Формула нахождения объема правильной пирамиды. Объём пирамиды

Для решения подобных заданий обязательно нужно знать – формулу объёма пирамиды:

S

h – высота пирамиды

Основанием может быть любой многоугольник. Но в большинстве задач на ЕГЭ речь в условии, как правило, идёт о правильных пирамидах. Напомню одно из её свойств:

Вершина правильной пирамиды проецируется в центр её основания

Посмотрите на проекцию правильной треугольной, четырёхугольной и шестиугольной пирамид (ВИД СВЕРХУ):


Можете на блоге, где разбирались задачи связанные с нахождением объёма пирамиды.

Рассмотрим задачи:

27087. Найдите объем правильной треугольной пирамиды, стороны основания которой равны 1, а высота равна корню из трёх.

S – площадь основания пирамиды

h – высота пирамиды

Найдём площадь основания пирамиды, это правильный треугольник. Воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Ответ: 0,25

27088. Найдите высоту правильной треугольной пирамиды, стороны основания которой равны 2, а объем равен корню из трёх.

Такие понятия как высота пирамиды и характеристики её основания связаны формулой объёма:

S – площадь основания пирамиды

h – высота пирамиды

Сам объём нам известен, площадь основания можем найти, так как известны стороны треугольника, который является основанием. Зная указанные величины без труда найдём высоту.

Для нахождения площади основания воспользуемся формулой – площадь треугольника равна половине произведения соседних сторон на синус угла между ними, значит:

Таким образом, подставив данные значения в формулу объема можем вычислить высоту пирамиды:

Высота равна трём.

Ответ: 3

27109. В правильной четырехугольной пирамиде высота равна 6, боковое ребро равно 10. Найдите ее объем.

Объём пирамиды вычисляется по формуле:

S – площадь основания пирамиды

h – высота пирамиды

Высота нам известна. Необходимо найти площадь основания. Напомню, что вершина правильной пирамиды проецируется в центр её основания. Основанием правильной четырёхугольной пирамиды является квадрат. Мы можем найти его диагональ. Рассмотрим прямоугольный треугольник (выделен синим):

Отрезок соединяющий центр квадрата с точкой В это катет, который равен половине диагонали квадрата. Этот катет можем вычислить по теореме Пифагора:

Значит BD = 16. Вычислим площадь квадрата воспользовавшись формулой площади четырёхугольника:

Следовательно:

Таким образом, объём пирамиды равен:

Ответ: 256

27178. В правильной четырехугольной пирамиде высота равна 12, объем равен 200. Найдите боковое ребро этой пирамиды.

Высота пирамиды и её и объём известны, значит можем найти площадь квадрата, который является основанием. Зная площадь квадрата, мы сможем найти его диагональ. Далее рассмотрев прямоугольный треугольник по теореме Пифагора вычислим боковое ребро:

Найдём площадь квадрата (основания пирамиды):

Вычислим диагональ квадрата. Так как его площадь равна 50, то сторона будет равна корню из пятидесяти и по теореме Пифагора:

Точка О делит диагональ BD пополам, значит катет прямоугольного треугольника ОВ = 5.

Таким образом, можем вычислить чему равно боковое ребро пирамиды:

Ответ: 13

245353. Найдите объем пирамиды, изображенной на рисунке. Ее основанием является многоугольник, соседние стороны которого перпендикулярны, а одно из боковых ребер перпендикулярно плоскости основания и равно 3.

h - высота пирамиды

S - площадь основания ABCDE

V - объем пирамиды

В геометрии пирамидой называют тело, которое имеет в основании многоугольник, а все его грани представляют собой треугольники с общей вершиной. В зависимости от того, какая именно фигура лежит в основании, пирамиды подразделяются на треугольные, четырехугольные, пятиугольные и т.д. Кроме того, различают правильные, усеченные, прямоугольные и произвольные пирамиды. Формула для вычисления объема этого тела не отличается сложностью и всем известна из школьного курса геометрии.

Классическим примером использования пирамид в архитектуре являются египетские гробницы фараонов, многие из которых имеют именно такую форму. Следует заметить, что аналогичные сооружения (хотя и несколько видоизмененные) встречаются и в других частях света и странах, например, в Мексике и Китае, причем характерно, что практически везде являются или усыпальницами, или культовыми сооружениями. Конечно, при их проектировании древние архитекторы вряд ли стремились определить объем своих детищ, а вот их «последователям» делать это наверняка приходится.

Современные зодчие также порой создают пирамидальные здания , в которых чаще всего располагаются объекты социально-культурного назначения (торгово-развлекательные комплексы, выставочные галереи и т.п.), и при этом рассчитывать объем этих сооружений необходимо для того, чтобы они соответствовали принятым строительным нормам, правилам и нормативам. Кроме того, точное значение этой величины требуется для того, чтобы наиболее рационально разместить в строении инженерные коммуникации.

