быть как отрицательным, так и положительным. Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел - результатом всегда будет положительное число, так что: если, то уравнение не имеет решений.

А если, то получаем два корня. Эти формулы не нужно запоминать. Главное, ты должен знать и помнить всегда, что не может быть меньше.

Давай попробуем решить несколько примеров.

Пример 5:

Решите уравнение

Теперь осталось извлечь корень из левой и правой части. Ведь ты помнишь как извлекать корни?

Ответ:

Никогда не забывай про корни с отрицательным знаком!!!

Пример 6:

Решите уравнение

Ответ:

Пример 7:

Решите уравнение

Ой! Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней!

Для таких уравнений, в которых нет корней, математики придумали специальный значок - (пустое множество). И ответ можно записать так:

Ответ:

Таким образом, данное квадратное уравнение имеет два корня. Здесь нет никаких ограничений, так как корень мы не извлекали.
Пример 8:

Решите уравнение

Вынесем общий множитель за скобки:

Таким образом,

У этого уравнения два корня.

Ответ:

Самый простой тип неполных квадратных уравнений (хотя они все простые, не так ли?). Очевидно, что данное уравнение всегда имеет только один корень:

Здесь обойдемся без примеров.

Решение полных квадратных уравнений

Напоминаем, что полное квадратное уравнение, это уравнение вида уравнение где

Решение полных квадратных уравнений немного сложнее (совсем чуть-чуть), чем приведенных.

Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Остальные способы помогут сделать это быстрее, но если у тебя возникают проблемы с квадратными уравнениями, для начала освой решение с помощью дискриминанта.

1. Решение квадратных уравнений с помощью дискриминанта.

Решение квадратных уравнений этим способом очень простое, главное запомнить последовательность действий и пару формул.

Если, то уравнение имеет корняНужно особое внимание обратить на шаг. Дискриминант () указывает нам на количество корней уравнения.

  • Если, то формула на шаге сократится до. Таким образом, уравнение будет иметь всего корень.
  • Если, то мы не сможем извлечь корень из дискриминанта на шаге. Это указывает на то, что уравнение не имеет корней.

Вернемся к нашим уравнениям и рассмотрим несколько примеров.

Пример 9:

Решите уравнение

Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет два корня.

Шаг 3.

Ответ:

Пример 10:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

А значит уравнение имеет один корень.

Ответ:

Пример 11:

Решите уравнение

Уравнение представлено в стандартном виде, поэтому Шаг 1 пропускаем.

Шаг 2.

Находим дискриминант:

Азначит мы не сможем извлечь корень из дискриминанта. Корней уравнения не существует.

Теперь мы знаем, как правильно записывать такие ответы.

Ответ: Корней нет

2. Решение квадратных уравнений с помощью теоремы Виета.

Если ты помнишь, то есть такой тип уравнений, которые называются приведенными (когда коэффициент а равен):

Такие уравнения очень просто решать, используя теорему Виета:

Сумма корней приведенного квадратного уравнения равна, а произведение корней равно.

Пример 12:

Решите уравнение

Это уравнение подходит для решения с использованием теоремы Виета, т.к. .

Сумма корней уравнения равна, т.е. получаем первое уравнение:

А произведение равно:

Составим и решим систему:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Ответ: ; .

Пример 13:

Решите уравнение

Ответ:

Пример 14:

Решите уравнение

Уравнение приведенное, а значит:

Ответ:

КВАДРАТНЫЕ УРАВНЕНИЯ. СРЕДНИЙ УРОВЕНЬ

Что такое квадратное уравнение?

Другими словами, квадратное уравнение - это уравнение вида, где - неизвестное, - некоторые числа, причем.

Число называют старшим или первым коэффициентом квадратного уравнения, - вторым коэффициентом , а - свободным членом .

Почему? Потому что если, уравнение сразу станет линейным, т.к. пропадет.

При этом и могут быть равны нулю. В этом стулчае уравнение называют неполным. Если же все слагаемые на месте, то есть, уравнение - полное.

Решения различных типов квадратных уравнений

Методы решения неполных квадратных уравнений:

Для начала разберем методы решений неполных квадратных уравнений - они проще.

Можно выделить типа таких уравнений:

I. , в этом уравнении коэффициент и свободный член равны.

II. , в этом уравнении коэффициент равен.

III. , в этом уравнении свободный член равен.

Теперь рассмотрим решение каждого из этих подтипов.

