Природные ресурсы африки таблица. Далекая Африка

Солнечная радиация.

Излучение Солнцем света и тепла называется солнечной радиацией. Распространение ее по поверхности России зависит от , т.е. от угла падения солнечных лучей. Чем ближе к Северному полюсу находится территория, тем меньше угол падения солнечных лучей, тек меньше тепла получает поверхность. Через северные территории России проходит полярный круг, к северу от которого зимой устанавливается полярная ночь, в течение которой поступление солнечной радиации практически прекращается. Солнечная энергия, достигшая поверхности Земли, составляет суммарную радиацию. Не вся суммарная радиация участвует в формировании климата: летом часть ее тратится на тепловое излучение, а зимой благодаря снегу больше часть солнечных лучей отражается. Разницу между суммарной радиацией и ее потерями выражают в виде радиационного баланса. Он характеризует ту часть солнечной радиации, которая является источником энергии основных климатических процессов. на большей территории России зимой отрицательный, а летом положительный.

Циркуляция воздушных масс.

Перемещение воздушных масс над поверхностью Земли приводит к переносу тепла и влаги из одних районов в другие.
Над территорией нашей страны перемещаются арктические, умеренные и тропические воздушные массы.
Большая часть территории России располагается в умеренных широтах, поэтому западный перенос оказывает большое влияние на климат нашей страны. Особенно велика роль Западного переноса в летнее время года, когда на большей части территории страны преобладают западные и северо-западные ветры.

Напоминание:

Воздух, направляющийся от тропических широт в умеренные, из-за вращения Земли отклоняется к востоку. Поэтому в умеренных широтах господствуют западные ветры - западный перенос воздуха.

Летом суша прогревается быстрее, чем океан, поэтому давление здесь ниже и воздушные массы перемещаются с океанов на сушу. Западный перенос приводит к тому, что влияние на более существенно, чем . Территории, находящиеся под влиянием ветров с Атлантики, довольно значительны. При этом влияние значительно сказывается на климате и зимой.

Воздушные массы с Тихого океана, приходящие летом, также оказывают значительное влияние на климат России. Под их влиянием находятся территории .

Зимой на формирование климата России оказывают значительное влияние область повышенного давления (Азиатский максимум).

Центр Азиатского максимума расположен в районах , республики Тува и Северной . От него области с повышенным давлением растекаются в двух направлениях: на северо-восток вплоть до побережья и на запад через Северный Казахстан и юг (примерно до 50о с.ш.). С формированием этой области высокого давления связано установление сухой и морозной погоды.

Северное побережье России находится под влиянием арктических воздушных масс, которые образуются над поверхностью льдов и его морей. Арктический воздух холодный и содержит мало влаги. Он свободно проникает на равнины России и понижает там температуру. Иногда арктический воздух, образующийся над незамерзающей частью , приносит осадки преимущественно в виде снега.

В южные районы зимой и летом поступает континентальный тропический воздух из и . Он отличается высокими температурами и малой влажностью.

Важно представлять, что при перемещении над той или иной территорией воздушные массы способны постепенно изменять свои свойства под влиянием подстилающей поверхности. Этот процесс называется трансформацией.

Например, при вторжении в Европейскую часть России арктический воздух постепенно нагреется и трансформируется в умеренный, а летом он так прогревается, что способствует образованию суховеев в Предкавказье.

От соприкосновения двух воздушных масс, обладающих разными свойствами, образуются . Над территорией России располагается арктический фронт, отделяющий арктический воздух от воздуха умеренных широт, и полярный фронт, разделяющий воздушные массы умеренных широт и тропический воздух. Положение арктического и полярного фронтов меняется по сезонам.

С атмосферными фронтами связаны пути прохождения циклонов, приносящих на территорию России основную массу осадков, дождливую и пасмурную погоду; и , с приходом которых устанавливается ясная, безоблачная погода с большими суточными колебаниями температур. Так как в умеренных широтах, в которых лежит большая часть территории России, господствует западный перенос воздушных масс, циклоны движутся с запада на восток.

