4 предел функции основные теоремы о пределах. Арифметические свойства предела функции

Теорема 1. Предел алгебраической суммы двух, трех и вообще определенного числа функций равен алгебраической сумме пределов этих функций, т.е.

Доказательство . Проведем доказательство для двух слагаемых, так как для любого числа слагаемых оно проводится так же. Пусть.Тогда f(x)=b+б(x) и g(x)=c+в(x) , где б и в - бесконечно малые функции. Следовательно,

f(x) + g(x)=(b + c) + (б(x) + в(x)) .

Так как b + c есть постоянная величина, а б(x) + в(x) - функция бесконечно малая, то

Теорема 2. Предел произведения двух, трех и вообще конечного числа функций равен произведению пределов этих функций:

Доказательство . Пусть. Следовательно, f(x)=b+б(x) и g(x)=c+в(x) и

fg = (b + б)(c + в) = bc + (bв + cб + бв).

Произведение bc есть величина постоянная. Функция bв + c б + бв на основании свойств бесконечно малых функций есть величина бесконечно малая. Поэтому.

Следствие 1. Постоянный множитель можно выносить за знак предела:

Следствие 2. Предел степени равен степени предела:

Пример. .

Теорема 3. Предел частного двух функций равен частному пределов этих функций, если предел знаменателя отличен от нуля, т.е.

Доказательство . Пусть. Следовательно, f(x)=b+б(x) и g(x)=c+в(x) , где б, в - бесконечно малые. Рассмотрим частное

Дробь является бесконечно малой функцией, так как числитель есть бесконечно малая функция, а знаменатель имеет предел c 2 ?0.

3. Рассмотрим. При x>1 числитель дроби стремится к 1, а знаменатель стремится к 0. Но так как, т.е. есть бесконечно малая функция при x> 1, то.

Теорема 4. Пусть даны три функции f(x), u(x) и v(x) , удовлетворяющие неравенствам u(x)?f(x)? v(x) . Если функции u(x) и v(x) имеют один и тот же предел при x>a (или x>? ), то и функция f(x) стремится к тому же пределу, т.е. если

Смысл этой теоремы понятен из рисунка.

Доказательство теоремы 4 можно найти, например, в учебнике: Пискунов Н. С. Дифференциальное и интегральное исчисления, т. 1 - М.: Наука, 1985.

Теорема 5. Если при x>a (или x>? ) функция y=f(x) принимает неотрицательные значения y?0 и при этом стремится к пределу b , то этот предел не может быть отрицательным: b?0 .

Доказательство . Доказательство проведем методом от противного. Предположим, что b<0 , тогда |y - b|?|b| и, следовательно, модуль разности не стремится к нулю при x>a . Но тогда y не стремится к пределу b при x>a , что противоречит условию теоремы.

Теорема 6. Если две функции f(x) и g(x) при всех значениях аргумента x удовлетворяют неравенству f(x)? g(x) и имеют пределы, то имеет место неравенство b?c .

Доказательство. По условию теоремы f(x)-g(x) ?0 , следовательно, по теореме 5 , или.

Основные теоремы о пределах.

1. Предел алгебраической суммы двух, трех и вообще определенного числа переменных равен алгебраической сумме пределов этих переменных, т.е.

lim (u 1 + u 2 + … + u n) = lim u 1 + lim u 2 + … + lim u n

2. Предел произведения определенного числа переменнных равен произведению пределов этих переменных, т.е.

lim (u 1 × u 2 × … × u n) = lim u 1 × lim u 2 × … × lim u n

3. Предел частного двух переменных равен частному пределов этих переменных, если предел знаменателя отличен от нуля, т.е. если lim V ¹ 0 .

3. Если для соответствующих значений функций u = u(x), z = z(x), v = v(x) выполняются неравенства u £ z £ v и при этом u(x) и v(x) при х ® а (или х ® ¥ ) стремятся к одному и тому же пределу b , то z = z(x) при х ® а (или х ® ¥) стремится к тому же пределу.

