Что значит одз. Как найти область определения функции

Как найти область определения функции? Ученикам средних классов приходится часто сталкиваться с данной задачей.

Родителям следует помочь своим детям разобраться в данном вопросе.

Задание функции.

Напомним основополагающие термины алгебры. Функцией в математике называют зависимость одной переменной от другой. Можно сказать, что это строгий математический закон, который связывает два числа определенным образом.

В математике при анализе формул числовые переменные подменяют буквенными символами. Наиболее часто используют икс («х») и игрек («у»). Переменную х называют аргументом, а переменную у — зависимой переменной или функцией от х.

Существуют различные способы задания зависимостей переменных.

Перечислим их:

  1. Аналитический тип.
  2. Табличный вид.
  3. Графическое отображение.

Аналитический способ представляют формулой. Рассмотрим примеры: у=2х+3, у=log(х), у=sin(х). Формула у=2х+3 является типичной для линейной функции. Подставляя в заданную формулу числовое значение аргумента, получаем значение y.

Табличный способ представляет собой таблицу, состоящую из двух столбцов. Первая колонка выделяется для значений икса, а в следующей графе записывают данные игрека.

Графический способ считается наиболее наглядным. Графиком называют отображение множества всех точек на плоскости.

Для построения графика применяют декартовую систему координат. Система состоит из двух перпендикулярных прямых. На осях откладывают одинаковые единичные отрезки. Отсчет производят от центральной точки пересечения прямых линий.

Независимую переменную указывают на горизонтальной линии. Ее называют осью абсцисс. Вертикальная прямая (ось ординат) отображает числовое значение зависимой переменной. Точки отмечают на пересечении перпендикуляров к данным осям. Соединяя точки между собой, получаем сплошную линию. Она являться основой графика.

Виды зависимостей переменных

Определение.

В общем виде зависимость представляется как уравнение: y=f(x). Из формулы следует, что для каждого значения числа х существует определенное число у. Величину игрека, которая соответствует числу икс, называют значением функции.

Все возможные значения, которые приобретает независимая переменная, образуют область определения функции. Соответственно, все множество чисел зависимой переменной определяет область значений функции. Областью определения являются все значения аргумента, при котором f(x) имеет смысл.

Начальная задача при исследовании математических законов состоит в нахождении области определения. Следует верно определять этот термин. В противном случае все дальнейшие расчеты будут бесполезны. Ведь объем значений формируется на основе элементов первого множества.

Область определения функции находится в прямой зависимости от ограничений. Ограничения обусловливаются невозможностью выполнения некоторых операций. Также существуют границы применения числовых значений.

При отсутствии ограничений область определения представляет собой все числовое пространство. Знак бесконечности имеет символ горизонтальной восьмерки. Все множество чисел записывается так: (-∞; ∞).

В определенных случаях массив данных состоит из нескольких подмножеств. Рамки числовых промежутков или пробелов зависят от вида закона изменения параметров.

Укажем список факторов, которые влияют на ограничения:

  • обратная пропорциональность;
  • арифметический корень;
  • возведение в степень;
  • логарифмическая зависимость;
  • тригонометрические формы.

Если таких элементов несколько, то поиск ограничений разбивают для каждого из них. Наибольшую проблему представляет выявление критических точек и промежутков. Решением задачи станет объединение всех числовых подмножеств.

Множество и подмножество чисел

О множествах.

Область определения выражают как D(f), а знак объединения представлен символом ∪. Все числовые промежутки заключают в скобки. Если граница участка не входит во множество, то ставят полукруглую скобку. В ином случае, когда число включается в подмножество, используют скобки квадратной формы.

Обратная пропорциональность выражена формулой у=к/х. График функции представляет собой кривую линию, состоящую из двух веток. Ее принято называть гиперболой.

Так как функция выражена дробью, нахождение области определения сводится к анализу знаменателя. Общеизвестно, что в математике деление на нуль запрещено. Решение задачи сводится к уравниванию знаменателя к нулю и нахождению корней.

Приведем пример:

Задается: у=1/(х+4). Найти область определения.

  1. Приравниваем знаменатель к нулю.
    х+4=0
  2. Находим корень уравнения.
    х=-4
  3. Определяем множество всех возможных значений аргумента.
    D(f)=(-∞ ; -4)∪(-4; +∞)

Ответ: областью определения функции являются все действительные числа, кроме -4.

