Что такое комплимент в иммунологии. Система комплемента

Термин «комплемент» впервые был предложен Borclet в результате наблюдения, что для реализации ряда иммунологических эффектов (гемолиз, бактерицидность) наряду с антителами необходим сывороточный фактор, разрушающийся при нагревании до +56°С. За 70 лет изучения комплемента было установлено, что он представляет собой сложную систему из 11 сывороточных белков, активность которых регулируется по меньшей мере таким же количеством факторов. Комплемент представляет собой систему каскадно действующих высокоэффективных протеаз, которые последовательно активируются за счет отщепления или присоединения пептидных фрагментов и в конечном счете приводит к бактериолизису или цитолизу. По сложности система комплемента сопоставима с системой свертывания крови, с которой связана, как и с системой кининов, функциональными связями. В филогенезе система комплемента появилась раньше иммунной системы. Онтогенетически это проявляется в том, что уже 6-недельный плод способен синтезировать отдельные компоненты системы, а с 10-й недели можно выявить гемолитическую активность синтезированных факторов, хотя нормальные концентрации всех С-компонентов определяются только в течение первого года после рождения. Из общего количества сывороточных белков на систему комплемента приходится около 10%. Она является основой защитных сил организма. Функциональные дефекты системы комплемента могут приводить к тяжелым рецидивирующим инфекциям и патологическим состояниям, обусловленным иммунными комплексами. Существует прямая функциональная связь между системой комплемента и фагоцитарной системой, поскольку прямое или опосредованное через антитела связывание компонентов комплемента с бактериями является необходимым условием фагоцитоза (опсонизация микроорганизмов). Комплемент - это доминирующий гуморальный компонент реакции воспаления, поскольку его продукты являются хемотаксинами и анафила-токсинами, оказывающими выраженное воздействие на фагоциты, обмен веществ и систему свертывания крови. Таким образом, комплемент относят к важным элементам системы резистентности, а также эффективного звена гуморального иммунитета. Кроме того, система комплемента включает важные факторы регуляции иммунного ответа.

Синтез и метаболизм С-факторов . Образование С-факторов происходит преимущественно в печени, костном мозге и селезенке. Особое положение занимает С1, который синтезируется, по-видимому, в эпителии тонкого кишечника. Макрофаги играют определяющую роль в синтезе компонентов комплемента, что отражает тесную филогенетическую связь между этими двумя системами. Непрерывное использование С-факторов в организме и высокий уровень их катаболизма определяют необходимость их непрерывного синтеза, причем скорость синтеза относительно высока. Для С3, например, ежечасно синтезируется 0,5-1,0 мг белка на 1 кг веса. Как активация и ингибирование, так и потребление и синтез находятся в лабильном равновесии. При этом сывороточные концентрации отдельных факторов, с одной стороны, и содержание фрагментов и продуктов расщепления - с другой, дают возможность оценить состояние и уровень активации всей системы.

С-факторы состоят, как правило, из нескольких полипептидных цепей. С3, С4 и С5 синтезируются в виде одной полипептидной цепи, в результате протеолитического расщепления которой образуются либо С3 и С5, либо только С4. Полипептидные цепи С1 и С8 синтезируются раздельно. Глюкозилирование осуществляется непосредственно перед секрецией и является необходимой предпосылкой этого процесса.

Снижение синтеза компонентов комплемента наблюдается при тяжелых заболеваниях печени, уремии и использовании высоких концентраций кортикостероидов, затрагивая преимущественно С3, С4 и С5. Сниженная концентрация С3 в сыворотке определяется также при хронической иммунокомплексной патологии за счет активации альтернативного пути с усиленным расходом этого компонента. Одновременно может происходить снижение синтеза этого компонента, что свидетельствует о существовании отрицательной обратной связи регуляции его синтеза через C3d.

Механизмы активации системы комплемента . Активация после начального этапа может развиваться в нескольких направлениях:

Классический путь активации комплемента, начиная с С1;

Альтернативный путь активации комплемента, начиная с С3;

Специфическая активация комплемента с образованием различных продуктов расщепления.

I. Классический путь активации системы комплемента. Классический путь активации комплемента - это иммунологически обусловленный процесс, инициированный антителами. Иммунологическая специфичность обеспечивается взаимодействием антител с антигенами бактерий, вирусов и клеток. Реакция антиген-антитело связана с изменением конфигурации иммуноглобулина, что приводит к формированию места связывания для Clq на Fc-фрагменте вблизи шарнирного участка. Связываться с С1 могут иммуноглобулины. Активация С1 происходит исключительно между двумя Fc-фрагментами. Поэтому каскад активации может быть индуцирован даже одной молекулой IgM. В случае антител IgG необходимо соседство двух молекул антител, что накладывает жесткие ограничения на плотность эпитопов антигенов. В связи с этим IgM является гораздо более эффективным инициатором цитолиза и иммунной опсонизации, чем IgG. Количественно эта оценка соответствует величине 800:1. Сам процесс активации комплемента можно разделить на определенные этапы:
1- распознавание иммунных комплексов и образование С1;
2 - образование С3-конвертазы и С5-конвертазы;
3 - образование термостабильного комплекса С5b, 6,7;
4 - перфорация мембраны.

Перфорация мембраны . Каждый образовавшийся комплекс С5b, 6,7 независимо от связывания с мембраной или экранировки S-белком соединяется с 1 молекулой С8 и 3 молекулами С9. Свободный С5b-С9-комплекс действует гемолитически, тогда как комплекс с S-белком этим действием не обладает. Два ассоциированных с мембраной С5b-С9-комплекса образуют в мембране кольцевую пару, что приводит к резкому изменению осмотического давления в клетке. Если эритроциты высокочувствительны к образованию такого дефекта мембраны, то ядросодержащие клетки способны к репарации дефектов этого типа и обладают определенной резистентностью к атаке комплемента. В связи с этим определяющим при взаимодействии комплемента с мембраной является общее количество связавшихся с клеткой молекул Clg, которое зависит от количества и класса связавшихся с клеткой антител. Среди бактерий существуют виды, устойчивые к действию комплемента. В этом случае решающим оказывается эффект опсонизации микроорганизмов с последующим фагоцитозом. Определенную роль при атаке комплементом грамотрицательных бактерий играет лизоцим. Некоторые особенности активации комплемента вытекают из общих закономерностей и определяются начальной активацией С1 растворимыми или преципитированными иммунными комплексами. Реакция протекает идентично вплоть до образования комплекса С5b, 6,7, что приводит к продукции хемотаксических факторов и анафилатоксинов. Аналогичные процессы происходят при внутривенном введении агрегированного IgG. Клинические проявления при этом могут варьировать от сывороточной болезни до анафилактического шока. Сочетание в составе растворимых иммунных комплексов Fc-фрагментов с адгезивными компонентами С5b, 6,7 может приводить к их отложению на клетках эндотелия и ассоциации с клетками крови, обусловливая целый ряд системных поражений. Такие иммунокомплексные механизмы создают основу для аллергических реакций типа III, каскада реакций активации комплемента, лавинообразному вовлечению в реакцию компонентов комплемента с нарастанием количества фармакологически активных фрагментов.

Альтернативный путь активации комплемента . При альтернативном пути активации комплемента в реакциях не участвуют факторы С1, С4, С2. Активация начинается при расщеплении С3 на фрагменты С3а и С3b. Дальнейшее течение процесса идентично классическому пути.