Зимой циклоны развиваются над , Карским и Охотским морями. Районом наиболее интенсивных зимних циклонов России является северо-запад Русской равнины. Здесь морской воздух, формирующийся над Атлантикой, взаимодействует с континентальным воздухом умеренных широт, арктическими воздушными массами.

Летом циклоны интенсивно развиваются на западе Русской равнины и на .

Влияние антициклонов и зимой и летом наиболее характерно для юга Русской равнины. Устойчивые антициклоны типичны зимой и в .

Влияние на климат характера подстилающей поверхности.

Подстилающая поверхность оказывает огромное влияние на свойства воздушных масс, на их температуру, влажность и прозрачность. От характера подстилающей поверхности зависит соотношение величины солнечной радиации отраженной от поверхности земли и поглощенной ею. Особенно велики потери радиации зимой, когда почти на всей территории страны лежит снег.

Характер рельефа.

Большое влияние на климат страны оказывает и характер . Отсутствие гор на севере и западе России облегчает проникновение воздушных масс с Атлантического и Северного Ледовитого океанов. Наличие гор в южных районах страны препятствует глубокому прогреванию поверхности. Расположение горных систем на востоке России препятствует прохождению влажных масс летом с Тихого океана в глубь материка. Воздушные массы, переваливающие через горы, меняют свои свойства - понижается их температура и атмосферное давление. Это приводит к выпадению осадков на наветренных склонах. На подветренных склонах влажность воздуха значительно уменьшается и осадков выпадает меньше.

В советской географической литературе вопросам географической зональности природных явлений уделяется очень большое внимание, и учение о природных зонах можно считать одной из наиболее разработанных географических проблем. Однако некоторые важные вопросы этой проблемы до настоящего времени еще не решены. Так, например, не существует единого мнения о количестве природных зон и последовательности их чередования, недостаточно выяснены закономерности их расположения и причины отклонений границ этих зон от простирания по широтам.

В русской географической литературе вопросы биоклиматической зональности в общей форме были впервые освещены в работах М. В. Ломоносова и И. И. Лепехина. Из зарубежных ученых большой вклад в развитие проблемы зональности внес А. Гумбольдт.

В. В. Докучаев (1948), исходя из принципа цельности природы и взаимообусловленности ее компонентов, не только установил природную зональность географической среды в целом, но и высказал предположение, что в основе зональности лежат прежде всего различия в количестве тепла и влаги. Таким образом, в работах В. В. Докучаева эмпирически установленная природная закономерность получила свое физическое объяснение.

Обычно принято считать, что природные зоны, опоясывая сушу земного шара, протягиваются с запада на восток и сменяются с севера на юг. Против такого упрощенного представления выступал В. В. Докучаев, указывая, что: «природа не математика: начертанная нами выше картина горизонтальных почвенных (а следовательно, естественноисторических) зон есть схема и что «горизонтальные почвенные и естественноисторические зоны должны там и здесь претерпевать более или менее существенные отклонения и нарушения их идеальной правильности» (1948, стр. 16 и 17).

И действительно, если мы внимательно рассмотрим мировые карты почв и растительности, в которых общая природная зональность отражена достаточно отчетливо, то увидим, что участков, в которых природные зоны имеют точно широтное простирание, не так много и что они занимают на поверхности Земли весьма ограниченные площади (рис. 2). В Евразии к таким участкам относятся восточная часть Русской равнины и Западно-Сибирская равнина. На разделяющем их Уральском хребте широтная зональность нарушается вертикальной поясностью. В пределах Северной Америки площади, в которых природные зоны имеют строго широтное положение, еще меньше, чем в Евразии: широтная зональность выражена с достаточной отчетливостью лишь между 80 и 95° з. д. В экваториальной Африке площади с зонами, вытянутыми строго с запада на восток, значительны, они занимают западную (большую) часть материка, на восток не распространяются далее 25° в. д. В южной части материка площади зон, вытянутых по долготе, протягиваются почти до тропика. В Южной Америке и Австралии площадей с отчетливо выраженной широтной зональностью нет, встречаются лишь границы зон, близкие по простиранию по долготе (в южной части Бразилии, Парагвая и Аргентины, а также в центральной части Австралии).