Значение числа под знаком квадратного корня не может быть отрицательным. В этом случае определения функции с корнем сводится к решению неравенства. Подкоренное выражение должно быть больше нуля.

Область определения корня связана с четностью показателя корня. Если показатель делится на 2, то выражение имеет смысл только при его положительном значении. Нечетное число показателя указывает на допустимость любого значения подкоренного выражения: как положительного, так и отрицательного.

Неравенство решают так же, как уравнение. Существует только одно различие. После перемножения обеих частей неравенства на отрицательное число следует поменять знак на противоположный.

Если квадратный корень находится в знаменателе, то следует наложить дополнительное условие. Значение числа не должно равняться нулю. Неравенство переходит в разряд строгих неравенств.

Логарифмические и тригонометрические функции

Логарифмическая форма имеет смысл при положительных числах. Таким образом, область определения логарифмической функции аналогична функции квадратного корня, за исключением нуля.

Рассмотрим пример логарифмической зависимости: y=lоg(2x-6). Найти область определения.

  • 2x-6>0
  • 2x>6
  • х>6/2

Ответ: (3; +∞).

Областью определения y=sin x и y=cos x является множество всех действительных чисел. Для тангенса и котангенса существуют ограничения. Они связаны с делением на косинус либо синус угла.

Тангенс угла определяют отношением синуса к косинусу. Укажем величины углов, при которых значение тангенса не существует. Функция у=tg x имеет смысл при всех значениях аргумента, кроме x=π/2+πn, n∈Z.

Областью определения функции y=ctg x является все множество действительных чисел, исключая x=πn, n∈Z. При равенстве аргумента числу π или кратному π синус угла равен нулю. В этих точках (асимптотах) котангенс не может существовать.

Первые задания на выявление области определения начинаются на уроках в 7 классе. При первом ознакомлении с этим разделом алгебры ученик должен четко усвоить тему.

Следует учесть, что данный термин будет сопровождать школьника, а затем и студента на протяжении всего периода обучения.

Для начала научимся находить область определения суммы функций . Понятно, что такая функция имеет смысл для всех таких значений переменной, при которой имеют смысл все функции, составляющие сумму. Поэтому не вызывает сомнений справедливость следующего утверждения:

Если функция f - это сумма n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)+f 2 (x)+…+f n (x) , то областью определения функции f является пересечение областей определения функций f 1 , f 2 , …, f n . Запишем это как .

Давайте условимся и дальше использовать записи, подобные последней, под которыми будем понимать , записанных внутри фигурной скобки, либо одновременное выполнение каких-либо условий. Это удобно и достаточно естественно перекликается со смыслом систем.

Пример.

Дана функция y=x 7 +x+5+tgx , и надо найти ее область определения.

Решение.

Функция f представлена суммой четырех функций: f 1 - степенной функции с показателем 7 , f 2 - степенной функции с показателем 1 , f 3 - постоянной функции и f 4 - функции тангенс.

Взглянув в таблицу областей определения основных элементарных функций, находим, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) , D(f 3)=(−∞, +∞) , а областью определения тангенса является множество всех действительных чисел, кроме чисел .

Область определения функции f – это пересечение областей определения функций f 1 , f 2 , f 3 и f 4 . Достаточно очевидно, что это есть множество всех действительных чисел, за исключением чисел .

Ответ:

множество всех действительных чисел, кроме .

Переходим к нахождению области определения произведения функций . Для этого случая имеет место аналогичное правило:

Если функция f - это произведение n функций f 1 , f 2 , …, f n , то есть, функция f задается формулой y=f 1 (x)·f 2 (x)·…·f n (x) , то область определения функции f есть пересечение областей определения функций f 1 , f 2 , …, f n . Итак, .

Оно и понятно, в указанной области определены все функции произведения, а значит и сама функция f .

Пример.

Y=3·arctgx·lnx .

Решение.

Структуру правой части формулы, задающей функцию, можно рассматривать так f 1 (x)·f 2 (x)·f 3 (x) , где f 1 – это постоянная функция, f 2 – это функция арктангенс, а f 3 – логарифмическая функция с основанием e .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=(−∞, +∞) и D(f 3)=(0, +∞) . Тогда .

Ответ:

областью определения функции y=3·arctgx·lnx является множество всех действительных положительных чисел.