Pillemer впервые описал Mg+ зависимую «систему пропердина», в которой С3 был активирован зимозаном (полисахаридом) без участия антител. Другие нерастворимые полисахариды также могут выступать в роли активаторов (инулин, высокомолекулярный декстран), кроме того, активаторами могут служить бактериальные эндотоксины, агрегированные IgG4, IgA и IgE, иммунные комплексы с F фрагментами, протеазы (плазмин, трипсин), фактор яда кобры, С3b. При альтернативном пути активации действуют две С3-конвертазы. С3Вb обладает незначительной активностью и появляется при взаимодействии С3 с В, D и пропердином. С3Вb отделяет незначительное количество С3b, которое ведет к образованию высокоактивной конвертазы С3b, результатом действия которой является С3b. Возникает положительная обратная связь, значительно усиливающая реакцию. Подавление такого самопроизвольного усиления осуществляется за счет С3b-INA, который ингибирует образующийся в растворимой форме С3b. Фактор яда кобры является функциональным и структурным аналогом С3b, однако не ингибируется С3b-INA. Эндотоксины и полисахариды активируют пропердин и тем самым создают условия для связывания и стабилизации С3b, который ингибируется С3b-INA только в свободном состоянии. Определяющим этапом в альтернативном пути активации является образование С3b, который переносится на активированную поверхность. Процесс начинается связыванием С3b с В, причем этот этап зависит от присутствия Mg2+. С3bВ активируется за счет D в комплекс С3b Вb. Пропердин связывает С3b и таким образом стабилизирует спонтанно диссоциирующий комплекс Вb. Специфическим ингибитором альтернативного пути является В1Н. Он конкурирует с фактором В за связь С3b, вытесняя его из комплекса С3bВ и делая С3b доступным для действия С3b-INA. Цитолитическая активность альтернативного пути полностью определяется свойствами оболочки микроорганизмов и клеточной мембраны. Гликопротеины и гликолипиды, содержащие концевые остатки сиаловой кислоты придают мембране устойчивость к действию активированного по альтернативному пути комплементу, тогда как обработка нейраминидазой отменяет эту резистентность и делает клетки высокочувствительными. Сиаловые кислоты играют важную роль в резистентности микроорганизмов. Большинство видов бактерий не содержит в составе оболочки сиаловых кислот, однако многие патогенные виды их имеют. Антитела могут изменять свойства поверхности и таким образом повышать чувствительность мишеней к комплементу. Важным этапом в активации поверхности является связывание пропердина, в результате чего возникает высокоаффинный рецептор для С3b и одновременно образуется стабильный комплекс С3Вb. В связи с этим различают два вида активаторов альтернативного пути: 1) пропердинзависимые активаторы (полисахариды, эндотоксины, антитела); 2) пропердиннезависимые активаторы (фактор яда кобры, протеазы).

С5-конвертаза альтернативного пути активации возникает в результате связывания С3b с комплексом С3Вb в рамках механизма усиления, а последующее течение процесса соответствует классическому пути активации.

Альтернативная активация комплемента - это важный компонент системы неспецифической резистентности к бактериям, вирусам и одноклеточным микроорганизмам. Переход от неспецифической защиты к реакциям, опосредованным антителами, осуществляется плавно, либо оба процесса протекают параллельно. В качестве патогенетического звена альтернативная активация комплемента принимает участие во многих заболеваниях. Примерами могут служить:
- мембранопролиферативные нефриты с гипокомплементемией;
- острый гломерулонефрит после стрептококковой инфекции ;
- нефриты при СКВ ;
- болезнь голубеводов;
- грибковые инфекции;
- септицемии с шоком, обусловленным эндотоксинами;
- ночная пароксизмальная гемоглобинурия;
- парциальная липодистрофия.

Альтернативный путь наблюдается также в части случаев активации комплемента по классическому пути. При нефритах выявляется фактор C3NeF, который представляет собой комплекс аутоантител с С3bВb, резистентный к действию р1Н и функционирующий как С3-конвертаза. Эндотоксины за счет липида А являются эффективными активаторами не только альтернативного пути активации комплемента, но и системы свертывания, а также кининовой системы. Активация фактора XII играет при этом определяющую роль.

Неспецифическая активация комплемента . Неспецифическая активация комплемента может осуществляться протеазами (трипсин, плазмин, калликреин, лизосомные протеазы и бактериальные ферменты) на каждой стадии от С1 доС5. Исходный активированный фактор является гораздо более эффективным по сравнению с индуцирующей протеазой, причем при активации в жидкой фазе активация может начаться сразу в нескольких процессах. Возникают анафилатоксины, которые, помимо гемолитического действия, дают полную картину шока при остром панкреатите и тяжелых инфекциях. Неспецифическая активация является одним из компонентов острого воспаления.

Механизмы регуляции системы активации комплемента

I. Ингибирующие механизмы . Каждый этап каскада активации комплемента находится в равновесии с неактивированным состоянием. Ярко выраженные фармакологические эффекты продуктов активации требуют регуляции на различных уровнях.

В качестве лимитирующего фактора в системе активации по классическому пути выступает С2, который присутствует в наиболее низкой концентрации.

Другой ограничивающей группой факторов служит необходимость взаимодействия Clq с двумя Fc-фрагментами антител и возможность доступа к образовавшимся участкам связывания активаторов и субстратов реакции (С2а, С4b, С3b, и т. д. до С9). Нестабильность С2а, С4b, С5b и Вb в жидкой фазе препятствует неограниченному развитию реакции и обусловливает концентрацию процесса на активированной поверхности. Описаны специфические ингибиторы для Clr, Cls, C4b, С2, С3b, С6, С5b-6-7, Вb, С3а и С5а.

II. Стимулирующие механизмы . Наиболее важным механизмом усиления активации комплемента является положительная обратная связь, в результате которой появление С3b приводит к значительному ускорению образования этого продукта активации. Активированный пропердин стабилизирует Вb. Аналогичным образом реализуется эффект патологических аутоантител.

Биологические эффекты системы комплемента

I. Цитолиз и бактерицидность . Цитолиз и бактерицидность могут быть индуцированы следующим образом:
- иммунный цитолиз, обусловленный антителами IgM и IgG;
- СРВ (С-реактивный белок) - связь с последующей активацией комплемента;
- прямая активация пропердина через альтернативный путь активации клетками и бактериями;
- побочные эффекты при реакции иммунных комплексов;
- участие активированных фагоцитов.

II. Образование анафилатоксинов . Понятие «анафилатоксин» было впервые введено Friedberger. В данном случае имелся ввиду фрагмент С3а и фрагмент С5а, которые связываются на соответствующих рецепторах клеточной мембраны и обладают сходными фармакологическими эффектами:
- высвобождение гистамина и других медиаторов из тучных клеток и базофилов (С5а более эффективен по сравнению с С3а);
- сокращение гладкой мускулатуры и воздействие на микроциркуляцию (С3а эффективнее по сравнению с С5а);
- активация фагоцитов и секреция лизосомных ферментов (эффективность С3а и С5а сопоставима).

Нейтрализация вирусов . Система комплемента представляет собой важный фактор естественной резистентности против вирусной инфекции. Некоторые РНК-содержащие онкогенные вирусы способны непосредственно связывать Clq. Классическая активация комплемента в данном случае ведет к лизису инфекционного агента. Некоторые другие вирусы взаимодействуют с комплементом через СРВ. Кроме того, комплемент способен инактивировать вирус, находящийся в растворимом иммунном комплексе, что приводит к его опсонизации и фагоцитозу.

Противовирусное действие комплемента обусловлено следующими процессами:
- лизисом вируса за счет фрагментов от С1 до С9;
- агрегацией вируса за счет иммунных конглютининов;
- опсонизацией и фагоцитозом;
- блокадой вирусных лиганд для соответствующих рецепторов клеточной мембраны;
- блокадой пенетрации вируса в клетку.

Сам по себе комплемент не способен инактивировать пораженную вирусом клетку.

Разрушение иммунных комплексов . Появление иммунных комплексов, содержащих антитела класса IgG и IgM, связано с постоянной активацией комплемента. Активированные компоненты комплемента связываются с компонентами иммунных комплексов, включая как антитела, так и антигены, препятствуя тем самым образованию крупных агрегатов за счет стерических эффектов. Поскольку активация комплемента связана с появлением протеазной активности, происходит частичное разрыхление и расщепление образовавшихся агрегатов. Удаление продуктов распада из кровотока осуществляется благодаря опсонизации при помощи иммунофагоцитоза и иммуноэндоцитоза, в связи с чем важную роль играет доступность к связыванию с клеточными рецепторами ассоциированного с комплексами С3b. Отложившиеся в тканях иммунные комплексы удаляются также путем фагоцитоза, причем существенную роль в этом процессе играют плазмин и лизосомные ферменты.