Очевидно, что данное уравнение всегда имеет только один корень:

Число, возведенное в квадрат, не может быть отрицательным, ведь при перемножении двух отрицательных или двух положительных чисел результатом всегда будет положительное число. Поэтому:

если, то уравнение не имеет решений;

если, имеем учаем два корня

Эти формулы не нужно запоминать. Главное помнить, что не может быть меньше.

Примеры:

Решения:

Ответ:

Никогда не забывай про корни с отрицательным знаком!

Квадрат числа не может быть отрицательным, а значит у уравнения

нет корней.

Чтобы коротко записать, что у задачи нет решений, используем значок пустого множества.

Ответ:

Итак, это уравнение имеет два корня: и.

Ответ:

Вынесем общим множитель за скобки:

Произведение равно нулю, если хотя бы один из множителей равен нулю. А это значит, что уравнение имеет решение, когда:

Итак, данное квадратное уравнение имеет два корня: и.

Пример:

Решите уравнение.

Решение:

Разложим левую часть уравнения на множители и найдем корни:

Ответ:

Методы решения полных квадратных уравнений:

1. Дискриминант

Решать квадратные уравнения этим способом легко, главное запомнить последовательность действий и пару формул. Запомни, любое квадратное уравнение можно решить с помощью дискриминанта! Даже неполное.

Ты заметил корень из дискриминанта в формуле для корней? Но ведь дискриминант может быть отрицательным. Что делать? Нужно особое внимание обратить на шаг 2. Дискриминант указывает нам на количество корней уравнения.

  • Если, то уравнение имеет корня:
  • Если, то уравнение имеет одинаковых корня, а по сути, один корень:

    Такие корни называются двукратными.

  • Если, то корень из дискриминанта не извлекается. Это указывает на то, что уравнение не имеет корней.

Почему возможно разное количество корней? Обратимся к геометрическому смыслу квадратного уравнения. График функции является параболой:

В частном случае, которым является квадратное уравнение, . А это значит, что корни квадратного уравнения, это точки пересечения с осью абсцисс (ось). Парабола может вообще не пересекать ось, либо пересекать ее в одной (когда вершина параболы лежит на оси) или двух точках.

Кроме того, за направление ветвей параболы отвечает коэффициент. Если, то ветви параболы направлены вверх, а если - то вниз.

Примеры:

Решения:

Ответ:

Ответ: .

Ответ:

А значит, решений нет.

Ответ: .

2. Теорема Виета

Использовать теорему Виета очень легко: нужно всего лишь подобрать такую пару чисел, произведение которых равно свободному члену уравнения, а сумма - второму коэффициенту, взятому с обратным знаком.

Важно помнить, что теорему Виета можно применять только в приведенных квадратных уравнениях ().

Рассмотрим несколько примеров:

Пример №1:

Решите уравнение.

Решение:

Это уравнение подходит для решения с использованием теоремы Виета, т.к. . Остальные коэффициенты: ; .

Сумма корней уравнения равна:

А произведение равно:

Подберем такие пары чисел, произведение которых равно, и проверим, равна ли их сумма:

  • и. Сумма равна;
  • и. Сумма равна;
  • и. Сумма равна.

и являются решением системы:

Таким образом, и - корни нашего уравнения.

Ответ: ; .

Пример №2:

Решение:

Подберем такие пары чисел, которые в произведении дают, а затем проверим, равна ли их сумма:

и: в сумме дают.

и: в сумме дают. Чтобы получить, достаточно просто поменять знаки предполагаемых корней: и, ведь произведение.

Ответ:

Пример №3:

Решение:

Свободный член уравнения отрицательный, а значит и произведение корней - отрицательное число. Это возможно только если один из корней отрицательный, а другой - положительный. Поэтому сумма корней равна разности их модулей .

Подберем такие пары чисел, которые в произведении дают, и разность которых равна:

и: их разность равна - не подходит;

и: - не подходит;

и: - не подходит;

и: - подходит. Остается только вспомнить, что один из корней отрицательный. Так как их сумма должна равняться, то отрицательным должен быть меньший по модулю корень: . Проверяем:

Ответ:

Пример №4:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Свободный член отрицателен, а значит и произведение корней отрицательно. А это возможно только тогда, когда один корень уравнения отрицателен, а другой положителен.

Подберем такие пары чисел, произведение которых равно, а затем определим, какой корней должен иметь отрицательный знак:

Очевидно, что под первое условие подходят только корни и:

Ответ:

Пример №5:

Решите уравнение.