На всех остальных территориях суши природные зоны имеют самое разнообразное простирание, вплоть до меридионального (например, в Северной Америке). Указывая на отклонения в положении широтных зон, В. В. Докучаев (1948) писал, что «так как природа не делает скачков и не терпит беззакония, хаоса и случайности, то и вышеупомянутые отклонения и нарушения кажутся случайными и произвольными лишь для неопытного глаза, лишь для человека, не умеющего читать величайшую из книг - книгу природы» (стр. 17).

Основной причиной широтной зональности издавна считалась неравномерность распределения солнечной радиации по земной поверхности, связанная с шарообразной формой Земли и закономерным изменением с широтой наклона солнечных лучей. Так как солнечная радиация составляет основу энергетической базы для всех наземных (экзогенных) процессов, то и закономерное изменение с широтой этой энергетической базы приводит к закономерному же изменению интенсивности всех процессов и особенностей природных условий в целом.

Наблюдения за поступлением суммарной радиации, проведенные за последние годы, показали, однако, что фактическое распределение суммарной радиации значительно более сложно и не столь равномерно убывает от экватора к полюсам.


Из карт суммарной солнечной радиации в декабре и июне, составленных М. И. Будыко для «Атласа теплового баланса», видно, что количество поступающей суммарной радиации постепенно понижается от тропиков к полюсам лишь в зимний период, летом же образуются два максимума - один на широте тропиков, а другой вполярной зоне, причём количество поступающей энергии у полюсов иногда даже превышает количество энергии у тропиков. М. И. Будыко пришел к выводу, что на распределение поступающей радиации решающее влияние оказывает не угол наклона солнечных лучей, а длительность освещения и прозрачность атмосферы, в частности облачность. Сопоставление карт средней облачности с картами суммарной радиации подтверждает их несомненную связь.

Анализ карт суммарной радиации в июне и декабре дает представление о годовом ходе радиационного режима. Особенно отчетливо радиационный режим проявляется на совмещенных меридиональных профилях (рис. 1) поступления суммарной солнечной радиации, составленных нами по картам М. И. Будыко. На профилях, пересекающих материки, по характеру изменения суммарной радиации с географической широтой отчетливо выделяются пять широтных поясов и две полярные области: 1) один пояс (приэкваториальный) с довольно высокими и возрастающими с широтой значениями суммарной радиации как зимой, так и летом; 2) два пояса (тропические), в которых суммарная радиация в летние месяцы с увеличением географической широты возрастает, а в зимние месяцы уменьшается; 3) два пояса (умеренные), характеризующиеся убыванием суммарной радиации с широтой как летом, так и зимой, и 4) две полярных области с нулевыми значениями суммарной радиации зимой и резким увеличением ее с возрастанием географической широты летом.

Океанические профили дают более простую картину изменения суммарной радиации с широтой; пояс экваториальный над океанами не выражен, а два тропических сливаются в один.

По 13 меридиональным профилям, пересекающим как материк, так и океаны, нами была составлена карта поясов радиационного режима (рис. 3). Границы между выделенными по режиму поясами, как видно из карты, примерно совпадают с положением экватора, тропических и полярных кругов, что подтверждает глубокую зависимость режима радиации от наклона земной оси к плоскости эклиптики и указывает на близость этих поясов к основным географическим поясам: тропическому, субтропическим, умеренным и полярным.