Комплемент, свертывание крови и система кининов . Комплемент, система свертывания крови и система кининов тесно связаны между собой функционально. Речь идет о сложном комплексе механизмов, активация каждого из которых приводит к активации всего комплекса. Это отчетливо прослеживается при индуцированной эндотоксином реакции Санарелли-Швартцманна и состояниях, обусловленных иммунными комплексами. Калликреин, плазмин и тромбин активируют С1 и расщепляют С3, С5 и фактор В. Фактор ХIIА также может активировать С1, причем С1 расщепляется сначала плазмином, а затем продукты расщепления используются калликреином и фактором ХIIА. Активация тромбоцитов осуществляется через взаимодействие С3, фактора В, пропердина, фибриногена и тромбина. Активированные макрофаги и фагоциты - это важные источники тканевых протеаз и тромбопластина при всех видах воспаления. Активация всех трех систем происходит через активацию фактора XII (фактор Хагемана). С другой стороны, С1 = 1NН ингибирует как калликреин, так и фактор ХIIА. Таким же действием обладают ингибиторы протеаз - антитрипсин, макроглобулин и антихимотрипсин. В результате складывается система со сложной динамикой, которая может не только выполнять защитные функции, но и участвовать в патологических процессах.

Комплемент и опосредованные Т-клетками иммунные реакции . Система комплемента оказывает регуляторное действие как на Т-систему, так и на В-лимфоциты, причем в качестве основных медиаторов выступают фрагменты С3, фактор В и В1Н. На цитотоксических лимфоцитах (ЦТЛ) были выявлены ассоциированные с мембраной факторы и компоненты комплемента С5, С6, С7, С8 и С9. С другой стороны, изучение клеток-мишеней ЦТЛ с помощью электронного микроскопа показало, что в участке межклеточного контакта определяются структуры, аналогичные порам, формируемым при действии на мембрану факторов системы комплемента.

Диагностическое значение системы комплемента . Оценка системы комплемента направлена на решение следующих практических вопросов:
- участвуют ли в патогенезе заболевания активированные компоненты системы комплемента?
- имеются ли дефекты системы комплемента?

Для ответа на эти вопросы сначала проводят определение общей активности комплемента с помощью эритроцитов барана и инактивированной антисыворотки. В качестве источника комплемента используют исследуемую сыворотку в серийных разведениях и определяют титр, соответствующий 50% гемолизу. Результаты выражают в единицах СН50. Эритроциты кролика могут прямо активировать альтернативный путь активации комплемента и в этом случае активность исследуемой сыворотки измеряют в единицах АР 50. При остром и прогрессирующем потреблении комплемента, а также его дефектах наблюдается снижение активности комплемента. Для выявления дефекта по определенному фактору используются сыворотки, не содержащие изучаемый фактор, которые добавляют к исследуемой пробе. Используется также иммунохимическое определение отдельных компонентов системы комплемента (рокет-электрофорез и радиальная иммунодиффузия), однако этот подход не может заменить функциональных тестов, поскольку функционально неактивные аномальные белки и неактивные продукты расщепления могут привести к ошибочным определениям. Все исследуемые пробы следует сохранять до момента использования при температуре -70 °С. Изучение потребления комплемента может осуществляться с помощью радиоиммунного и иммуноферментного методов определения продуктов расщепления С3, С4 и В. Особое значение имеет количественный РИА для определения концентрации С5а, служащего показателем анафилактических реакций. При выявлении первичных и вторичных дефектов комплемента рекомендуется использовать следующую программу исследований:
- определение СН50, а возможно и АР50 для скрининга;
- количественное определение С4 и С3 для уточнения роли классического и альтернативного пути активации;
- подробный анализ Clq, С5, Р и других факторов.

В острой фазе воспаления, при опухолях и в течении послеоперационного периода активность комплемента повышена.

Комплемент при заболеваниях иммунной системы . Система комплемента играет важную роль при аллергических заболеваниях типа II (цитотоксические антитела) и типа III (иммунокомплексная патология, феномен Артюса). Роль комплемента подтверждается следующими данными:
- выраженное потребление комплемента (СН50 снижен, активность и концентрации факторов ниже нормы);
- появление продуктов распада компонентов в сыворотке (С4а, фрагменты С3, С5а);
- определяемые с помощью иммуногистохимического анализа специфических антител (анти-С3, анти-С4 и т. д.) отложения комплемента в тканях;
- выработка цитотоксических антител;
- свидетельства хронически повышенного расхода комплемента.

Характерными примерами могут служить следующие заболевания:
- острые вирусные инфекции (особенно часто проявляются эффекты иммунных комплексов при краснухе , кори , гепатите В, инфекции ЕСНО-вирусом);
- острые бактериальные инфекции (активация комплемента иммунными комплексами при стрептококковых инфекциях, например, при скарлатине ; активация альтернативного пути при инфекции грамотрицательными микроорганизмами или эндотоксином);
- гломерулонефрит;
- аутоиммунные гемолитические анемии ;
иммунные тромбоцитопении;
- системная красная волчанка;
- реакция обусловленного антителами отторжения трансплантата;
- ревматоидный артрит;
- сывороточная болезнь ;
- криоглобулинемия, амилоидоз , плазмоцитома.

При всех этих заболеваниях оценка комплемента не вполне информативна, равно как и при широком спектре хронических заболеваний. Однако изучение этой системы позволяет сделать заключение об индивидуальной динамике течения заболевания. Исследование комплемента обязательно при наличии в анамнезе частых бактериальных инфекций в связи с возможностью генетически обусловленных аномалий. Это справедливо также для СКВ, которая часто ассоциирована с врожденными дефектами системы комплемента.

Комплемент — важнейший элемент иммунной системы позвоночных животных и человека, играющий ключевую роль в гуморальном механизме защиты организма от патогенов. Термин впервые ввел Эрлих для обозначения компонента кровяной сыворотки, без которого ее бактерицидные свойства пропадали. Впоследствии было выяснено, что этот функциональный фактор представляет собой набор белков и гликопротеидов, которые при взаимодействии друг с другом и с чужеродной клеткой вызывают ее лизис.

Комплемент в буквальном смысле переводится как "дополнение". Изначально он считался всего лишь еще одним элементом, обеспечивающим бактерицидные свойства живой сыворотки. Современные представления об этом факторе значительно шире. Установлено, что комплемент представляет собой сложнейшую, тонко регулируемую систему, взаимодействующую как с гуморальными, так и с клеточными факторами иммунного ответа и оказывающую мощное влияние на развитие воспалительной реакции.

Общая характеристика

В иммунологии системой комплемента называют проявляющую бактерицидные свойства группу взаимодействующих друг с другом белков сыворотки крови позвоночных, представляющую собой врожденный механизм гуморальной защиты организма от патогенов, способный действовать как самостоятельно, так и в комплексе с иммуноглобулинами. В последнем случае комплемент становится одним из рычагов специфического (или приобретенного) ответа, поскольку антитела сами по себе не могут уничтожать чужеродные клетки, а действуют опосредованно.

Эффект лизирования достигается за счет образования пор в мембране чужеродной клетки. Таких отверстий может быть множество. Перфорирующий мембрану комплекс системы комплемента называется МАК. В результате ее действия поверхность чужеродной клетки становится дырчатой, что приводит к выходу цитоплазмы наружу.

На долю комплемента приходится около 10% всех белков сыворотки. Его компоненты всегда присутствуют в крови, не оказывая никакого действия до момента активации. Все эффекты комплемента являются результатом последовательных реакций - либо расщепляющих входящие в его состав белки, либо приводящих к образованию их функциональных комплексов.

Каждый этап такого каскада подвержен строгой обратной регуляции, которая в случае необходимости может остановить процесс. Активированные компоненты комплемента проявляют большой комплекс иммунологических свойств. При этом эффекты могут оказывать на организм как положительное, так и негативное воздействия.