Теорема 4 позволяет доказать справедливость важного соотношения, называемого первым замечательным пределом . (2.1)

Из (2.1) следует эквивалентность бесконечно малых х и sin x: sin x ~x.

y
y = sin x
x
y = x
Рис. 2.3
Удобно пояснить это графически. На рис. 2.3 приведены графики функций у = х и у = sinх . Легко видеть, что чем меньше х отличается от нуля, тем меньше отличие ординат (значений функций) соответствующих графиков, а при х = 0 они совпадают. (Это позволяет с высокой точностью при очень малых х определять приближенное значение sin x ).

Еще одно важное соотношение теории пределов, называемое вторым замечательным пределом имеет вид:
(2.2)

Число е – иррациональное (также как и число p ) и может быть записано в виде бесконечной десятичной непериодической дроби е = 2,71828… ; играет важную роль в вычислительной математике, служа, в частности, основанием натурального логарифма, обозначаемого ln x = log e x . Функцию у = е х называют экспоненциальной функцией (иногда обозначается как ехр х ). В решении задач теории пределов могут быть полезны следующие равенства: . Можно также заменять бесконечно малые величины эквивалентными им:

Непрерывность функций. Функцию у = f(х) а если:

1.Эта функция определена в некоторой окрестности точки а и в самой точке;

2.Существует предел функции и он равен значению функции в этой точке, т.е. . Можно предложить и иное определение. Пусть аргумент х 0 получит приращение и примет значение х = х 0 + Dх . В общем случае функция также получит некоторое приращение Dу = f(х 0 + Dх) – f(х 0) .

Функцию f(х) называют непрерывной в точке х 0 , если она определена в этой точке и некоторой окрестности ее и если бесконечно малому приращению аргумента соответствует бесконечно малое приращение функции, т.е.

(2.3) или (2.3`)

Приведем формулировку теоремы: Всякая элементарная функция непрерывна в каждой точке, в которой она определена и получим важное для решения задач теории пределов следствие. Запишем условие непрерывности в виде
или, что тоже самое, . Но и, следовательно, (2.4), т.е. для любой непрерывной функции во всех точках области определения ее справедливо соотношение (2.4) – предел функции равен функции предела (символы (и соответствующие операции) предела и функции можно поменять местами): .

Пример:

В ряде случаев удобно использовать следующее соотношение:

Говорят, что если функция f(x) непрерывна в каждой точке некоторого интервала (а, b) , где a < b , то функция непрерывна на этом интервале. Точка внутри или на границе области определения, в которой нарушается условие непрерывности, называется точкой разрыва. Если существуют конечные пределы и , причем не все три числа b 1 , b 2 и f(a) равны между собой, точка а называется точкой разрыва первого рода . Эти точки подразделяются на точки скачка , когда b 1 ¹ b 2 (скачок равен b 2 - b 1 ) и точки устранимого разрыва, когда b 1 = b 2 . Точки разрыва, не являющиеся точками разрыва первого рода, называются точками разрыва второго рода . В этих точках не существует хотя бы один из односторонних пределов (Пример – “бесконечный” разрыв: ).

Рассмотрим некоторые свойства непрерывных функций (доказательства теорем можно найти в рекомендуемой литературе).

1. Если функция f(x) непрерывна на некотором отрезке , то на этом отрезке найдется по крайней мере одна точка х = х 1 такая, что значение функции в этой точке будет удовлетворять соотношению f(x 1) ³ f(x) , где х – любая другая точка отрезка, и найдется по крайней мере одна точка х 2 такая, что значение функции в этой точке будет удовлетворять соотношению f(x 2) ≤ f(x) .

y 1
y 2
y 3
x
a
m
M
в
Рис. 2.4
f(x) на этом отрезке. Поясним с помощью рис. 2.4, на котором представлены графики трех непрерывных на функций у 1 , у 2 и у 3 . Легко видеть, что на интервале функция у 1 один раз достигает наибольшего М и наименьшего m значений. Функция у 2 во всех точках имеет одно и то же значение – оно одновременно и наибольшее и наименьшее. Функция у 3 на дважды принимает наибольшее М и наименьшее m значения. Но хоть один раз наибольшее и наименьшее значения принимает каждая из них!

