Как сложить многочлены. Урок "сложение и вычитание многочленов"

Определение 3.3. Одночленом называют выражение, представляющее собой произведение чисел, переменных и степеней с натуральным показателем.

Например, каждое из выражений ,
,
является одночленом.

Говорят, что одночлен имеет стандартный вид , если он содержит только один числовой множитель, стоящий на первом месте, а каждое произведение одинаковых переменных в нем представлено степенью. Числовой множитель одночлена, записного в стандартном виде, называют коэффициентом одночлена . Степенью одночлена называют сумму показателей степеней всех его переменных.

Определение 3.4. Многочленом называют сумму одночленов. Одночлены, из которых составлен многочлен, называют членами многочлена .

Подобные слагаемые – одночлены в многочлене – называют подобными членами многочлена .

Определение 3.5. Многочленом стандартного вида называют многочлен, в котором все слагаемые записаны в стандартном виде и приведены подобные члены. Степенью многочлена стандартного вида называют наибольшую из степеней входящих в него одночленов.

Например, – многочлен стандартного вида четвертой степени.

Действия над одночленами и многочленами

Сумму и разность многочленов можно преобразовать в многочлен стандартного вида. При сложении двух многочленов записываются все их члены и приводятся подобные члены. При вычитании знаки всех членов вычитаемого многочлена меняются на противоположные.

Например:

Члены многочлена можно разбивать на группы и заключать в скобки. Поскольку это тождественное преобразование, обратное раскрытию скобок, то устанавливается следующее правило заключения в скобки : если перед скобками ставится знак «плюс», то все члены, заключаемые в скобки, записывают с их знаками; если перед скобками ставится знак «минус», то все члены, заключаемые в скобки, записывают с противоположными знаками.

Например,

Правило умножения многочлена на многочлен : чтобы умножить многочлен на многочлен, достаточно каждый член одного многочлена умножить на каждый член другого многочлена и полученные произведения сложить.

Например,

Определение 3.6. Многочленом от одной переменной степени называют выражение вида

где
– любые числа, которые называют коэффициентами многочлена , причем
,– целое неотрицательное число.

Если
, то коэффициентназываютстаршим коэффициентом многочлена
, одночлен
– его старшим членом , коэффициент свободным членом .

Если вместо переменной в многочлен
подставить действительное число, то в результате получится действительное число
, которое называютзначением многочлена
при
.

Определение 3.7. Число называют корнем многочлена
, если
.

Рассмотрим деление многочлена на многочлен, где
и- натуральные числа. Деление возможно, если степень многочлена-делимого
не меньше степени многочлена-делителя
, то есть
.

Разделить многочлен
на многочлен
,
,– значит найти два таких многочлена
и
, чтобы

При этом многочлен
степени
называютмногочленом-частным ,
остатком ,
.

Замечание 3.2. Если делитель
не нуль-многочлен, то деление
на
,
, всегда выполнимо, а частное и остаток определяются однозначно.

Замечание 3.3. В случае, когда
при всех , то есть

говорят, что многочлен
нацело делится
(или делится ) на многочлен
.

Деление многочленов выполняется аналогично делению многозначных чисел: сначала старший член многочлена-делимого делят на старший член многочлена-делителя, затем частное от деления этих членов, которое будет старшим членом многочлена-частного, умножают на многочлен-делитель и полученное произведение вычитают из многочлена-делимого. В результате получают многочлен – первый остаток, который делят на многочлен-делитель аналогичным образом и находят второй член многочлена-частного. Этот процесс продолжают до тех пор, пока получится нулевой остаток или степень многочлена остатка будет меньше степени многочлена-делителя.

При делении многочлена на двучлен можно воспользоваться схемой Горнера.

Схема Горнера

Пусть требуется разделить многочлен

на двучлен
. Обозначим частное от деления как многочлен

а остаток – . Значение, коэффициенты многочленов
,
и остатокзапишем в следующей форме:

В этой схеме каждый из коэффициентов
,
,
, …,получается из предыдущего числа нижней строки умножением на числои прибавлением к полученному результату соответствующего числа верхней строки, стоящего над искомым коэффициентом. Если какая-либо степеньв многочлене отсутствует, то соответствующий коэффициент равен нулю. Определив коэффициенты по приведенной схеме, записываем частное

и результат деления, если
,

или ,

если
,

Теорема 3.1. Для того чтобы несократимая дробь (

,

) была корнем многочлена
с целыми коэффициентами, необходимо, чтобы числобыло делителем свободного члена, а число- делителем старшего коэффициента.

Теорема 3.2. (Теорема Безу ) Остаток от деления многочлена
на двучлен
равен значению многочлена
при
, то есть
.

При делении многочлена
на двучлен
имеем равенство

Оно справедливо, в частности, при
, то есть
.