Основные функции и эффекты комплемента

Действие активированной системы комплемента включает:

  • Лизис чужеродных клеток бактериальной и небактериальной природы. Осуществляется за счет образования специального комплекса, который встраивается в мембрану и проделывает в ней дыру (перфорирует).
  • Активацию удаления иммунных комплексов.
  • Опсонизацию. Присоединяясь к поверхностям мишеней, компоненты комплемента делают их привлекательными для фагоцитов и макрофагов.
  • Активация и хемотаксическое привлечение лейкоцитов в очаг воспаления.
  • Образование анафилотоксинов.
  • Облегчение взаимодействия антигенпрезентирующих и В-клеток с антигенами.

Таким образом, комплемент оказывает комплексное стимулирующее воздействие на всю иммунную систему. Однако чрезмерная активность этого механизма может негативно повлиять на состояние организма. К отрицательным комплемента относят:

  • Ухудшение протекания аутоиммунных заболеваний.
  • Септические процессы (при условии массовой активации).
  • Отрицательное влияние на ткани в очаге некроза.

Дефекты системы комплемента могут приводить к аутоиммунным реакциям, т.е. к повреждению здоровых тканей организма собственной иммунной системой. Именно поэтому имеет место такой строгий многоступенчатый контроль активации данного механизма.

Белки комплемента

Функционально белки системы комплемента подразделяются на компоненты:

  • Классического пути (C1-C4).
  • Альтернативного пути (факторы D, B, C3b и пропердин).
  • Мембраноатакующего комплекса (C5-C9).
  • Регуляторной фракции.

Номера С-белков соответствуют последовательности их обнаружения, но не отражают очередность их активации.

К регуляторным белкам системы комплемента относят:

  • Фактор H.
  • C4-связывающий белок.
  • Мембранный кофакторный белок.
  • Рецепторы комплемента первого и второго типа.

C3 является ключевым функциональным элементом, поскольку именно после его распада образуется фрагмент (C3b), который присоединяется к мембране клетки-мишени, начиная процесс формирования литического комплекса и запуская так называемую петлю усиления (механизм положительной обратной связи).

Активация системы комплемента

Активация комплемента представляет собой каскадную реакцию, в которой каждый фермент катализирует активацию последующего. Этот процесс может происходить как с участием компонентов приобретенного иммунитета (иммуноглобуллинов), так и без них.

Есть несколько способов активации комплемента, которые отличаются последовательностью реакций и набором участвующих в ней белков. Однако все эти каскады приводят к одному итогу — образованию конвертазы, расщепляющей белок C3 на C3a и C3b.

Существуют три пути активации системы комплемента:

  • Классический.
  • Альтернативный.
  • Лектиновый.

Среди них только первый связан с системой приобретенного иммунного ответа, а остальные имеют неспецифический характер действия.

Во всех путях активации можно выделить 2 этапа:

  • Пусковой (или собственно активационный) — включает весь каскад реакций до момента образования C3/C5-конвертазы.
  • Цитолитический — обозначает формирование мембраноатакующего комплекса (МКФ).

Вторая часть процесса во всех стадиях схожа и задействует белки C5, C6, C7, C8, C9. При этом только C5 подвергается гидролизу, а остальные просто присоединяются, образуя гидрофобный комплекс, способный встроиться и перфорировать мембрану.

Первый этап основан на последовательном запуске ферментативной активности белков C1, C2, C3 и C4 путем гидролитического расщепления на большие (тяжелые) и малые (легкие) фрагменты. Образовавшиеся единицы обозначаются малыми буквами а и b. Одни из них осуществляют переход к цитолитическому этапу, а другие выполняют роль гуморальных факторов иммунного ответа.

Классический путь

Классический путь активации комплемента начинается со взаимодействия ферментного комплекса C1 с группой антиген - антитело. C1 представляет собой фракцию из 5 молекул:

  • C1q (1).
  • C1r (2).
  • C1s (2).

На первой ступени каскада с иммуноглобулином связывается C1q. Это вызывает конформационную перестройку всего комплекса C1, что приводит к его автокаталитической самоактивации и образованию действующего фермента C1qrs, расщепляющего белок C4 на C4a и C4b. При этом все остается прикрепленным к иммуноглобулину и, следовательно, к мембране патогена.

После осуществления протеолитического эффекта группа антиген - C1qrs присоединяет к себе фрагмент C4b. Такой комплекс становится подходящим для связывания с C2, которая под действием C1s тут же расщепляется на C2a и C2b. В результате создается C3-конвертаза C1qrs4b2a, действие которой формирует C5-конвертазу, запускающую образование МАК.

Альтернативный путь

Такая активация иначе называется холостой, поскольку гидролиз C3 происходит самопроизвольно (без участия посредников), что приводит к периодическому беспричинному образования C3-конвертазы. Альтернативный путь осуществляется тогда, когда к возбудителю еще не сформировался. При этом каскад состоит из следующих реакций:

  1. Холостой гидролиз C3 с образованием фрагмента C3i.
  2. C3i связывается с фактором В, формируя комплекс C3iB.
  3. Связанный фактор В становится доступен для расщепления D-белком.
  4. Фрагмент Ba удаляется и остается комплекс C3iBb, который и является C3-конвертазой.

Суть холостой активации заключается в том, что в жидкой фазе C3-конвертаза нестабильна и быстро гидролизуется. Однако при столкновении с мембраной возбудителя стабилизируется и запускает цитолитическую стадию с формированием МАК.

Лектиновый путь

Лектиновый путь очень похож на классический. Основное отличие заключается в первой ступени активации, которая осуществляется не через взаимодействие с иммуноглобулином, а через связывание C1q с концевыми маннановыми группами, присутствующими на поверхности бактериальных клеток. Дальнейшая активация осуществляется полностью идентично классическому пути.

СЛАЙД 1

Лекция №4. Гуморальные факторы врожденного иммунитета

1. Система комплемента

2. Белки острой фазы воспаления

3. Биогенные амимны

4. Липидные медиаторы

5. Цитокины

6. Интерфероны

СЛАЙД 2

Гуморальная составляющая врожденного иммунитета представлена несколькими взаимосвязанными системами - системой комплемента, цитокиновой сетью, бактерицидными пептидами, а также гуморальными системами, связанными с воспалением.

Действие большинства этих систем подчиняется одному из двух принципов - каскада и сети. По каскадному принципу функционирует система комплемента, при активации которой происходит последовательное вовлечение факторов. При этом эффекты каскадных реакций проявляются не только в конце активационного пути, но и на промежуточных стадиях.

Принцип сети характерен для системы цитокинов и предполагает возможность одновременного функционирования различных компонентов системы. Основа функционирования такой системы - тесная взаимосвязь, взаимное влияние и значительная степень взаимозаменяемости компонентов сети.

СЛАЙД 3

Комплемент – сложный белковый комплекс сыворотки крови.

Система комплемента состоит из 30 белков (компонентов, или фракций , системы комплемента).

Активируется система комплемента за счет каскадного процесса: продукт предыдущей реакции исполняет роль катализатора последующей реакции. Причем при активации фракции компонента происходит, у первых пяти компонентов, ее расщепление. Продукты этого расщепления и обозначаются как активные фракции системы комплемента .

1. Больший из фрагментов (обозначаемый буквой b), образовавшихся при расщеплении неактивной фракции, остается на поверхности клетки – активация комплемента всегда происходит на поверхности микробной клетки, но не собственных эукариотических клеток. Этот фрагмент приобретает свойства фермента и способность воздействовать на последующий компонент, активируя его

2. Меньший фрагмент (обозначается буквой a) является растворимым и «уходит» в жидкую фазу, т.е. в сыворотку крови.

Фракции системы комплемента обозначаются по-разному.

1. Девять – открытых первыми – белков системы комплемента обозначаются буквой С (от английского слова complement) с соответствующей цифрой.

2. Остальные фракции системы комплемента обозначаются другими латинскими буквами или их сочетаниями.

СЛАЙД 4

Пути активации комплемента

Существуют три пути активации комплемента: классический, лектиновый и альтернативный.

СЛАЙД 5

1. Классический путь активации комплемента является основным. Участие в этом пути активации комплемента – главная функция антител.