Решение:

Уравнение приведенное, а значит:

Сумма корней отрицательна, а это значит что, по крайней мере, один из корней отрицателен. Но поскольку их произведение положительно, то значит оба корня со знаком минус.

Подберем такие пары чисел, произведение которых равно:

Очевидно, что корнями являются числа и.

Ответ:

Согласись, это очень удобно - придумывать корни устно, вместо того, чтобы считать этот противный дискриминант. Старайся использовать теорему Виета как можно чаще.

Но теорема Виета нужна для того, чтобы облегчить и ускорить нахождение корней. Чтобы тебе было выгодно ее использовать, ты должен довести действия до автоматизма. А для этого порешай-ка еще пяток примеров. Но не жульничай: дискриминант использовать нельзя! Только теорему Виета:

Решения заданий для самостоятельной работы:

Задание 1. {{x}^{2}}-8x+12=0

По теореме Виета:

Как обычно, начинаем подбор с произведения:

Не подходит, так как сумма;

: сумма - то что надо.

Ответ: ; .

Задание 2.

И снова наша любимая теорема Виета : в сумме должно получиться, а произведение равно.

Но так как должно быть не, а, меняем знаки корней: и (в сумме).

Ответ: ; .

Задание 3.

Хм… А где тут что?

Надо перенести все слагаемые в одну часть:

Сумма корней равна, произведение.

Так, стоп! Уравнение-то не приведенное. Но теорема Виета применима только в приведенных уравнениях. Так что сперва нужно уравнение привести. Если привести не получается, бросай эту затею и решай другим способом (например, через дискриминант). Напомню, что привести квадратное уравнение - значит сделать старший коэффициент равным:

Отлично. Тогда сумма корней равна, а произведение.

Тут подобрать проще простого: ведь - простое число (извини за тавтологию).

Ответ: ; .

Задание 4.

Свободный член отрицательный. Что в этом особенного? А то, что корни будут разных знаков. И теперь во время подбора проверяем не сумму корней, а разность их модулей: эта разность равна, а произведение.

Итак, корни равны и, но один из них с минусом. Теорема Виета говорит нам, что сумма корней равна второму коэффициенту с обратным знаком, то есть. Значит, минус будет у меньшего корня: и, так как.

Ответ: ; .

Задание 5.

Что нужно сделать первым делом? Правильно, привести уравнение:

Снова: подбираем множители числа, и их разность должна равняться:

Корни равны и, но один из них с минусом. Какой? Их сумма должна быть равна, значит, с минусом будет больший корень.

Ответ: ; .

Подведу итог:
  1. Теорема Виета используется только в приведенных квадратных уравнениях.
  2. Используя теорему Виета можно найти корни подбором, устно.
  3. Если уравнение не приводится или не нашлось ни одной подходящей пары множителей свободного члена, значит целых корней нет, и нужно решать другим способом (например, через дискриминант).

3. Метод выделения полного квадрата

Если все слагаемые, содержащие неизвестное, представить в виде слагаемых из формул сокращенного умножения - квадрата суммы или разности - то после замены переменных можно представить уравнение в виде неполного квадратного уравнения типа.

Например:

Пример 1:

Решите уравнение: .

Решение:

Ответ:

Пример 2:

Решите уравнение: .

Решение:

Ответ:

В общем виде преобразование будет выглядеть так:

Отсюда следует: .

Ничего не напоминает? Это же дискриминант! Вот именно, формулу дискриминанта так и получили.

КВАДРАТНЫЕ УРАВНЕНИЯ. КОРОТКО О ГЛАВНОМ

Квадратное уравнение - это уравнение вида, где - неизвестное, - коэффициенты квадратного уравнения, - свободный член.

Полное квадратное уравнение - уравнение, в котором коэффициенты, не равны нулю.

Приведенное квадратное уравнение - уравнение, в котором коэффициент, то есть: .

Неполное квадратное уравнение - уравнение, в котором коэффициент и или свободный член с равны нулю:

  • если коэффициент, уравнение имеет вид: ,
  • если свободный член, уравнение имеет вид: ,
  • если и, уравнение имеет вид: .

1. Алгоритм решения неполных квадратных уравнений

1.1. Неполное квадратное уравнение вида, где, :

1) Выразим неизвестное: ,

2) Проверяем знак выражения:

  • если, то уравнение не имеет решений,
  • если, то уравнение имеет два корня.