Пример 3.2. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

Пример 3.3. Разделить на
.

Решение. Применим схему Горнера:

Следовательно,

,

Пример 3.4. Разделить на
.

Решение.

В итоге получаем

Пример 3.5. Разделить
на
.

Решение. Проведем деление многочленов столбиком:

Тогда получаем

.

Иногда бывает полезным представление многочлена в виде равного ему произведения двух или нескольких многочленов. Такое тождественное преобразование называют разложением многочлена на множители . Рассмотрим основные способы такого разложения.

Вынесение общего множителя за скобки. Для того чтобы разложить многочлен на множители способом вынесения общего множителя за скобки, необходимо:

1) найти общий множитель. Для этого, если все коэффициенты многочлена – целые числа, в качестве коэффициента общего множителя рассматривают наибольший по модулю общий делитель всех коэффициентов многочлена, а каждую переменную, входящую во все члены многочлена, берут с наибольшем показателем, который она имеет в данном многочлене;

2) найти частное от деления данного многочлена на общий множитель;

3) записать произведение общего множителя и полученного частного.

Группировка членов. При разложении многочлена на множители способом группировки его члены разбиваются на две или более групп с таким расчетом, чтобы каждую из них можно было преобразовать в произведение, и полученные произведения имели бы общий множитель. После этого применяется способ вынесения за скобки общего множителя вновь преобразованных членов.

Применение формул сокращенного умножения. В тех случаях, когда многочлен, подлежащий разложению на множители, имеет вид правой части какой-либо формулы сокращенного умножения, его разложение на множители достигается применением соответствующей формулы, записанной в другом порядке.

Пусть

, тогда справедливы следующиеформулы сокращенного умножения:

Для

:

Если нечетное (

):

Бином Ньютона:

где
– число сочетаний изпо.

Введение новых вспомогательных членов. Данный способ заключается в том, что многочлен заменяется другим многочленом, тождественно равным ему, но содержащим другое число членов, путем введения двух противоположных членов или замены какого-либо члена тождественно равной ему суммой подобных одночленов. Замена производится с таким расчетом, чтобы к полученному многочлену можно было применить способ группировки членов.

Пример 3.6. .

Решение. Все члены многочлена содержат общий множитель
. Следовательно,.

Ответ: .

Пример 3.7.

Решение. Группируем отдельно члены, содержащие коэффициент , и члены, содержащие. Вынося за скобки общие множители групп, получаем:

.

Ответ:
.

Пример 3.8. Разложить на множители многочлен
.

Решение. Используя соответствующую формулу сокращенного умножения, получаем:

Ответ: .

Пример 3.9. Разложить на множители многочлен
.

Решение. Используя способ группировки и соответствующую формулу сокращенного умножения, получаем:

.

Ответ: .

Пример 3.10. Разложить на множители многочлен
.

Решение. Заменим на
, сгруппируем члены, применим формулы сокращенного умножения:

.

Ответ:
.

Пример 3.11. Разложить на множители многочлен

Решение. Так как ,
,
, то

Среди различных выражений, которые рассматриваются в алгебре, важное место занимают суммы одночленов. Приведем примеры таких выражений:
\(5a^4 - 2a^3 + 0,3a^2 - 4,6a + 8 \)
\(xy^3 - 5x^2y + 9x^3 - 7y^2 + 6x + 5y - 2 \)

Сумму одночленов называют многочленом. Слагаемые в многочлене называют членами многочлена. Одночлены также относят к многочленам, считая одночлен многочленом, состоящим из одного члена.

Например, многочлен
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 \)
можно упростить.

Представим все слагаемые в виде одночленов стандартного вида:
\(8b^5 - 2b \cdot 7b^4 + 3b^2 - 8b + 0,25b \cdot (-12)b + 16 = \)
\(= 8b^5 - 14b^5 + 3b^2 -8b -3b^2 + 16 \)

Приведем в полученном многочлене подобные члены:
\(8b^5 -14b^5 +3b^2 -8b -3b^2 + 16 = -6b^5 -8b + 16 \)
Получился многочлен, все члены которого являются одночленами стандартного вида, причем среди них нет подобных. Такие многочлены называют многочленами стандартного вида .

За степень многочлена стандартного вида принимают наибольшую из степеней его членов. Так, двучлен \(12a^2b - 7b \) имеет третью степень, а трехчлен \(2b^2 -7b + 6 \) - вторую.

Обычно члены многочленов стандартного вида, содержащих одну переменную, располагают в порядке убывания показателей ее степени. Например:
\(5x - 18x^3 + 1 + x^5 = x^5 - 18x^3 + 5x + 1 \)

Сумму нескольких многочленов можно преобразовать (упростить) в многочлен стандартного вида.