Активацию комплемента по классическому пути запускает иммунный комплекс : комплекс антигена с иммуноглобулином (класса G или М). Место антитела может «занять» С-реактивный белок – такой комплекс также активирует комплемент по классическому пути.

Классический путь активации комплемента осуществляется следующим образом.

а. Сначала активируется фракция С1 : она собирается из трех субфракций (C1q, C1r, C1s) и превращается в фермент С1-эстеразу (С1qrs).

б. С1-эстераза расщепляет фракцию С4 .

в. Активная фракция С4b ковалентно связывается с поверхностью микробных клеток - здесь присоединяет к себе фракцию С2 .

г. Фракция С2 в комплексе с фракцией С4b расщепляется С1-эстеразой с образованием активной фракции С2b .

д. Активные фракции С4b и С2b в один комплекс – С4bС2b – обладающий ферментативной активностью. Это так называемая С3-конвертаза классического пути .

е. С3-конвертаза расщепляет фракцию С3 , нарабатываю большие количества активной фракции С3b.

ж. Активная фракция С3b присоединяется к комплексу С4bС2b и превращает его в С5-конвертазу (С4bС2bС3b ).

з. С5-конвертаза расщепляет фракцию С5 .

и. Появившаяся в результате этого активная фракция С5b присоединяет фракцию С6 .

к. Комплекс С5bС6 присоединяет фракцию С7 .

л. Комплекс С5bС6С7 встраивается в фосфолипидный бислой мембраны микробной клетки .

м. К этому комплексу присоединяется белок С8 и белок С9 . Данный полимер формирует в мембране микробной клетки пору диаметром около 10 нм, что приводит к лизису микроба (так как на его поверхности образуется множество таких пор – «деятельность» одной единицы С3-конвертазы приводит к появлению около 1000 пор). Комплекс С5bС6С7С8С9, образующийся в результате активации комплемента, называется мемранатакующим комплексом (МАК).

СЛАЙД 6

2. Лектиновый путь активации комплемента запускается комплексом нормального белка сыворотки крови – маннансвязывающего лектина (МСЛ) – с углеводами поверхностных структур микробных клеток (с остатками маннозы).

СЛАЙД 7

3. Альтернативный путь активации комплемента начинается с ковалентного связывания активной фракции С3b – которая всегда присутствует в сыворотке крови в результате постоянно протекающего здесь спонтанного расщепления фракции С3 – с поверхностными молекулами не всех, но некоторых микроорганизмов.

1. Дальнейшие события развиваются следующим образом.

а. С3b связывает фактор В , образуя комплекс С3bВ.

б. В связанном с С3b виде фактор В выступает в качестве субстрата для фактора D (сывороточной сериновой протеазы), которая расщепляет его с образованием активного комплекса С3bВb . Этот комплекс обладает ферментативной активностью, структурно и функционально гомологичен С3-конвертазе классического пути (С4bС2b) и называется С3-конвертазой альтернативного пути .

в. Сама по себе С3-конвертаза альтернативного пути нестабильна. Чтобы альтернативный путь активации комплемента успешно продолжался этот фермент стабилизируется фактором Р (пропердином).

2. Основное функциональное отличие альтернативного пути активации комплемента, по сравнению с классическим, заключается в быстроте ответа на патоген: так как не требуется время для накопления специфических антител и образования иммунных комплексов.

Важно понимать, что и классический и альтернативный пути активации комплемента действуют параллельно , еще и амплифицируя (т.е. усиливая) друг друга. Другими словами комплемент активируется не «или по классическому или по альтернативному», а «и по классическому и по альтернативному» путям активации. Это, еще и с добавлением лектинового пути активации, – единый процесс, разные составляющие которого могут просто проявляться в разной степени.

СЛАЙД 8

Функции системы комплемента

Система комплемента играет очень важную роль в защите макроорганизма от патогенов.

1. Система комплемента участвует в инактивации микроорганизмов , в т.ч. опосредует действие на микробы антител.

2. Активные фракции системы комплемента активируют фагоцитоз (опсонины - С3b и C5b) .

3. Активные фракции системы комплемента принимают участие в формировании воспалительной реакции .

СЛАЙД 9

Активные фракции комплемента С3а и С5а называются анафилотоксинами , так как участвуют, помимо прочего, в аллергической реакции, называемой анафилаксия. Наиболее сильным анафилотоксином является С5а. Анафилотоксины действуют на разные клетки и ткани макроорганизма.

1. Действие их на тучные клетки вызывает дегрануляцию последних.

2. Анафилотоксины действуют также на гладкие мышцы , вызывая их сокращение.

3. Действуют они и на стенку сосуда : вызывают активацию эндотелия и повышение его проницаемости, что создает условия для экстравазации (выхода) из сосудистого русла жидкости и клеток крови в ходе развития воспалительной реакции.

Корме того, анафилотоксины являются иммуномодуляторами , т.е. они выступают в роли регуляторов иммунного ответа.

1. С3а выступает в роли иммуносупрессора (т.е. подавляет иммунный ответ).

2. С5а является иммуностимулятором (т.е. усиливает иммунный ответ).

СЛАЙД 10

Белки острой фазы

Некоторые гуморальные реакции врожденного иммунитета по своему назначению аналогичны реакциям адаптивного иммунитета и могут рассматриваться как их эволюционные предшественники. Такие реакции врожденного иммунитета имеют преимущество перед адаптивным иммунитетом в быстроте развития, однако недостаток их заключается в отсутствии специфичности в отношении антигенов. Пару сходных по результатам реакций врожденного и адаптивного иммунитета мы рассмотрели выше в разделе, посвященном комплементу (альтернативная и классическая активация комплемента). Другой пример будет рассмотрен в данном разделе: белки острой фазы в ускоренном и упрощенном варианте воспроизводят некоторые эффекты антител.

Белки (реактанты) острой фазы представляют группу протеинов, секретируемых гепатоцитами. При воспалении продукция белков острой фазы изменяется. При усилении синтеза белки называют положительными, а при понижении синтеза - отрицательными реактантнами острой фазы воспаления.

Динамика и выраженность изменений сывороточной концентрации различных белков острой фазы при развитии воспаления неодинакова: концентарция С-реактивного белка и сывороточного амилоида Р возрастает очень сильно (в десятки тысяч раз) - быстро и кратковременно (практически нормализуется к концу 1-й недели); уровни гаптоглобина и фибриногена возрастают слабее (в сотни раз) соответственно на 2-й и 3-й неделях воспалительной реакции. В данной презентации будут рассмотрены только положительные реактанты, участвующие в иммунных процессах.

СЛАЙД 11

Согласно выполняемым функциям выделяют несколько групп белков острой фазы.

К транспортным белкам относят преальбумин, альбумин, орозомукоид, липокалины, гаптоглобин, трансферрин, маннозасвязывающий и ретинолсвязывающий белки и т.д. Они играют роль переносчиков метаболитов, ионов металлов, физиологически активных факторов. Роль факторов этой группы существенно возрастает и качественно изменяется при воспалении.

Другую группу образуют протеазы (трипсиноген, эластаза, катепсины, гранзимы, триптазы, химазы, металлопротеиназы), активация которых необходима для формирования многих медиаторов воспаления, а также для осуществления эффекторных функций, в частности киллерной. Активация протеаз (трипсина, химотрипсина, эластазы, металлопротеиназ) уравновешивается накоплением их ингибиторов. α2-Макроглобулин участвует в подавлении активности протеаз разных групп.

Помимо перечисленных, к белкам острой фазы относят факторы коагуляции и фибринолиза, а также белки межклеточного матрикса (например, коллагены, эластины, фибронектин) и даже белки системы комплемента.

СЛАЙД 12

Пентраксины. Наиболее полно проявляют свойства реактантов острой фазы белки семейства пентраксинов: в первые 2-3 сут развития воспаления их концентрация в крови повышается на 4 порядка.

С-реактивный белок и сывороточный амилоид Р образуются и секретируются гепатоцитами. Основной индуктор их синтеза - IL-6. Белок PTX3 вырабатывают миелоидные (макрофаги, дендритные клетки), эпителиальные клетки и фибробласты в ответ на стимуляцию через TLR, а также под действием провоспалительных цитокинов (например, IL-1β, TNFα).