Суммарная средняя годовая радиация более или менее постепенно убывает от экватора к полюсам. Большое количество радиации, поступающей в приполярных областях в летние месяцы (с круглосуточным освещением), компенсируется малым количеством радиации, поступающей в позднеосенние и ранневесенние месяцы и полным отсутствием поступления зимой. Величина годового радиационного баланса также постепенно убывает от экватора к полюсам.

Хотя величина суммарной радиации в полярных областях летом и увеличивается к полюсам, фактически температура воздуха у земной поверхности даже в летний период с возрастание широты постепенно понижается. Это несоответствие объясняется очень высокой отражательной способностью снежно-ледяной поверхности.

На основании произведенных расчетов М. И. Будыко пришел к выводу о том, что падение, температур с увеличением географической широты в летние месяцы (а следовательно, и широтная зональность) связано не с изменением угла наклона солнечных лучей, а с охлаждающим влиянием ледяных околополярных шапок. При отсутствии ледяных шапок (как это, по-видимому, было в третичное время) термическая широтная зональность проявляется значительно меньше. Таким образом наблюдающаяся в настоящее время резко выраженная термическая широтная зональность связана с оледенением околополярных пространств и в смысле геологической истории явление временное.

Если радиационные и тепловые условия на равнинах в общем постепенно изменяются с севера на юг, в соответствии с широтой места, то в горах в связи с часто меняющимися крутизной и экспозицией склонов картина их распределения очень пестрая. Большое влияние оказывает рельеф и на распределение осадков. Возвышающиеся на пути влагоносных ветров горные цепи перехватывают проносящуюся влагу, создавая в ветровой тени зоны, обедненные осадками. Этим и объясняется то, что в горах широтная зональность проявляется лишь в характере структуры вертикальных поясов и отнесение гор к той или иной горизонтальной зоне весьма условно.

В. В. Докучаев (1948) указывал, что горный рельеф и связанная с ним вертикальная поясность являются одной из основных причин, нарушающих правильность широтной зональности. Почти все географы, занимающиеся природным районированием, рассматривают горные районы отдельно и не широтных зон.

Второй по значению причиной отклонения от широтной зональности следует признать адвекцию тепла и влаги, на значение которой было указано в нашей специальной статье (Рихтер, 1960). Вследствие воздушной и водной циркуляции огромные массы тепла перемещаются из одних широт в другие, изменяя количество имеющегося радиационного тепла. Такое влияние адвекции тепла географы обычно недооценивают, хотя количество участвующего в адвекции тепла нередко превышает количество тепла, получаемого за счёт радиации.

Перенос тепла связан с влиянием «центров действия» атмосферы, располагающихся над океанами или материками. Косвенными показателями интенсивности адвекции тепла до некоторой степени могут служить значительные отклонения фактически наблюдаемых температур воздуха или годовых амплитуд темпеператур



от вычисленных средних величин их для данной географической широты. Если мы сопоставим карты изоаномал, составленные Е. С. Рубинштейн (1953), и карты изолиний континентальности Н. Н. Иванова (1953) с картой природных зон, мы увидим, что широтная зональность особенно хорошо проявляется в районах с наименьшими отклонениями от средних широтных показателей, т. е. в районах с ослабленной адвекцией.

Для развития всего комплекса природных процессов, как показали исследования А. А. Григорьева, вместе с запасами тепла решающее значение имеют годовые осадки и их соотношение с годовым радиационным балансом.