В последние годы все большую популярность завоевывают теплицы, имеющие форму пирамиды . Чаще всего они возводятся из прозрачного поликарбоната и, как утверждают их разработчики, имеют существенные преимущества перед традиционными. Поскольку при одной и той же общей площади основания объем содержащегося в них воздуха примерно в три раза меньше, то и нагревается он существенно быстрее. К тому же, распределяется он более рационально, поскольку пространства для самого теплого газа, скапливающегося вверху, в пирамидальной теплице также меньше.

Пирамиды часто можно встретить и в обычных квартирах, загородных домах и коттеджах. Их форму нередко имеют раструбы кухонных вытяжек, использующихся для эффективного отвода из помещений горячего воздуха, дыма и гари. В виде усеченных пирамид часто изготавливаются те элементы вентиляционных систем, которые применяются для сочленения воздуховодов, обладающих различным сечением.

Одной из самых популярных головоломок является так называемая «пирамидка Мефферта », которую нередко называют «тетраэдром Рубика », хотя венгерский архитектор и изобретатель не имеет к ней никакого отношения. Каждая из ее граней разделена на девять разноцветных правильных треугольников, и цель играющего состоит в том, чтобы привести игрушку в такой вид, чтобы на каждой отдельной грани все ее элементы имели одинаковый цвет.

Слово «пирамида» невольно ассоциируется с величественными великанами в Египте, верно хранящими покой фараонов. Может быть поэтому пирамиду как безошибочно узнают все, даже дети.

Тем не менее, попробуем дать ей геометрическое определение. Представим на плоскости несколько точек (А1,А2,..., Ап) и еще одну (Е), не принадлежайшую ей. Так вот, если точку Е (вершину) соединить с вершинами многоугольника, образованного точками А1,А2,..., Ап (основание), получится многогранник, который и называют пирамидой. Очевидно, что вершин у многоугольника в основании пирамиды может быть сколько угодно, и в зависимости от их количества пирамиду можно назвать треугольной и четырехугольной, пятиугольной и т.д.

Если внимательно присмотреться к пирамиде, то станет ясно, почему ее определяют еще и по-другому - как геометрическую фигуру, имеющую в основании многоугольник, а в качестве боковых граней - треугольники, объединенные общей вершиной.

Поскольку пирамида - пространственная фигура, то и у нее есть такая количественная характеристика, как объем. Объем пирамиды вычисляют по хорошо известной формуле объема, равного трети произведения основания пирамиды на ее высоту:

Объем пирамиды при выводе формулы первоначально рассчитывается для треугольной, взяв за основу постоянное соотношение, связывающее эту величину с объемом треугольной призмы, имеющей то же основание и высоту, которая, как оказывается, в три раза превышает этот объем.

А поскольку любая пирамида разбивается на треугольные, и ее объем не зависит от выполняемых при доказательстве построений, правомерность приведенной формулы объема - очевидна.

Особняком среди всех пирамид стоят правильные, у которых в основании лежит правильный многоугольник. Что же касается , то она должна «оканчиваться» в центре основания.

В случае неправильного многоугольника в основании для вычисления площади основания потребуется:

  • разбить его на треугольники и квадраты;
  • подсчитать площадь каждого из них;
  • сложить полученные данные.

В случае в основании пирамиды, его площадь рассчитывают по готовым формулам, поэтому объем правильной пирамиды вычисляется совсем просто.

Например, чтобы вычислить объем четырехугольной пирамиды, если она правильная, возводят длину стороны правильного четырехугольника (квадрата) в основании в квадрат и, умножив на высоту пирамиды, делят полученное произведение на три.

Объем пирамиды можно вычислить, используя и другие параметры:

  • как треть произведения радиуса шара, вписанного в пирамиду, на площадь ее полной поверхности;
  • как две трети произведения расстояния между двумя произвольно взятыми скрещивающимися ребрами и площади параллелограмма, который образуют середины оставшихся четырех ребер.

Объем пирамиды вычисляется просто и в случае, когда его высота совпадает с одним из боковых ребер, то есть в случае прямоугольной пирамиды.

Говоря о пирамидах, нельзя обойти вниманием также усеченные пирамиды, полученные сечением пирамиды параллельной основанию плоскостью. Их объем практически равен разности объемов целой пирамиды и отсеченной вершины.

Первым объем пирамиды, правда не совсем в его современном виде, однако равным 1/3 объема известной нам призмы, нашел Демокрит. Его метод подсчета Архимед назвал «без доказательства», поскольку Демокрит подходил к пирамиде, как к фигуре, сложенной из бесконечно тонких, подобных пластинок.

К вопросу нахождения объема пирамиды «обратилась» и векторная алгебра, используя для этого координаты ее вершин. Пирамида, построенная на тройке векторов a,b,c, равна одной шестой от модуля смешанного произведения заданных векторов.