Концентрация пентраксинов в сыворотке резко возрастает при воспалении: С-реактивного белка и сывороточного амилоида Р - с 1 мкг/мл до 1–2 мг/мл (т.е. в 1000 раз), РТХ3 - с 25 до 200–800 нг/мл. Пик концентрации достигается через 6–8 ч после индукции воспаления. Для пентраксинов характерна способность связываться с самыми разнообразными молекулами.

С-реактивный белок был впервые идентифицирован благодаря его способности связывать полисахарид С (Streptococcus рneumoniae ), что и определило его название. Пентраксины взаимодействуют и с множеством других молекул: C1q, бактериальными полисахаридами, фосфорилхолином, гистонами, ДНК, полиэлектролитами, цитокинами, белками межклеточного матрикса, сывороточными липопротеинами, компонентами комплемента, друг с другом, а также с ионами Са 2+ и других металлов.

Для всех рассматриваемых пентраксинов существуют высокоаффинные рецепторы на миелоидных, лимфоидных, эпителиальных и других клетках. Кроме того, эта группа белков острой фазы обладает достаточно высоким сродством к таким рецепторам, как FcγRI и FcγRII. Многочисленность молекул, с которыми взаимодействуют пентраксины, определяет широкое разнообразие их функций.

Распознавание и связывание пентраксинами PAMP дает основание рассматривать их как вариант растворимых патогенраспознающих рецепторов.

К наиболее важным функциям пентраксинов относят их участие в реакциях врожденного иммунитета в качестве факторов, запускающих активацию комплемента через C1q и участвующих в опсонизации микроорганизмов.

Комплементактивирующая и опсонизирующая способность пентраксинов делает их своеобразными «протоантителами», частично выполняющими функции антител на начальном этапе иммунного ответа, когда истинные адаптивные антитела еще не успели выработаться.

Роль пентраксинов во врожденном иммунитете заключается также в активации нейтрофилов и моноцитов/макрофагов, регуляции синтеза цитокинов и проявлении хемотаксической активности по отношению к нейтрофилам. Помимо участия в реакциях врожденного иммунитета пентраксины регулируют функции межклеточного матрикса при воспалении, контроле апоптоза и элиминации апоптотических клеток.

СЛАЙД 13

Биогенные амины

К этой группе медиаторов относят гистамин и серотонин, содержащиеся в гранулах тучных клеток. Освобождаясь при дегрануляции, эти амины вызывают разнообразные эффекты, играющие ключевую роль в развитии ранних проявлений гиперчувствительности немедленного типа.

Гистамин (5-β-имидазолилэтиламин) - главный медиатор аллергии. Он образуется из гистидина под влиянием фермента гистидиндекарбоксилазы.

Поскольку гистамин содержится в гранулах тучных клеток в готовом виде, а процесс дегрануляции происходит быстро, гистамин очень рано появляется в очаге аллергического поражения, причем сразу в большой концентрации, что определяет проявления немедленной гиперчувствительности. Гистамин быстро метаболизируется (95% за 1 мин) с участием 2 ферментов - гистамин-N-метилтрансферазы и диаминооксидазы (гистаминазы); при этом образуется (в соотношении примерно 2:1) соответственно N-метилгистамин и имидазолацетат.

Известно 4 разновидности рецепторов для гистамина Н 1 -Н 4 . При аллергических процессах гистамин действует преимущественно на гладкие мыщцы и эндотелий сосудов, связываясь с их Н 1 -рецепторами. Эти рецепторы поставляют активационный сигнал, опосредованный превращениями фосфоинозитидов с образованием диацилглицерола и мобилизацией Са 2+ .

Указанные эффекты частично обусловлены образованием в клетках (мишенях гистамина) оксида азота и простациклина. Действуя на нервные окончания, гистамин вызывает ощущение зуда, характерного для аллергических проявлений в коже.

У человека гистамин играет важную роль в развитии кожной гиперемии и аллергического ринита. Менее очевидно его участие в развитии общих аллергических реакций и бронхиальной астмы. В то же время через Н 2 -рецепторы гистамин и родственные вещества оказывают регуляторное действие, иногда уменьшающее проявления воспаления, ослабляя хемотаксис нейтрофилов и выброс ими лизосомных ферментов, а также высвобождение самого гистамина.

Через Н 2 -рецепторы гистамин действует на сердце, секреторные клетки желудка, подавляет пролиферацию и цитотоксическую активность лимфоцитов, а также секрецию ими цитокинов. Большинство этих эффектов опосредовано активацией аденилатциклазы и повышением внутриклеточного уровня цАМФ.

Данные об относительной роли различных рецепторов гистамина в реализации его действия очень важны, поскольку многие антиаллергические препараты представляют собой блокаторы Н 1 (но не Н 2 и других) рецепторов гистамина.

СЛАЙД 14

Липидные медиаторы.

Важную роль в регуляции иммунных процессов, а также в развитии аллергических реакций играют гуморальные факторы липидной природы. Наиболее многочислены и важны из них эйкозаноиды.

Эйкозаноиды - продукты метаболизма арахидоновой кислоты - жирной полиненасыщенной кислоты, молекула которой содержит 20 атомов углерода и 4 ненасыщенные связи. Арахидоновая кислота образуется из мембранных фосфолипидов как прямой продукт действия фосфолипазы А (PLA) или косвенный продукт превращений, опосредованных PLC.

Образование арахидоновой кислоты или эйкозаноидов происходит при активации различных типов клеток, особенно участвующих в развитии воспаления, в частности аллергического: эндотелиальных и тучных клеток, базофилов, моноцитов и макрофагов.

Метаболизм арахидоновой кислоты может проходить по 2 путям - катализироваться циклооксигеназой или 5’-липоксигеназой. Циклооксигеназный путь приводит к образованию простагландинов и тромбоксанов из нестабильных промежуточных продуктов - эндоперекисных простагландинов G2 и H2, а липоксигеназный - к образованию лейкотриенов и 5-гидроксиэйкозатетраеноата через промежуточные продукты (5-гидроперокси-6,8,11,14-эйкозатетраеновую кислоту и лейкотриен А4), а также липоксинов - продуктов двойной липоксигенации (под действием двух липоксигеназ - см. далее).

Простагландины и лейкотриены во многих отношениях проявляют альтернативные физиологические эффекты, несмотря на то, что внутри этих групп существуют значительные различия в активности.

Общее свойство этих групп факторов - преобладающее действие на стенку сосудов и гладкие мышцы, а также хемотаксический эффект. Эти эффекты реализуются при взаимодействии эйкозаноидов со специфическими рецепторами на поверхности клеток. Некоторые представители семейства эйкозаноидов усиливают действие других вазоактивных и хемотаксических факторов, например, анафилатоксинов (С3а, С5а).

СЛАЙД 15

Лейкотриены (LT) - С 20 -жирные кислоты, молекула которых в положении 5 содержит ОН-группу, а в положении 6 - боковые серосодержащие цепи, например глутатион.

Выделяют 2 группы лейкотриенов:

Одна из них включает лейкотриены С4, D4 и Е4, называемые цистеиниллей-котриенами (Cys-LT),

Во вторую входит один фактор - лейкотриен B4.

Лейкотриены образуются и секретируются в течение 5–10 мин после активации тучных клеток или базофилов.

Лейкотриен C4 присутствует в жидкой фазе в течение 3–5 мин, при этом он превращается в лейкотриен D4. Лейкотриен D4 существует в последующие 15 мин, медленно превращаясь в лейкотриен E4.

Лейкотриены оказывают свое действие через рецепторы, относящиеся к группе пуриновых рецепторов семейства родопсиноподобных рецепторов, 7-кратно пронизывающих мембрану и связанных с протеином G.

Рецепторы лейкотриенов экспрессируются на клетках селезен-ки, лейкоцитах крови, кроме того, CysLT-R1 представлен на макрофагах, клетках кишечника, воздухоносного эпителия, а CysLT-R2 - на клетках надпочечников и головного мозга.