(Отметим, что на интервале (а, b) утверждение теоремы может оказаться неверным. Пример: у = х – функция не имеет на интервале (а, b) наибольшего и наименьшего значений, т.к. не достигает значений а и b !)

у
у 2
а
в
х
у 1
Рис. 2.5
х
2. Если функция f(x) непрерывна на отрезке и принимает на концах этого отрезка значения разных знаков, то между точками a и b найдется по крайней мере одна точка х = с , в которой функция обращается в нуль. (Это значит, что график функции хотя бы раз пересечет ось Ох в пределах этого отрезка; х = с – как раз такая точка). На рис. 2.5: графики функций у 1 и у 2 таковы, что на концах интервала их ординаты (значения функций) различны. При этом график у 1 пересекает ось Ох один раз, а график у 2 – три раза, но хоть один раз – каждый из них.

3. Если функция f(x) определена и непрерывна на отрезке и на концах этого отрезка принимает неравные значения f(a) = A и f(b) = B то, каково бы ни было число m , заключенное между числами А и В , найдется такая точка х = с , заключенная между a и b , что f(c) = m (легко видеть, что теорема 2 является частным случаем теоремы 3).

ФУНКЦИИ И ПРЕДЕЛЫ IX

§ 212. Основные теоремы о пределах функций

Прежде всего заметим, что не для всякой функции у = f (х ) существует предел f (х ). Так, например, при x -> π / 2 значения функции у = tg х (рис. 303) или неограниченно растут (при х < π / 2), или неограниченно убывают (при х > π / 2).

Поэтому нельзя указать никакого числа b , к которому стремились бы значения этой функции.

Другой пример. Пусть

График этой функции представлен на рисунке 304.

Когда значений аргумента х приближаются к 0, оставаясь отрицательными, соответствующие значения функции стремятся к 1. Когда значения аргумента х приближаются к 0, оставаясь положительными, соответствующие значения функции стремятся к -2. В самой же точке х = 0 функция обращается в 0. Очевидно, что указать одно какое-нибудь число, к которому стремились бы все значения у при приближении х к 0, нельзя. Поэтому данная функция не имеет предела при х -> 0.

Говоря в дальнейшем о пределе функции, мы всегда будем предполагать, что этот предел существует.

Предположение о существовании предела f (х ) еще не означает, что этот предел совпадает со значением функции f (х ) в точке х = а . Для примера рассмотрим функцию, график которой представлен на рисунке 305.

Очевидно, что предел f (х ) существует и равен 1. Но в самой точке х = 0 функция принимает значение, равное 2. Поэтому в данном случае

f (х ) =/= f (0).

Если функция у = f (х ) удовлетвoряет условию

f (х ) = f (a ),

то она называется непрерывной в точке х = а . Если же указанное условие не выполняется, то функция f (х ) называется разрывной в точке х = а ."

Все элементарные функции (например, у = х п , у = sin х , у = tg х , у = tg 2 х + tg х и т. д.) непрерывны в каждой точке, в которой они определены.

Функция у = f (х ) называется непрерывной в интервале [а, b ], если она непрерывна в каждой точке этого интервала. Например, функция у = tg x непрерывна в интервале[- π / 4 , π / 4 ], функции у = sin x и y = cos x непрерывны в любом интервале и т. д.

Приведем без доказательства основные теоремы о пределах функций. Эти теоремы вполне аналогичны тем, которые мы рассматривали (также без доказательства) ранее при изучении пределов числовых последовательностей.

1. Предел константы равен самой этой константе:

с = с .

2. Постоянный множитель можно выносить за знак предела:

[ k f (х )] = k f (х ).

3. Предел суммы (разности) функций равен сумме (разности) пределов этих функций:

[ f (х ) ± g (х )] = f (х ) ± g (x ).