Отдельно остановимся на нахождении области определения функции, заданной формулой y=C·f(x) , где С – некоторое действительное число. Легко показать, что область определения этой функции и область определения функции f совпадают. Действительно, функция y=C·f(x) – это произведение постоянной функции и функции f . Областью определения постоянной функции является множество всех действительных чисел, а область определения функции f есть D(f) . Тогда область определения функции y=C·f(x) есть , что и требовалось показать.

Итак, области определения функций y=f(x) и y=C·f(x) , где С – некоторое действительное число, совпадают. Например, область определения корня есть , становится ясно, что D(f) - это множество всех x из области определения функции f 2 , для которых f 2 (x) входит в область определения функции f 1 .

Таким образом, область определения сложной функции y=f 1 (f 2 (x)) - это пересечение двух множеств: множества всех таких x , что x∈D(f 2) , и множества всех таких x , для которых f 2 (x)∈D(f 1) . То есть, в принятых нами обозначениях (это по сути система неравенств).

Давайте рассмотрим решения нескольких примеров. В процессе мы не будем подробно описывать , так как это выходит за рамки этой статьи.

Пример.

Найти область определения функции y=lnx 2 .

Решение.

Исходную функцию можно представить в виде y=f 1 (f 2 (x)) , где f 1 – логарифм с основанием e , а f 2 – степенная функция с показателем 2 .

Обратившись к известным областям определения основных элементарных функций, имеем D(f 1)=(0, +∞) и D(f 2)=(−∞, +∞) .

Тогда

Так мы нашли нужную нам область определения функции, ей является множество всех действительных чисел, кроме нуля.

Ответ:

(−∞, 0)∪(0, +∞) .

Пример.

Какова область определения функции ?

Решение.

Данная функция сложная, ее можно рассматривать как y=f 1 (f 2 (x)) , где f 1 – степенная функция с показателем , а f 2 – функция арксинус, и нам нужно найти ее область определения.

Посмотрим, что нам известно: D(f 1)=(0, +∞) и D(f 2)=[−1, 1] . Остается найти пересечение множеств таких значений x , что x∈D(f 2) и f 2 (x)∈D(f 1) :

Чтобы arcsinx>0 вспомним свойства функции арксинус . Арксинус возрастает на всей области определения [−1, 1] и обращается в ноль при x=0 , следовательно, arcsinx>0 для любого x из промежутка (0, 1] .

Вернемся к системе:

Таким образом, искомая область определения функции есть полуинтервал (0, 1] .

Ответ:

(0, 1] .

Теперь давайте перейдем к сложным функциям общего вида y=f 1 (f 2 (…f n (x)))) . Область определения функции f в этом случае находится как .

Пример.

Найти область определения функции .

Решение.

Заданную сложную функцию можно расписать как y=f 1 (f 2 (f 3 (x))) , где f 1 – sin , f 2 – функция корень четвертой степени, f 3 – lg .

Нам известно, что D(f 1)=(−∞, +∞) , D(f 2)=- ∞; + ∞[ .

Пример 1. Найти область определения функции y = 2 .

Решение. Область определения функции не указана, значит, в силу выше приведённого определения имеется в виду естественная область определения. Выражение f (x ) = 2 определено при любых действительных значениях x , следовательно, данная функция определена на всём множестве R действительных чисел.

Поэтому на чертеже сверху числовая прямая заштрихована на всём протяжении от минус бесконечности до плюс бесконечности.

Область определения корня n -й степени

В случае, когда функция задана формулой и n - натуральное число:

Пример 2. Найти область определения функции .

Решение. Как следует из определения, корень чётной степени имеет смысл, если подкоренное выражение неотрицательно, то есть, если - 1 ≤ x ≤ 1 . Следовательно, область определения данной функции - [- 1; 1] .

Заштрихованная область числовой прямой на чертеже сверху - это область определения данной функции.

Область определения степенной функции

Область определения степенной функции с целым показателем степени

если a - положительное, то областью определения функции является множество всех действительных чисел, то есть ]- ∞; + ∞[ ;

если a - отрицательное, то областью определения функции является множество ]- ∞; 0[ ∪ ]0 ;+ ∞[ , то есть вся числовая прямая за исключением нуля.

На соответствующем чертеже сверху вся числовая прямая заштрихована, а точка, соответствующая нулю, выколота (она не входит в область определения функции).

Пример 3. Найти область определения функции .