1.2. Неполное квадратное уравнение вида, где, :

1) Вынесем общим множитель за скобки: ,

2) Произведение равно нулю, если хотя бы один из множителей равен нулю. Следовательно, уравнение имеет два корня:

1.3. Неполное квадратное уравнение вида, где:

Данное уравнение всегда имеет только один корень: .

2. Алгоритм решения полных квадратных уравнений вида где

2.1. Решение с помощью дискриминанта

1) Приведем уравнение к стандартному виду: ,

2) Вычислим дискриминант по формуле: , который указывает на количество корней уравнения:

3) Найдем корни уравнения:

  • если, то уравнение имеет корня, которые находятся по формуле:
  • если, то уравнение имеет корень, который находится по формуле:
  • если, то уравнение не имеет корней.

2.2. Решение с помощью теоремы Виета

Сумма корней приведенного квадратного уравнения (уравнения вида, где) равна, а произведение корней равно, т.е. , а.

2.3. Решение методом выделения полного квадрата

С помощью этой математической программы вы можете решить квадратное уравнение .

Программа не только даёт ответ задачи, но и отображает процесс решения двумя способами:
- с помощью дискриминанта
- с помощью теоремы Виета (если возможно).

Причём, ответ выводится точный, а не приближенный.
Например, для уравнения \(81x^2-16x-1=0\) ответ выводится в такой форме:

$$ x_1 = \frac{8+\sqrt{145}}{81}, \quad x_2 = \frac{8-\sqrt{145}}{81} $$ а не в такой: \(x_1 = 0,247; \quad x_2 = -0,05 \)

Данная программа может быть полезна учащимся старших классов общеобразовательных школ при подготовке к контрольным работам и экзаменам, при проверке знаний перед ЕГЭ, родителям для контроля решения многих задач по математике и алгебре. А может быть вам слишком накладно нанимать репетитора или покупать новые учебники? Или вы просто хотите как можно быстрее сделать домашнее задание по математике или алгебре? В этом случае вы также можете воспользоваться нашими программами с подробным решением.

Таким образом вы можете проводить своё собственное обучение и/или обучение своих младших братьев или сестёр, при этом уровень образования в области решаемых задач повышается.

Если вы не знакомы с правилами ввода квадратного многочлена, рекомендуем с ними ознакомиться.

Правила ввода квадратного многочлена

В качестве переменной может выступать любая латинсая буква.
Например: \(x, y, z, a, b, c, o, p, q \) и т.д.

Числа можно вводить целые или дробные.
Причём, дробные числа можно вводить не только в виде десятичной, но и в виде обыкновенной дроби.

Правила ввода десятичных дробей.
В десятичных дробях дробная часть от целой может отделяться как точкой так и запятой.
Например, можно вводить десятичные дроби так: 2.5x - 3,5x^2

Правила ввода обыкновенных дробей.
В качестве числителя, знаменателя и целой части дроби может выступать только целое число.

Знаменатель не может быть отрицательным.

При вводе числовой дроби числитель отделяется от знаменателя знаком деления: /
Целая часть отделяется от дроби знаком амперсанд: &
Ввод: 3&1/3 - 5&6/5z +1/7z^2
Результат: \(3\frac{1}{3} - 5\frac{6}{5} z + \frac{1}{7}z^2 \)

При вводе выражения можно использовать скобки . В этом случае при решении квадратного уравнения введённое выражение сначала упрощается.
Например: 1/2(y-1)(y+1)-(5y-10&1/2)


=0
Решить

Обнаружено что не загрузились некоторые скрипты, необходимые для решения этой задачи, и программа может не работать.
Возможно у вас включен AdBlock.
В этом случае отключите его и обновите страницу.

У вас в браузере отключено выполнение JavaScript.
Чтобы решение появилось нужно включить JavaScript.
Вот инструкции, как включить JavaScript в вашем браузере .

Т.к. желающих решить задачу очень много, ваш запрос поставлен в очередь.
Через несколько секунд решение появится ниже.
Пожалуйста подождите сек...


Если вы заметили ошибку в решении , то об этом вы можете написать в Форме обратной связи .
Не забудте указать какую задачу вы решаете и что вводите в поля .



Наши игры, головоломки, эмуляторы:

Немного теории.