4. Предел произведения функций равен произведению пределов этих функций:

[ f (х ) g (х )] = f (х ) g (x ).

5. Предел отношения двух функций равен отношению пределов этих функций, если только предел делителя не равен нулю:

Рассмотрим несколько типичных примеров нахождения пределов функций.

Пример 1. Найти

При х -> 3 числитель и знаменатель данной дроби стремятся к нулю. Поэтому непосредственное применение теоремы о пределе частного здесь невозможно. Однако данную дробь можно сократить:

(Обратите внимание на следующую важную особенность, характерную для рассмотренного примера. Когда мы говорим о пределе f (х ), то обычно предполагаем, что функция f (х ) определена во в с е х точках, достаточно близких к точке х = а . Однако функция определена лишь для положительных значений х . Поэтому, рассматривая предел этой функции, мы фактически предполагаем, что х -> 0, оставаясь все время положительным. В подобных случаях говорят не просто о пределе, а об одностороннем пределе. С аналогичными примерами мы еще встретимся при выполнении упражнений к этому параграфу.)

Приводятся формулировки основных теорем и свойств предела функции. Даны определения конечных и бесконечных пределов в конечных точках и на бесконечности (двусторонних и односторонних) по Коши и Гейне. Рассмотрены арифметические свойства; теоремы, связанные с неравенствами; критерий сходимости Коши; предел сложной функции; свойства бесконечно малых, бесконечно больших и монотонных функций. Дано определение функции.

Определение функции

Функцией y = f(x) называется закон (правило), согласно которому, каждому элементу x множества X ставится в соответствие один и только один элемент y множества Y .

Элемент x ∈ X называют аргументом функции или независимой переменной .
Элемент y ∈ Y называют значением функции или зависимой переменной .

Множество X называется областью определения функции .
Множество элементов y ∈ Y , которые имеют прообразы в множестве X , называется областью или множеством значений функции .

Действительная функция называется ограниченной сверху (снизу) , если существует такое число M , что для всех выполняется неравенство:
.
Числовая функция называется ограниченной , если существует такое число M , что для всех :
.

Верхней гранью или точной верхней границей действительной функции называют наименьшее из чисел, ограничивающее область ее значений сверху. То есть это такое число s , для которого для всех и для любого , найдется такой аргумент , значение функции от которого превосходит s′ : .
Верхняя грань функции может обозначаться так:
.

Соответственно нижней гранью или точной нижней границей действительной функции называют наибольшее из чисел, ограничивающее область ее значений снизу. То есть это такое число i , для которого для всех и для любого , найдется такой аргумент , значение функции от которого меньше чем i′ : .
Нижняя грань функции может обозначаться так:
.

Определение предела функции

Определение предела функции по Коши

Конечные пределы функции в конечных точках

Пусть функция определена в некоторой окрестности конечной точки за исключением, может быть, самой точки . в точке , если для любого существует такое , зависящее от , что для всех x , для которых , выполняется неравенство
.
Предел функции обозначается так:
.
Или при .

С помощью логических символов существования и всеобщности определение предела функции можно записать следующим образом:
.

Односторонние пределы.
Левый предел в точке (левосторонний предел):
.
Правый предел в точке (правосторонний предел):
.
Пределы слева и справа часто обозначают так:
; .

Конечные пределы функции в бесконечно удаленных точках

Аналогичным образом определяются пределы в бесконечно удаленных точках.
.
.
.
Их часто обозначают так:
; ; .

Использование понятия окрестности точки

Если ввести понятие проколотой окрестности точки , то можно дать единое определение конечного предела функции в конечных и бесконечно удаленных точках:
.
Здесь для конечных точек
; ;
.
Любые окрестности бесконечно удаленных точек являются проколотыми:
; ; .

Бесконечные пределы функции

Определение
Пусть функция определена в некоторой проколотой окрестности точки (конечной или бесконечно удаленной). f(x) при x → x 0 равен бесконечности , если для любого, сколь угодно большого числа M > 0 , существует такое число δ M > 0 , зависящее от M , что для всех x , принадлежащих проколотой δ M - окрестности точки : , выполняется неравенство:
.
Бесконечный предел обозначают так:
.
Или при .