Цистеиниловые лейкотриены (особенно лейкотриен D4) вызывают спазм гладкой мускулатуры и регулируют локальный кровоток, снижая артериальное давление. Цистеиниловые лейкотриены - медиаторы аллергических реакций, в частности, медленной фазы бронхоспазма при бронхиальной астме.

Кроме того, они подавляют пролиферацию лимфоцитов и способствуют их дифференцировке.

Ранее комплекс этих факторов (лейкотриены C4, D4 и E4) называли медленнореагирующей субстанцией А. Лейкотриен B4 (дигидроксиэйкозатетраеновая кислота) проявляет хемотаксическое и активирующее действие преимущественно в отношении моноцитов, макрофагов, нейтрофилов, эозинофилов и даже Т-клеток.

Еще один продукт липоксигеназного пути - 5-гидроксиэйкозатетраеноат - менее активен, чем лейкотриены, но может служить хемоаттрактантом и активатором нейтрофилов и тучных клеток.

СЛАЙД 16

Простагландины (PG ) - С 20 -жирные кислоты, молекула которых содержит циклопентановое кольцо.

Варианты простагландинов, отличающиеся по типу и положению замещающих групп (окси-, гидрокси-), обозначаются различными буквами; цифры в названии означают число ненасыщенных связей в молекуле.

Простагландины накапливаются в очаге воспаления позже кининов и гистамина, несколько позже лейкотриенов, но одновременно с монокинами (через 6–24 ч после запуска воспаления).

Помимо вазоактивного и хемотаксического эффекта, достигаемого в кооперации с другими факторами, простагландины (особенно простагландин E2) оказывают регулирующее действие при воспалительных и иммунных процессах.

Экзогенный простагландин E2 вызывает некоторые проявления воспалительной реакции, но подавляет иммунный ответ и аллергические реакции.

Так, простагландин E2 снижает цитотоксическую активность макрофагов, нейтрофилов и лимфоцитов, пролиферацию лимфоцитов, выработку этими клетками цитокинов.

Он способствует дифференцировке незрелых лимфоцитов и клеток других кроветворных рядов.

Некоторые эффекты простагландина Е2 связаны с повышением уровня внутриклеточного цАМФ.

Простагландины E2 и D2 подавляют агрегацию тромбоцитов; простагландины F2 и D2 вызывают сокращение гладкой мускулатуры бронхов, тогда как простагландин E2 расслабляет ее.

СЛАЙД 17

Тромбоксан А2 (ТХА2 ) - С 20 -жирная кислота; в его молекуле есть 6-членное кислородсодержащее кольцо.

Это очень нестабильная молекула (время полужизни - 30 с), превращающаяся в неактивный тромбоксан В2.

Тромбоксан А2 вызывает сужение сосудов и бронхов, агрегацию тромбоцитов с высвобождением из них ферментов и других активных факторов, способствующих митогенезу лимфоцитов.

Другой продукт циклоксигеназного пути - простагландин I2 (простациклин) - тоже нестабилен. Он проявляет свое действие через цАМФ, сильно расширяет сосуды, увеличивает их проницаемость, ингибирует агрегацию тромбоцитов.

Наряду с пептидным фактором брадикинином простациклин вызывает ощущение боли при воспалении.

СЛАЙД 18

Цитокины


Похожая информация.


Система комплемента - группа по меньшей мере 26 сывороточных белков (компонентов комплемента), опосредующих воспалительные реакции при участии гранулоцитов и макрофагов (табл. 16–3). Компоненты системы участвуют в реакциях свёртывания крови, способствуют межклеточным взаимодействиям, необходимым для процессинга Аг, вызывают лизис бактерий и клеток, инфицированных вирусами. В норме компоненты системы находятся в неактивной форме. Активация комплемента приводит к поочередному (каскадному) появлению его активных компонентов в серии протеолитических реакций, стимулирующих защитные процессы. Основные функции компонентов комплемента в защитных реакциях - стимуляция фагоцитоза , нарушение целостности клеточных стенок микроорганизмов мембраноповреждающим комплексом (особенно у видов, устойчивых к фагоцитозу, например гонококков) и индукция синтеза медиаторов воспалительного ответа (например, ИЛ1; табл. 16–4). Кроме того, система комплемента стимулирует воспалительные реакции (некоторые компоненты - хемоаттрактанты для фагоцитов), участвует в развитии иммунных (через активацию макрофагов) и анафилактических реакций. Активация компонентов комплемента может происходит по классическому и альтернативному путям.

Ы Вёрстка Таблица 16-3

Таблица 16 3 . Компоненты системы комплемента

Компонент Биологическая активность
Классический путь
C1q Взаимодействует с Fc-фрагментами АТ иммунных комплексов; взаимодействие активирует C1r
C1r C1r расщепляется с образованием протеазы C1s, гидролизующей компоненты С4 и С2
С4 С4 расщепляется с образованием С4а и С4b, адсорбирующегося на мембранах и принимающего участие в конвертировании С3
С2 С2 взаимодействует с С4b и конвертируется C1s в С2b (протеазный компонент С3/С5 конвертазы)
С3* Расщепляется С2b на анафилатоксин С3а и опсонин C3b; также является компонентом С3/С5 конвертазы
Альтернативный путь
Фактор В Аналог С2 классического пути активации
Фактор D Сывороточная протеаза, активирующая фактор В путём его расщепления
Мембраноповреждающий комплекс
С5 Расщепляется комплексом С3/С5; С5а является анафилатоксином, С5b фиксирует С6
С6 Взаимодействует с С5b и образует фиксирующий комплекс для С7
С7 Взаимодействует с С5b и С6, затем весь комплекс встраивается в клеточную стенку и фиксирует С8
С8 Взаимодействует с комплексом С5b, С6 и С7; образует стабильный мембранный комплекс и фиксирует С9
С9 После взаимодействия с комплексом С5–С8 полимеризуется, что приводит к лизису клетки
Рецепторы к компонентам комплемента
С1-рецептор Усиливает диссоциацию С3-конвертаз, стимулирует фагоцитоз микроорганизмов, опсонизированных С3b и С4b
С2-рецептор Опосредует сорбцию комплемент-содержащих иммунных комплексов; рецептор для вируса Эпстайна–Барр
С3-рецептор Обусловливает адгезию (белок семейства интегринов), стимулирует фагоцитоз микроорганизмов, опсонизированных С3b
С4-рецептор Белок семейства интегринов, стимулирует фагоцитоз микроорганизмов, опсонизированных С3b

* С3 также служит компонентом альтернативного пути активации.



Ы Вёрстка Таблица 16-4

Таблица 16 4 . Основные эффекты белков системы комплемента и фрагментов их расщепления

Компонент Активность
C2a Эстеразная активность по отношению к некоторым эфирам аргинина и лизина
С2b Кининоподобная активность, увеличение подвижности фагоцитов
C3a, C4a, C5a Анафилатоксины, освобождают гистамин, серотонин и другие вазоактивные медиаторы из тучных клеток, увеличивают проницаемость капилляров
C3b, iC3b, C4b Иммунная адгезия и опсонизация, связывают иммунные комплексы с мембранами макрофагов, нейтрофилов (усиление фагоцитоза) и эритроцитов (элиминация комплексов макрофагами селезёнки и печени)
C5a Хемотаксис и хемокинез, привлечение фагоцитирующих клеток в очаг воспаления и увеличение их общей активности
С5b6789 (мембраноповреждающий комплекс) Повреждение мембраны, формирование трансмембранных каналов, выход содержимого клетки. Клетки млекопитающих набухают и лопаются, бактерии теряют важные внутриклеточные метаболиты, но обычно не лизируются
Ba Хемотаксис нейтрофилов
Bb Активация макрофагов (прилипание и распластывание на поверхности)

Классический путь

Активация комплемента по классическому пути комплексами Аг–АТ. Включает поочередное образование всех 9 компонентов (от С1 до С9). Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (С1, С2...С9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (С1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b). Первоначально с комплексом Аг–АТ взаимодействует С1 (субкомпоненты C1q, C1r, C1s), затем к ним присоединяются «ранние» компоненты С4, С2 и С3. Они активируют компонент С5, прикрепляющийся к мембране клетки-мишени (бактерии, опухолевые или инфицированные вирусами клетки) и запускающий образование литического комплекса (С5b, С6, С7, С8 и С9). Иначе он называется мембраноповреждающий (мембраноатакующий ) комплекс , так как его образование на мембране вызывает разрушение клетки. Примеры микробных продуктов, активирующих систему комплемента по классическому пути, - ДНК и белок А стафилококков.