Квадратное уравнение и его корни. Неполные квадратные уравнения

Каждое из уравнений
\(-x^2+6x+1,4=0, \quad 8x^2-7x=0, \quad x^2-\frac{4}{9}=0 \)
имеет вид
\(ax^2+bx+c=0, \)
где x - переменная, a, b и c - числа.
В первом уравнении a = -1, b = 6 и c = 1,4, во втором a = 8, b = -7 и c = 0, в третьем a = 1, b = 0 и c = 4/9. Такие уравнения называют квадратными уравнениями .

Определение.
Квадратным уравнением называется уравнение вида ax 2 +bx+c=0, где x - переменная, a, b и c - некоторые числа, причём \(a \neq 0 \).

Числа a, b и c - коэффициенты квадратного уравнения. Число a называют первым коэффициентом, число b - вторым коэффициентом и число c - свободным членом.

В каждом из уравнений вида ax 2 +bx+c=0, где \(a \neq 0 \), наибольшая степень переменной x - квадрат. Отсюда и название: квадратное уравнение.

Заметим, что квадратное уравнение называют ещё уравнением второй степени, так как его левая часть есть многочлен второй степени.

Квадратное уравнение, в котором коэффициент при x 2 равен 1, называют приведённым квадратным уравнением . Например, приведёнными квадратными уравнениями являются уравнения
\(x^2-11x+30=0, \quad x^2-6x=0, \quad x^2-8=0 \)

Если в квадратном уравнении ax 2 +bx+c=0 хотя бы один из коэффициентов b или c равен нулю, то такое уравнение называют неполным квадратным уравнением . Так, уравнения -2x 2 +7=0, 3x 2 -10x=0, -4x 2 =0 - неполные квадратные уравнения. В первом из них b=0, во втором c=0, в третьем b=0 и c=0.

Неполные квадратные уравнения бывают трёх видов:
1) ax 2 +c=0, где \(c \neq 0 \);
2) ax 2 +bx=0, где \(b \neq 0 \);
3) ax 2 =0.

Рассмотрим решение уравнений каждого из этих видов.

Для решения неполного квадратного уравнения вида ax 2 +c=0 при \(c \neq 0 \) переносят его свободный член в правую часть и делят обе части уравнения на a:
\(x^2 = -\frac{c}{a} \Rightarrow x_{1,2} = \pm \sqrt{ -\frac{c}{a}} \)

Так как \(c \neq 0 \), то \(-\frac{c}{a} \neq 0 \)

Если \(-\frac{c}{a}>0 \), то уравнение имеет два корня.

Если \(-\frac{c}{a} Для решения неполного квадратного уравнения вида ax 2 +bx=0 при \(b \neq 0 \) раскладывают его левую часть на множители и получают уравнение
\(x(ax+b)=0 \Rightarrow \left\{ \begin{array}{l} x=0 \\ ax+b=0 \end{array} \right. \Rightarrow \left\{ \begin{array}{l} x=0 \\ x=-\frac{b}{a} \end{array} \right. \)

Значит, неполное квадратное уравнение вида ax 2 +bx=0 при \(b \neq 0 \) всегда имеет два корня.

Неполное квадратное уравнение вида ax 2 =0 равносильно уравнению x 2 =0 и поэтому имеет единственный корень 0.

Формула корней квадратного уравнения

Рассмотрим теперь, как решают квадратные уравнения, в которых оба коэффициента при неизвестных и свободный член отличны от нуля.

Решим квадратне уравнение в общем виде и в результате получим формулу корней. Затем эту формулу можно будет применять при решении любого квадратного уравнения.

Решим квадратное уравнение ax 2 +bx+c=0

Разделив обе его части на a, получим равносильное ему приведённое квадратное уравнение
\(x^2+\frac{b}{a}x +\frac{c}{a}=0 \)

Преобразуем это уравнение, выделив квадрат двучлена:
\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2- \left(\frac{b}{2a}\right)^2 + \frac{c}{a} = 0 \Rightarrow \)

\(x^2+2x \cdot \frac{b}{2a}+\left(\frac{b}{2a}\right)^2 = \left(\frac{b}{2a}\right)^2 - \frac{c}{a} \Rightarrow \) \(\left(x+\frac{b}{2a}\right)^2 = \frac{b^2}{4a^2} - \frac{c}{a} \Rightarrow \left(x+\frac{b}{2a}\right)^2 = \frac{b^2-4ac}{4a^2} \Rightarrow \) \(x+\frac{b}{2a} = \pm \sqrt{ \frac{b^2-4ac}{4a^2} } \Rightarrow x = -\frac{b}{2a} + \frac{ \pm \sqrt{b^2-4ac} }{2a} \Rightarrow \) \(x = \frac{ -b \pm \sqrt{b^2-4ac} }{2a} \)