Иногда члены многочлена нужно разбить на группы, заключая каждую группу в скобки. Поскольку заключение в скобки - это преобразование, обратное раскрытию скобок, то легко сформулировать правила раскрытия скобок:

Если перед скобками ставится знак «+», то члены, заключаемые в скобки, записываются с теми же знаками.

Если перед скобками ставится знак «-», то члены, заключаемые в скобки, записываются с противоположными знаками.

Преобразование (упрощение) произведения одночлена и многочлена

С помощью распределительного свойства умножения можно преобразовать (упростить) в многочлен произведение одночлена и многочлена. Например:
\(9a^2b(7a^2 - 5ab - 4b^2) = \)
\(= 9a^2b \cdot 7a^2 + 9a^2b \cdot (-5ab) + 9a^2b \cdot (-4b^2) = \)
\(= 63a^4b - 45a^3b^2 - 36a^2b^3 \)

Произведение одночлена и многочлена тождественно равно сумме произведений этого одночлена и каждого из членов многочлена.

Этот результат обычно формулируют в виде правила.

Чтобы умножить одночлен на многочлен, надо умножить этот одночлен на каждый из членов многочлена.

Мы уже неоднократно использовали это правило для умножения на сумму.

Произведение многочленов. Преобразование (упрощение) произведения двух многочленов

Вообще, произведение двух многочленов тождественно равно сумме произведении каждого члена одного многочлена и каждого члена другого.

Обычно пользуются следующим правилом.

Чтобы умножить многочлен на многочлен, надо каждый член одного многочлена умножить на каждый член другого и сложить полученные произведения.

Формулы сокращенного умножения. Квадраты суммы, разности и разность квадратов

С некоторыми выражениями в алгебраических преобразованиях приходится иметь дело чаще, чем с другими. Пожалуй, наиболее часто встречаются выражения \((a + b)^2, \; (a - b)^2 \) и \(a^2 - b^2 \), т. е. квадрат суммы, квадрат разности и разность квадратов. Вы заметили, что названия указанных выражений как бы не закончены, так, например, \((a + b)^2 \) - это, конечно, не просто квадрат суммы, а квадрат суммы а и b. Однако квадрат суммы а и b встречается не так уж часто, как правило, вместо букв а и b в нем оказываются различные, иногда довольно сложные выражения.

Выражения \((a + b)^2, \; (a - b)^2 \) нетрудно преобразовать (упростить) в многочлены стандартного вида, собственно, вы уже встречались с таким заданием при умножении многочленов:
\((a + b)^2 = (a + b)(a + b) = a^2 + ab + ba + b^2 = \)
\(= a^2 + 2ab + b^2 \)

Полученные тождества полезно запомнить и применять без промежуточных выкладок. Помогают этому краткие словесные формулировки.

\((a + b)^2 = a^2 + b^2 + 2ab \) - квадрат суммы равен сумме квадратов и удвоенного произведения.

\((a - b)^2 = a^2 + b^2 - 2ab \) - квадрат разности равен сумме квадратов без удвоенного произведения.

\(a^2 - b^2 = (a - b)(a + b) \) - разность квадратов равна произведению разности на сумму.

Эти три тождества позволяют в преобразованиях заменять свои левые части правыми и обратно - правые части левыми. Самое трудное при этом - увидеть соответствующие выражения и понять, чем в них заменены переменные а и b. Рассмотрим несколько примеров использования формул сокращенного умножения.

Тема: Сложение и вычитание многочленов.

Цели урока:

    Обучающая: изучить правила сложения и вычитания многочленов; познакомить с правилом сложения многочленов «в столбик»; ввести понятие «противоположного многочлена».

    Развивающая: развивать у учащихся навыки преобразования многочленов; создавать условия для проявления познавательной деятельности и активности учащихся.

    Воспитывающая: воспитывать целеустремленность, организованность, формировать интерес к изучению материала через различные виды деятельности.

    Способствовать формированию компетенций: учебно-познавательной и информационно-коммуникативной.

Тип урока : урок усвоения нового материала.

Оборудование: интерактивная доска SmartBoard, мультимедийный проектор.

Структура урока:

    Организационный этап. Мотивация.

    Актуализация опорных знаний.

    Изучение нового материала.

    Физкультминутка.

    Первичное закрепление полученных знаний.

    Подведение итогов урока. Рефлексия.

    Домашнее задание. Инструктаж.

ХОД УРОКА

1. Организационный этап. Мотивация.

На сегодняшнем уроке нам предстоит узнать, как выполняется сложение и вычитание многочленов. Познакомимся с алгоритмом сложения многочленов «в столбик» и понятием «противоположного многочлена».

2. Актуализация опорных знаний .