Связанное в основном с циркуляциейАдвекция тепла достигает наибольшей силы в зимние месяцы, а адвекция влаги в летние, при этом обилие осадков может совпадать или не совпадать с интенсивным переносом тепла. Так, например, в Западной Европе значительное количество осадков совпадает с большим количеством поступающего адвективного тепла, в то время как в условиях муссонного климата обилие осадков не связано с большой адвекцией тепла. Существенное влияние на циркуляцию и связанное с ней распределение осадков оказывают величина и форма материка, его рельеф и положение в системе общей циркуляции. Так, например, при господствующем в умеренных широтах западном переносе наибольшее количество осадков выпадает на западных окраинах материков (Евразия и Северная Америка), к востоку вплоть до центральных частей материков количество осадков уменьшается; но еще далее к востоку все же наблюдается небольшое возрастание количества осадков. В арктических, тропических и экваториальных широтах, где ясно выраженного западного переноса не наблюдается, а преобладает перенос меридиональный, больших различий в увлажнении между западными и восточными побережьями материков не наблюдается и, наоборот, более сказываются меридиональные различия.

Исходя из положения А. А. Григорьева, что для развития природных процессов решающее значение имеют соотношения тепла и влаги, мы должны ожидать, что зональность будет хорошо проявляться в тех местах, где количество осадков будет изменяться параллельно с количеством тепла. В частности, она будет иметь строго широтное направление в тех районах земной поверхности, где температура и осадки изменяются с географической широтой, т. е. изотермы и изогиеты протягиваются с запада на восток.

Составление карты распределения годового количества осадков с картой природных зон показывает, что это предположение совершенно справедливо.

Итак, расположение природных зон в виде полос, вытянутых строго с запада на восток, наблюдается в следующих условиях: 1) на равнинах, 2) в районах умеренной континентальности, удалённых от центров адвекции, где условия тепла и влаги близки к средним широтным значениям, и 3) в районах, где количество средних годовых осадков изменяется с севера на юг.

Местности, отвечающие таким условиям, имеют на поверхности Земли ограниченное распространение, поэтому и широтная зональность в чистом виде встречается сравнительно редко.

Это отмечал и А. А. Григорьев, широко истолковывающий понятие «зональность». Так, он указывает, что «географические зоны на равнине не могут рассматриваться как широтные или меридиальные образования…, их расположение также мало обусловлено сеткой координат, как и распределение береговых линий или горных цепей (которые являются главными азональными факторами распределения осадков)» (1956, стр. 132).

Разработка именно русскими учёными вопросов широтной зональности находит своё объяснение в том, что зональность наиболее отчётливо проявляется на территории Русской равнины и Западной Сибири и все теоретические географические построения основывались на материале именно этой, лучше изученной территории.

При составлении почвенных и геоботанических обзорных карт прежде всего обращалось внимание на зональность типов почв и растительности, причем зональные закономерности, выявленные на материале Русской равнины, экстраполировались на слабо изученные территории Сибири, хотя там в силу ряда специфических условий (особенности рельефа, резкая коитинентальность климата, наличие вечной мерзлоты и др.) зональные черты оказываются слабо выраженными. По мере изучения территории Сибири на картах появляются все новые и новые специфические «сибирские» типы почв и растительности, не встречающиеся на Русской равнине и не укладывающиеся в систему ее зональных типов. Эти новые карты значительно правильнее отражают многообразие природных условий различных территорий и удаляются от сравнительно простой схемы широтных зон.

Увлечение широтной зональностью привело многих советских географов к резкому противопоставлению зональных и азональных факторов формирования природных ландшафтов, вплоть до построения двух независимых классификационных систем природного районирования по зональным азональным признакам (Исаченко, 1953). Такое противопоставление неправильно, так как в формировании природы любого участка Земли зональные и азональные закономерности всегда проявляются одновременно. Разнообразие природных условий связано не столько с широтным положением местности, сколько с соотношением тепла и влаги, на что постоянно указывает в своих работах А. А. Григорьев. Это справедливое указание привело нас к выводу, что зависимость природных комплексов (ландшафтов) от соотношения тепла и влаги является более общей и основной географической закономерностью, чем зависимость от географической широты.

Климатообразующие факторы — условия формирования определенного типа климата. Это причины, влияющие на температуры воздуха, количество осадков и другие важные показатели. Рассмотрим основные климатообразующие факторы России — крупнейшей страны мира по площади территории.