Комплемент - система сывороточных белков и нескольких белков клеточных мембран, выполняющих 3 важные функции: опсонизацию микроорганизмов для дальнейшего их фагоцитоза, инициацию сосудистых реакций воспаления и перфорацию мембран бактериальных и других клеток. Компоненты комплемента обозначают буквами латинского алфавита C, B и D с добавлением арабской цифры (номер компонента) и дополнительных строчных букв. Компоненты классического пути обозначают латинской буквой «С» и арабскими цифрами (C1, C2 ... C9), для субкомпонентов комплемента и продуктов расщепления к соответствующему обозначению добавляют строчные латинские буквы (C1q, C3b и т.д.). Активированные компоненты выделяют чертой над литерой, инактивированные компоненты - буквой «i» (например, iC3b).

Активация комплемента В норме, когда внутренняя среда организма «стерильна» и патологического распада собственных тканей не происходит, уровень активности системы комплемента невысок. При появлении во внутренней среде микробных продуктов происходит активация системы комплемента. Она может происходить по трём путям: альтернативному, классическому и лектиновому.

- Альтернативный путь активации. Его инициируют непосредственно поверхностные молекулы клеток микроорганизмов [факторы альтернативного пути имеют буквенное обозначение: P (пропердин), B и D].

Из всех белков системы комплемента в сыворотке крови больше всего C3 - его концентрация в норме составляет 1,2 мг/мл. При этом всегда имеется небольшой, но значимый уровень спонтанного расщепления C3 с образованием C3a и C3b. Компонент C3b - опсонин, т.е. он способен ковалентно связываться как с поверхностными молекулами микроорганизмов, так и с рецепторами на фагоцитах. Кроме того, «осев» на поверхности клеток, C3b связывает фактор В. Тот, в свою очередь, становится субстратом для сывороточной сериновой протеазы - фактора D, который расщепляет его на фрагменты Ва и Bb. C3b и Bb образуют на поверхности микроорганизма активный комплекс, стабилизируемый пропердином (фактор Р).

◊ Комплекс C3b/Bb служит С3-конвертазой и значительно повышает уровень расщепления С3 по сравнению со спонтанным. Кроме того, после связывания с C3 он расщепляет C5 до фрагментов C5a и C5b. Малые фрагменты C5a (наиболее сильный) и C3a - анафилатоксины комплемента, т.е. медиаторы воспалительной реакции. Они создают условия для миграции фагоцитов в очаг воспаления, вызывают дегрануляцию тучных клеток, сокращение гладких мышц. C5a также вызывает повышение экспрессии на фагоцитах CR1 и CR3.

◊ С C5b начинается формирование «мембраноатакующего комплекса», вызывающего перфорацию мембраны клеток микроорганизмов и их лизис. Сначала образуется комплекс C5b/C6/ C7, встраивающийся в мембрану клетки. Одна из субъединиц компонента C8 - C8b - присоединяется к комплексу и катализирует полимеризацию 10-16 молекул C9. Этот полимер и формирует неспадающуюся пору в мембране, имеющую диаметр около 10 нм. В результате клетки становятся неспособными поддерживать осмотический баланс и лизируются.

- Классический и лектиновый пути сходны друг с другом и отличаются от альтернативного способом активации C3. Главной C3конвертазой классического и лектинового пути служит комплекс C4b/C2a, в котором протеазной активностью обладает C2a, а C4b ковалентно связывается с поверхностью клеток микроорганизмов. Примечательно, что белок C2 гомологичен фактору В, даже их гены расположены рядом в локусе MHC-III.

◊ При активации по лектиновому пути один из белков острой фазы - MBL - взаимодействует с маннозой на поверхности клеток микроорганизмов, а MBL-ассоциированная сериновая протеаза (MASP - Mannose-bindingprotein-Associated Serine Protease) катализирует активационное расщепление C4 и C2.

◊ Сериновой протеазой классического пути служит C1s, одна из субъединиц комплекса C1qr 2 s 2 . Она активируется, когда по крайней мере 2 субъединицы C1q связываются с комплексом антиген-антитело. Таким образом, классический путь активации комплемента связывает врождённый и адаптивный иммунитет.

Рецепторы компонентов комплемента. Известно 5 типов рецепторов для компонентов комплемента (CR - Complement Receptor) на различных клетках организма.

CR1 экспрессирован на макрофагах, нейтрофилах и эритроцитах. Он связывает C3b и C4b и при наличии других стимулов к фагоцитозу (связывания комплексов антиген-антитело через FcyR или при воздействии ИФНу - продукта активированных T-лимфоцитов) оказывает пермиссивное действие на фагоциты. CR1 эритроцитов через C4b и C3b связывает растворимые иммунные комплексы и доставляет их к макрофагам селезёнки и печени, обеспечивая тем самым клиренс крови от иммунных комплексов. При нарушении этого механизма иммунные комплексы выпадают в осадок - прежде всего в базальных мембранах сосудов клубочков почек (CR1 есть и на подоцитах клубочков почек), приводя к развитию гломерулонефрита.

CR2 B-лимфоцитов связывает продукты деградации C3 - C3d и iC3b. Это в 10 000-100 000 раз увеличивает восприимчивость B-лимфоцита к своему антигену. Эту же мембранную молекулу - CR2 - использует в качестве своего рецептора вирус Эпштейна-Барр - возбудитель инфекционного мононуклеоза.

CR3 и CR4 также связывают iC3b, который, как и активная форма C3b, служит опсонином. В случае если CR3 уже связался с растворимыми полисахаридами типа бета-глюканов, связывания iC3b с CR3 самого по себе достаточно для стимуляции фагоцитоза.

C5aR состоит из семи доменов, пенетрирующих мембрану клетки. Такая структура характерна для рецепторов, связанных с G-белками (белки, способные связывать гуаниновые нуклеотиды, в том числе ГТФ).

Защита собственных клеток. Собственные клетки организма защищены от деструктивных воздействий активного комплемента благодаря так называемым регуляторным белкам системы комплемента.

C1-ингибитор (C1inh) разрушает связь C1q с C1r2s2, тем самым ограничивая время, в течение которого C1s катализирует активационное расщепление C4 и C2. Кроме того, C1inh ограничивает спонтанную активацию C1 в плазме крови. При генетическом дефекте dinh развивается наследственный ангионевротический отёк. Его патогенез состоит в хронически повышенной спонтанной активации системы комплемента и избыточном накоплении анафилактинов (C3a и С5а), вызывающих отёки. Заболевание лечат заместительной терапией препаратом dinh.

- C4-связывающий белок - C4BP (C4-Binding Protein) связывает C4b, предотвращая взаимодействие C4b и С2а.

- DAF (Decay-Accelerating Factor - фактор, ускоряющий деградацию, CD55) ингибирует конвертазы классического и альтернативного путей активации комплемента, блокируя формирование мембраноатакующего комплекса.

- Фактор H (растворимый) вытесняет фактор В из комплекса с C3b.

- Фактор I (сывороточная протеаза) расщепляет C3b на C3dg и iC3b, а C4b - на C4c и C4d.

- Мембранный кофакторный белок MCP (Membrane Cofactor Protein, CD46) связывает C3b и C4b, делая их доступными для фактора I.

- Протектин (CD59). Связывается с C5b678 и предотвращает последующее связывание и полимеризацию С9, блокируя тем самым образование мембраноатакующего комплекса. При наследственном дефекте протектина или DAF развивается пароксизмальная ночная гемоглобинурия. У таких больных эпизодически возникают приступы внутрисосудистого лизиса собственных эритроцитов активированным комплементом и происходит экскреция гемоглобина почками.