С помощью логических символов существования и всеобщности определение бесконечного предела функции можно записать так:
.

Также можно ввести определения бесконечных пределов определенных знаков, равных и :
.
.

Универсальное определение предела функции

Используя понятие окрестности точки, можно дать универсальное определение конечного и бесконечно предела функции, применимое как для конечных (двусторонних и односторонних), так и для бесконечно удаленных точек:
.

Определение предела функции по Гейне

Пусть функция определена на некотором множестве X : .
Число a называется пределом функции в точке :
,
если для любой последовательности , сходящейся к x 0 :
,
элементы которой принадлежат множеству X : ,
.

Запишем это определение с помощью логических символов существования и всеобщности:
.

Если в качестве множества X взять левостороннюю окрестность точки x 0 , то получим определение левого предела. Если правостороннюю - то получим определение правого предела. Если в качестве множества X взять окрестность бесконечно удаленной точки, то получим определение предела функции на бесконечности.

Теорема
Определения предела функции по Коши и по Гейне эквивалентны.
Доказательство

Свойства и теоремы предела функции

Далее мы считаем, что рассматриваемые функции определены в соответствующей окрестности точки , которая является конечным числом или одним из символов: . Также может быть точкой одностороннего предела, то есть иметь вид или . Окрестность является двусторонней для двустороннего предела и односторонней для одностороннего.

Основные свойства

Если значения функции f(x) изменить (или сделать неопределенными) в конечном числе точек x 1 , x 2 , x 3 , ... x n , то это изменение никак не повлияет на существование и величину предела функции в произвольной точке x 0 .

Если существует конечный предел , то существует такая проколотая окрестность точки x 0 , на которой функция f(x) ограничена:
.

Пусть функция имеет в точке x 0 конечный предел, отличный от нуля:
.
Тогда, для любого числа c из интервала , существует такая проколотая окрестность точки x 0 , что для ,
, если ;
, если .

Если, на некоторой проколотой окрестности точки , - постоянная, то .

Если существуют конечные пределы и и на некоторой проколотой окрестности точки x 0
,
то .

Если , и на некоторой окрестности точки
,
то .
В частности, если на некоторой окрестности точки
,
то если , то и ;
если , то и .

Если на некоторой проколотой окрестности точки x 0 :
,
и существуют конечные (или бесконечные определенного знака) равные пределы:
, то
.

Доказательства основных свойств приведены на странице
«Основные свойства пределов функции ».

Арифметические свойства предела функции

Пусть функции и определены в некоторой проколотой окрестности точки . И пусть существуют конечные пределы:
и .
И пусть C - постоянная, то есть заданное число. Тогда
;
;
;
, если .

Если , то .

Доказательства арифметических свойств приведены на странице
«Арифметические свойства пределов функции ».

Критерий Коши существования предела функции

Теорема
Для того, чтобы функция , определенная на некоторой проколотой окрестности конечной или бесконечно удаленной точки x 0 , имела в этой точке конечный предел, необходимо и достаточно, чтобы для любого ε > 0 существовала такая проколотая окрестность точки x 0 , что для любых точек и из этой окрестности, выполнялось неравенство:
.

Предел сложной функции

Теорема о пределе сложной функции
Пусть функция имеет предел и отображает проколотую окрестность точки на проколотую окрестность точки . Пусть функция определена на этой окрестности и имеет на ней предел .
Здесь - конечные или бесконечно удаленные точки: . Окрестности и соответствующие им пределы могут быть как двусторонние, так и односторонние.
Тогда существует предел сложной функции и он равен :
.

Теорема о пределе сложной функции применяется в том случае, когда функция не определена в точке или имеет значение, отличное от предельного . Для применения этой теоремы, должна существовать проколотая окрестность точки , на которой множество значений функции не содержит точку :
.