Солнечная радиация, географическая широта и другие климатообразующие факторы

Звезда нашей системы — главнейший источник тепла на Земле. Солнечное излучение и уровень радиации — одна из важнейших причин формирования климата. Из-за шарообразности планеты угол наклона лучей неодинаковый на экваторе, в тропиках и полярных широтах. Но не только это условие определяет, какими будут температуры воздуха и времена года в той или иной местности. Есть другие основные климатообразующие факторы:

  • циркуляция воздушных масс;
  • широта местности;
  • особенности рельефа;
  • влияние морей, океанов, близость других материков.

Солнечная радиация

Не все лучи нашей звезды достигают поверхности Земли, при этом величина поступающей энергии определяется местоположением территории и зависит от ряда других причин. Часть излучения (около 20%) отражается верхними слоями атмосферы. Около 30% рассеивается облаками, частицами пыли и каплями воды. Сумма складывается из рассеянной и прямой радиации, достигающей твердой оболочки планеты. В этой последней форме выделяют поглощенное и отраженное излучение.

Поглощение зависит от удельной теплоемкости и теплопроводности подстилающей поверхности. Вода обладает большой удельной теплоемкостью, океаны и моря поглощают 95% прямой радиации, постепенно аккумулируют тепло летом, медленно отдают зимой. Белые снега, ледники поглощают около 15% и отражают 85% излучения, достигшего поверхности. Для чернозема показатель отражения — 4%.

Климатообразующие факторы — это взаимосвязанные причины формирования климата. Приведем примеры влияния на радиационный баланс других условий. Так, на при движении с севера на юг суммарная солнечная радиация уменьшается примерно в 2,7 раза. На острове Сахалин, расположенном в на востоке России, облака отражают 70% солнечного света. В результате формируется более суровый климат, чем на тех же широтах в пределах материка.

Атмосферная циркуляция

Основные причины формирования и движения огромных скоплений воздуха — неравномерное нагревание земной поверхности Солнцем. Это одно из главных условий создания разного атмосферного давления на планете. Характеристики воздушных масс зависят от места их формирования, так, над океанами господствует морской воздух, он влажный, над материком — сухой континентальный. Сокращенные буквенные обозначения для этих двух разновидностей — соответственно М и К. Когда изучают климатообразующие факторы России, то обязательно характеризуют три основных типа воздушных масс — арктические, умеренные и тропические. Они могут быть морскими и континентальными. Используются такие аббревиатуры: МАВ, КАВ, МУВ, КУВ, МТВ, КТВ.

Типы господствующих воздушных масс определяют важнейшие особенности климата и погоды:

  • атмосферное давление;
  • температуру в приземном слое атмосферы;
  • направление постоянных ветров;
  • прозрачность воздуха;
  • влажность.

Воздушные массы способны трансформироваться, менять свои физические свойства, передвигаясь над поверхностью Земли из одних регионов в другие.

Географическая широта

Соотношение между поступлением и расходование солнечной радиации — радиационный баланс — один из основных климатообразующих факторов. Он влияет на тепловой режим почвы и других поверхностей, нижних слоев атмосферы. От радиационного баланса зависит испарение воды, трансформация больших масс воздуха, жизнь человека и растений. Но какой климатообразующий фактор является главным? Это географическая широта — расстояние от экватора до изучаемого участка на поверхности Земли.

В июле угол между лучами и земной поверхностью в поясе освещенности равен почти 90°. Тогда на единицу площади приходится больше энергии, сильнее нагревается суша, а от нее — воздух. Чем дальше от экватора и тропиков, тем холоднее.

Влияние географической широты на климат России

Рассмотрим, как влияет главный климатообразующий фактор на примере Российской Федерации. Страна простирается от ледяной Арктики до субтропиков Кавказа, от балтийского побережья до Чукотки и морей Тихого океана. Климат значительно изменяется с севера на юг и с запада на восток. Преобладает умеренный воздух, часто вторгаются холодные воздушные массы из Арктики, влияют Сибирский антициклон, влажный атлантический воздух.