Решение. Первое слагаемое целой степенью икса, равной 3, а степень икса во втором слагаемом можно представить в виде единицы - так же целого числа. Следовательно, область определения данной функции - вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения степенной функции с дробным показателем степени

В случае, когда функция задана формулой :

если - положительное, то областью определения функции является множество 0; + ∞[ .

Пример 4. Найти область определения функции .

Решение. Оба слагаемых в выражении функции - степенные функции с положительными дробными показателями степеней. Следовательно, область определения данной функции - множество - ∞; + ∞[ .

Область определения показательной и логарифмической функции

Область определения показательной функции

В случае, когда функция задана формулой , областью определения функции является вся числовая прямая, то есть ]- ∞; + ∞[ .

Область определения логарифмической функции

Логарифмическая функция определена при условии, если её аргумент положителен, то есть, областью её определения является множество ]0; + ∞[ .

Найти область определения функции самостоятельно, а затем посмотреть решение

Область определения тригонометрических функций

Область определения функции y = cos(x ) - так же множество R действительных чисел.

Область определения функции y = tg(x ) - множество R действительных чисел, кроме чисел .

Область определения функции y = ctg(x ) - множество R действительных чисел, кроме чисел .

Пример 8. Найти область определения функции .

Решение. Внешняя функция - десятичный логарифм и на область её определения распространяются условия области определения логарифмической функции вообще. То есть, её аргумент должен быть положительным. Аргумент здесь - синус "икса". Поворачивая воображаемый циркуль по окружности, видим, что условие sin x > 0 нарушается при "иксе" равным нулю, "пи", два, умноженном на "пи" и вообще равным произведению числа "пи" и любого чётного или нечётного целого числа.

Таким образом, область определения данной функции задаётся выражением

,

где k - целое число.

Область определения обратных тригонометрических функций

Область определения функции y = arcsin(x ) - множество [-1; 1] .

Область определения функции y = arccos(x ) - так же множество [-1; 1] .

Область определения функции y = arctg(x ) - множество R действительных чисел.

Область определения функции y = arcctg(x ) - так же множество R действительных чисел.

Пример 9. Найти область определения функции .

Решение. Решим неравенство:

Таким образом, получаем область определения данной функции - отрезок [- 4; 4] .

Пример 10. Найти область определения функции .

Решение. Решим два неравенства:

Решение первого неравенства:

Решение второго неравенства:

Таким образом, получаем область определения данной функции - отрезок .

Область определения дроби

Если функция задана дробным выражением, в котором переменная находится в знаменателе дроби, то областью определения функции является множество R действительных чисел, кроме таких x , при которых знаменатель дроби обращается в нуль.

Пример 11. Найти область определения функции .

Решение. Решая равенство нулю знаменателя дроби, находим область определения данной функции - множество ]- ∞; - 2[ ∪ ]- 2 ;+ ∞[ .

Дробные уравнения. ОДЗ.

Внимание!
К этой теме имеются дополнительные
материалы в Особом разделе 555.
Для тех, кто сильно "не очень..."
И для тех, кто "очень даже...")

Продолжаем осваивать уравнения. Мы уже в курсе, как работать с линейными уравнениями и квадратными. Остался последний вид – дробные уравнения . Или их ещё называют гораздо солиднее – дробные рациональные уравнения . Это одно и то же.

Дробные уравнения.

Как ясно из названия, в этих уравнениях обязательно присутствуют дроби. Но не просто дроби, а дроби, у которых есть неизвестное в знаменателе . Хотя бы в одном. Например:

Напомню, если в знаменателях только числа , это линейные уравнения.

Как решать дробные уравнения ? Прежде всего – избавиться от дробей! После этого уравнение, чаще всего, превращается в линейное или квадратное. А дальше мы знаем, что делать… В некоторых случаях оно может превратиться в тождество, типа 5=5 или неверное выражение, типа 7=2. Но это редко случается. Ниже я про это упомяну.

Но как избавиться от дробей!? Очень просто. Применяя всё те же тождественные преобразования.

Нам надо умножить всё уравнение на одно и то же выражение. Так, чтобы все знаменатели посокращались! Всё сразу станет проще. Поясняю на примере. Пусть нам требуется решить уравнение:

Как учили в младших классах? Переносим все в одну сторону, приводим к общему знаменателю и т.д. Забудьте, как страшный сон! Так нужно делать, когда вы складываете или вычитаете дробные выражения. Или работаете с неравенствами. А в уравнениях мы сразу умножаем обе части на выражение, которое даст нам возможность сократить все знаменатели (т.е., в сущности, на общий знаменатель). И какое же это выражение?