Ребята, на сегодняшнем уроке мы узнаем много нового. Но без знаний пройденного материала нам будет трудно, поэтому проведем небольшой устный опрос.

Фронтальный теоретический опрос.(Слайд 2)

    Сумма одночленов называется (многочленом ).

    Многочлен, представляющий собой сумму двух одночленов, называется (двучленом ).

    Сумма (противоположных ) одночленов равна нулю.

    При умножении многочлена на (единицу) в результате получится тот же самый многочлен.

    Степенью многочлена стандартного вида называют (наибольшую из степеней ).

    Устный опрос. (Слайд 3). Нажимая поочередно на «книгу», учащиеся приводят подобные слагаемые, и проводят самопроверку.

3. Изучение нового материала.

Учитель : Многочлены часто являются математическими моделями практических задач, поэтому нам надо уметь выполнять арифметические действия с многочленами и приводить такие выражения к максимально простому виду. Выясним, как складывать и вычитать многочлены. Фактически, мы это делать уже умеем.

Например, составим сумму и разность многочленов (Слайд 4 ) и в полученном алгебраическом выражении раскроем скобки.

(Раскрывают скобки, работая в тетрадях, в парах. Один ученик выполняет преобразования на обратной стороне доски. Проверяем ход работы и анализируем все ли операции выполнены верно?)

Мы видим, что полученные в результате преобразования сумма и разность также являются многочленами.

Делаем вывод: (Слайд 5 ). Чтобы найти алгебраическую сумму многочленов, нужно раскрыть скобки и привести подобные слагаемые. При этом, если перед скобкой стоит знак «+» , то знаки слагаемых, стоящих в скобках, не меняются . Если перед скобкой стоит знак «-» , то знаки слагаемых внутри скобок меняются на противоположные .

Аналогичным образом можно найти сумму любого количества многочленов. Учащиеся выполняют задание (Слайд 6 ), и проверяют правильность выполнения задания (Слайд 7)

После выполнения последнего пункта задания 1 , вводится понятие многочлена, противоположного данному.

Многочлен противоположным данному - это исходный многочлен, умноженный на (-1). Учащиеся выполняют задание 2 (Слайд 8 ). (Стираем «ластиком» и проводим проверку ).

Другими словами, если его сумма с исходным многочленом равна нулю. Учащиеся выполняют задание 3 (Слайд 9 ). (Нажимаем на пропуски и проверяем !).

4. Физкультминутка.

Учитель . Предлагает упражнения для глаз и для улучшения мозгового кровообращения.

Продолжаем…

Учитель . Но количество многочленов-слагаемых и их членов может быть достаточно большим, и тогда поиск и приведение подобных членов может оказаться весьма затруднительным. Чтобы упростить вычисления, мы можем использовать идею «записи в столбик», аналогичную той, которую мы использовали при сложении и вычитании многозначных чисел. При сложении многозначных чисел такая запись помогаем добиться близкого расположения цифр, стоящих в одинаковых разрядах, а при сложении многочленов – близкого расположения подобных членов.(Слайд 10).

(Нажимаем на противоположные одночлены, показывая тем самым их исключение, а также нажимает на место получаемого результата). В итоге мы приходим к следующему алгоритму сложения многочленов «в столбик». Язычок: Запомни ).

Учащиеся выполняют задание 4 по вариантам. (Слайд 11 ). Проводят взаимопроверку.

Теперь обсудим операцию вычитания многочленов. Мы знаем, что вычитание рационального числа можно заменить прибавлением противоположного числа. Аналогично мы можем поступить и при работе с многочленами.

Вычитание многочленов «в столбик» также сводится к сложению, предварительно лишь надо заменить многочлен-вычитаемое противоположным ему.

Итак, алгоритм вычитания многочленов «в столбик» отличается от соответствующего алгоритма сложения многочленов лишь тем, что в нем появляется один дополнительный шаг – замена многочлена-вычитаемого противоположным ему. (Слайд 12). (Нажимаем на противоположные одночлены, показывая тем самым их исключение, а также нажимает на место получаемого результата). В итоге мы приходим к следующему алгоритму вычитания многочленов «в столбик». Язычок: Запомни ).

5. Первичное закрепление полученных знаний.

Выполнение заданий на закрепление изученного материала.

Задание 5 (Слайд 13 ).

Задание 6 . С помощью кубика-генератора, нажимая поочередно на кубик и на стрелку, расположив многочлены столбиком, выполняем сложение. (Слайд 14 ).

6. Подведение итогов урока.

Рефлексия.

    Что нового и интересного узнали на уроке?

    Какое из правил сложения многочленов для вас наиболее приемлемо и удобно?

    Какие испытывали трудности?

7. Домашнее задание. Инструктаж.

Учитель проводит инструктаж по выполнению домашнего задания.