Если функция непрерывна в точке , то знак предела можно применять к аргументу непрерывной функции:
.
Далее приводится теорема, соответствующая этому случаю.

Теорема о пределе непрерывной функции от функции
Пусть существует предел функции g(t) при t → t 0 , и он равен x 0 :
.
Здесь точка t 0 может быть конечной или бесконечно удаленной: .
И пусть функция f(x) непрерывна в точке x 0 .
Тогда существует предел сложной функции f(g(t)) , и он равен f(x 0) :
.

Доказательства теорем приведены на странице
«Предел и непрерывность сложной функции ».

Бесконечно малые и бесконечно большие функции

Бесконечно малые функции

Определение
Функция называется бесконечно малой при , если
.

Сумма, разность и произведение конечного числа бесконечно малых функций при является бесконечно малой функцией при .

Произведение функции, ограниченной на некоторой проколотой окрестности точки , на бесконечно малую при является бесконечно малой функцией при .

Для того, чтобы функция имела конечный предел , необходимо и достаточно, чтобы
,
где - бесконечно малая функция при .


«Свойства бесконечно малых функций ».

Бесконечно большие функции

Определение
Функция называется бесконечно большой при , если
.

Сумма или разность ограниченной функции, на некоторой проколотой окрестности точки , и бесконечно большой функции при является бесконечно большой функцией при .

Если функция является бесконечно большой при , а функция - ограничена, на некоторой проколотой окрестности точки , то
.

Если функция , на некоторой проколотой окрестности точки , удовлетворяет неравенству:
,
а функция является бесконечно малой при :
, и (на некоторой проколотой окрестности точки ), то
.

Доказательства свойств изложены в разделе
«Свойства бесконечно больших функций ».

Связь между бесконечно большими и бесконечно малыми функциями

Из двух предыдущих свойств вытекает связь между бесконечно большими и бесконечно малыми функциями.

Если функция являются бесконечно большой при , то функция является бесконечно малой при .

Если функция являются бесконечно малой при , и , то функция является бесконечно большой при .

Связь между бесконечно малой и бесконечно большой функцией можно выразить символическим образом:
, .

Если бесконечно малая функция имеет определенный знак при , то есть положительна (или отрицательна) на некоторой проколотой окрестности точки , то этот факт можно выразить так:
.
Точно также если бесконечно большая функция имеет определенный знак при , то пишут:
.

Тогда символическую связь между бесконечно малыми и бесконечно большими функциями можно дополнить следующими соотношениями:
, ,
, .

Дополнительные формулы, связывающие символы бесконечности, можно найти на странице
«Бесконечно удаленные точки и их свойства ».

Пределы монотонных функций

Определение
Функция , определенная на некотором множестве действительных чисел X называется строго возрастающей , если для всех таких что выполняется неравенство:
.
Соответственно, для строго убывающей функции выполняется неравенство:
.
Для неубывающей :
.
Для невозрастающей :
.

Отсюда следует, что строго возрастающая функция также является неубывающей. Строго убывающая функция также является невозрастающей.

Функция называется монотонной , если она неубывающая или невозрастающая.

Теорема
Пусть функция не убывает на интервале , где .
Если она ограничена сверху числом M : , то существует конечный предел . Если не ограничена сверху, то .
Если ограничена снизу числом m : , то существует конечный предел . Если не ограничена снизу, то .

Если точки a и b являются бесконечно удаленными, то в выражениях под знаками пределов подразумевается, что .
Эту теорему можно сформулировать более компактно.

Пусть функция не убывает на интервале , где . Тогда существуют односторонние пределы в точках a и b :
;
.

Аналогичная теорема для невозрастающей функции.

Пусть функция не возрастает на интервале , где . Тогда существуют односторонние пределы:
;
.

Доказательство теоремы изложено на странице
«Пределы монотонных функций ».

Использованная литература:
Л.Д. Кудрявцев. Курс математического анализа. Том 1. Москва, 2003.
С.М. Никольский. Курс математического анализа. Том 1. Москва, 1983.