В левой части для сокращения знаменателя требуется умножение на х+2 . А в правой требуется умножение на 2. Значит, уравнение надо умножать на 2(х+2) . Умножаем:

Это обычное умножение дробей, но распишу подробно:

Обратите внимание, я пока не раскрываю скобку (х + 2) ! Так, целиком, её и пишу:

В левой части сокращается целиком (х+2) , а в правой 2. Что и требовалось! После сокращения получаем линейное уравнение:

А это уравнение уже решит всякий! х = 2 .

Решим ещё один пример, чуть посложнее:

Если вспомнить, что 3 = 3/1, а 2х = 2х/ 1, можно записать:

И опять избавляемся от того, что нам не очень нравится – от дробей.

Видим, что для сокращения знаменателя с иксом, надо умножить дробь на (х – 2) . А единицы нам не помеха. Ну и умножаем. Всю левую часть и всю правую часть:

Опять скобки (х – 2) я не раскрываю. Работаю со скобкой в целом, как будто это одно число! Так надо делать всегда, иначе ничего не сократится.

С чувством глубокого удовлетворения сокращаем (х – 2) и получаем уравнение безо всяких дробей, в линеечку!

А вот теперь уже раскрываем скобки:

Приводим подобные, переносим всё в левую часть и получаем:

Но до того мы другие задачи научимся решать. На проценты. Те ещё грабли, между прочим!

Если Вам нравится этот сайт...

Кстати, у меня есть ещё парочка интересных сайтов для Вас.)

Можно потренироваться в решении примеров и узнать свой уровень. Тестирование с мгновенной проверкой. Учимся - с интересом!)

можно познакомиться с функциями и производными.

В математике бесконечное множество функций. И у каждой - свой характер.) Для работы с самыми разнообразными функциями нужен единый подход. Иначе, какая же это математика?!) И такой подход есть!

При работе с любой функцией мы предъявляем ей стандартный набор вопросов. И первый, самый важный вопрос - это область определения функции. Иногда эту область называют множеством допустимых значений аргумента, областью задания функции и т.п.

Что такое область определения функции? Как её находить? Эти вопросы частенько представляются сложными и непонятными... Хотя, на самом деле, всё чрезвычайно просто. В чём вы сможете убедиться лично, прочитав эту страничку. Поехали?)

Ну, что тут сказать... Только респект.) Да! Естественная область определения функции (о которой здесь идёт речь) совпадает с ОДЗ выражений, входящих в функцию. Соответственно, и ищутся они по одним и тем же правилам.

А сейчас рассмотрим не совсем естественную область определения.)

Дополнительные ограничения на область определения функции.

Здесь речь пойдёт об ограничениях, которые накладываются заданием. Т.е. в задании присутствуют какие-то дополнительные условия, которые придумал составитель. Или ограничения выплывают из самого способа задания функции.

Что касается ограничений в задании - тут всё просто. Обычно, и искать-то ничего не надо, всё в задании уже сказано. Напомню, что ограничения, написанные автором задания, никак не отменяют принципиальные ограничения математики. Нужно просто не забыть учесть условия задания.

Например, такое задание:

Найти область определения функции:

на множестве положительных чисел.

Естественную область определения этой функции мы нашли выше. Эта область:

D(f)=(-∞ ; -1) (-1; 2]

В словесном способе задания функции нужно внимательно читать условие и находить там ограничения на иксы. Иногда глаза ищут формулы, а слова свистят мимо сознания да...) Пример из предыдущего урока:

Функция задана условием: каждому значению натурального аргумента х ставится в соответствие сумма цифр, из которых состоит значение х.

Здесь надо заметить, что речь идёт только о натуральных значениях икса. Тогда и D(f) мгновенно записывается:

D(f): х N

Как видите, область определения функции - не такое уж сложное понятие. Нахождение этой области сводится к осмотру функции, записи системы неравенств и решению этой системы. Конечно, системы бывают всякие, простые и сложные. Но...

Открою маленький секрет. Иногда функция, для которой надо найти область определения, выглядит просто устрашающе. Хочется побледнеть и заплакать.) Но стоит записать систему неравенств... И, вдруг, системка оказывается элементарной! Причём, частенько, чем ужаснее функция, тем проще система...

Мораль: глаза боятся, голова решает!)