Подкоренное выражение называют дискриминантом квадратного уравнения ax 2 +bx+c=0 («дискриминант» по латыни - различитель). Его обозначают буквой D, т.е.
\(D = b^2-4ac \)

Теперь, используя обозначение дискриминанта, перепишем формулу для корней квадратного уравнения:
\(x_{1,2} = \frac{ -b \pm \sqrt{D} }{2a} \), где \(D= b^2-4ac \)

Очевидно, что:
1) Если D>0, то квадратное уравнение имеет два корня.
2) Если D=0, то квадратное уравнение имеет один корень \(x=-\frac{b}{2a} \).
3) Если D Таким образом, в зависимости от значения дискриминанта квадратное уравнение может иметь два корня (при D > 0), один корень (при D = 0) или не иметь корней (при D При решении квадратного уравнения по данной формуле целесообразно поступать следующим образом:
1) вычислить дискриминант и сравнить его с нулём;
2) если дискриминант положителен или равен нулю, то воспользоваться формулой корней, если дискриминант отрицателен, то записать, что корней нет.

Теорема Виета

Приведённое квадратное уравнение ax 2 -7x+10=0 имеет корни 2 и 5. Сумма корней равна 7, а произведение равно 10. Мы видим, что сумма корней равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену. Таким свойством обладает любое приведённое квадратное уравнение, имеющее корни.

Сумма корней приведённого квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену.

Т.е. теорема Виета утверждает, что корни x 1 и x 2 приведённого квадратного уравнения x 2 +px+q=0 обладают свойством:
\(\left\{ \begin{array}{l} x_1+x_2=-p \\ x_1 \cdot x_2=q \end{array} \right. \)

Уравнение вида

Выражение D = b 2 - 4 ac называют дискриминантом квадратного уравнения. Если D = 0, то уравнение имеет один действительный корень; если D > 0, то уравнение имеет два действительных корня.
В случае, когда D = 0 , иногда говорят, что квадратное уравнение имеет два одинаковых корня.
Используя обозначение D = b 2 - 4 ac , можно переписать формулу (2) в виде

Если b = 2 k , то формула (2) принимает вид:

где k = b / 2 .
Последняя формула особенно удобна в тех случаях, когда b / 2 - целое число, т.е. коэффициент b - четное число.
Пример 1: Решить уравнение 2 x 2 - 5 x + 2 = 0 . Здесь a = 2, b = -5, c = 2 . Имеем D = b 2 - 4 ac = (-5) 2- 4*2*2 = 9 . Так как D > 0 , то уравнение имеет два корня. Найдем их по формуле (2)

Итак x 1 =(5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
то есть x 1 = 2 и x 2 = 1 / 2 - корни заданного уравнения.
Пример 2: Решить уравнение 2 x 2 - 3 x + 5 = 0 . Здесь a = 2, b = -3, c = 5 . Находим дискриминант D = b 2 - 4 ac = (-3) 2- 4*2*5 = -31 . Так как D 0 , то уравнение не имеет действительных корней.

Неполные квадратные уравнения. Если в квадратном уравнении ax 2 + bx + c =0 второй коэффициент b или свободный член c равен нулю, то квадратное уравнение называется неполным . Неполные уравнения выделяют потому, что для отыскания их корней можно не пользоваться формулой корней квадратного уравнения - проще решить уравнение методом разложения его левой части на множители.
Пример 1: решить уравнение 2 x 2 - 5 x = 0 .
Имеем x (2 x - 5) = 0 . Значит либо x = 0 , либо 2 x - 5 = 0 , то есть x = 2.5 . Итак, уравнение имеет два корня: 0 и 2.5
Пример 2: решить уравнение 3 x 2 - 27 = 0 .
Имеем 3 x 2 = 27 . Следовательно корни данного уравнения - 3 и -3 .

Теорема Виета. Если приведенное квадратное уравнение x 2 + px + q =0 имеет действительные корни, то их сумма равна - p , а произведение равно q , то есть

x 1 + x 2 = -p ,
x 1 x 2 = q

(сумма корней приведенного квадратного уравнения равна второму коэффициенту, взятому с противоположным знаком, а произведение корней равно свободному члену).