Велико разнообразие, но для России основным климатообразующим фактором является расстояние от экватора. При движении к южным границам страны повышается величина солнечной радиации. Чем ближе к Северному полярному кругу и Северному полюсу, тем холоднее. Таким образом, от географической широты в основном зависит многолетний режим погоды в разных регионах страны.

Рельеф, влияние материков и океанов — климатообразующие факторы

Не всегда распределение температур воздуха строго подчиняется закону широтной зональности и зависит только от солнечной радиации. Если соединить линиями города России с одинаковыми летними температурами, то легко заметить, что изотермы июля располагаются в основном соответственно географической широте. Но в изотермы января 0, -8, -10 °С лежат севернее, чем в Сибири. Смягчает климат территории до Урала влияние Атлантического океана и его теплых течений.

Меридианально расположенная цепь Уральских гор задерживает влажный и теплый воздух, поступающий из Атлантики. На побережье Тихого океана изотермы июля ниже, чем на тех же широтах внутри страны, из-за влияния летнего муссона и преобладания на острове Сахалине рассеянной радиации. При подъеме в горы температура падает даже на одной и той же широте.

Азиатский максимум (Сибирский антициклон)

Над территорией Монголии с ноября по март господствует область высокого атмосферного давления. Формируются воздушные массы с низкими температурами из КАВ, поступающего с севера. В это время года на климат региона почти не влияет Тихий океан. Горы Южной и Восточной Сибири препятствуют растеканию охлажденного воздуха. Результатом становятся самые низкие в России и во всем Северном полушарии температуры в приземном слое атмосферы (от -40 до -70 °С).

Наблюдаются когда в котловинах застаивается холодный воздух. Тогда на высоте около 2 км теплее примерно на +10…+20 °С, чем в понижениях и у поверхности земли. Выяснив, какие факторы являются климатообразующими, мы убедились, что важны не только сами причины, но и сочетание условий на определенной территории.

Формирование климата

В центре и на севере Европейской части России выпадает больше осадков, чем на той же широте в Восточной Сибири. На запад страны приходит МУВ с Атлантики, здесь господствует циклоническая деятельность (низкие температуры воздуха, мокрый снег, ливни). За Северным полярным кругом осадков выпадает мало, ощущается влияние КАВ, бедного влагой. В Сибири и на Урале континентальный климат отличается от европейских регионов страны. Лето здесь относительно теплое и короткое, зима — продолжительная, очень холодная.

На юге в Астраханской области значительное воздействие оказывают такие климатообразующие факторы: географическая широта и связанная с ней величина солнечной радиации, атмосферная циркуляция. Можно отметить влияние на климат и погоду летом сухого и жаркого КТВ, который приходит из Казахстана, Средней Азии. Поступление таких же воздушных масс на Черноморское побережье России задерживают высокие горные хребты.

Специфические условия Камчатки сформировались в условиях сочетания морского и резко-континентального типов климата. Для региона характерны частые перемены погоды, сильные ветра, значительное количество осадков, зимой — в виде обильных снегопадов.

Климатическое оружие

Выясняя, что такое климатообразующие факторы, мы основное внимание уделили природным процессам и явлениям. Требуется объяснить такие факты, как повышение среднегодовых температур воздуха и неравномерное выпадение осадков в последние десятилетия. Это естественная закономерность или результат антропогенного изменения климата?

Однозначный ответ на этот вопрос трудно дать. Не стихают споры о том, применяется ли климатическое оружие, создано оно или только разрабатывается. Особенно активно вопрос обсуждался во время экстремальной жары в России летом 2010 года. Температура в центральной части страны была на 10 °C выше средней для региона. Год был самым жарким с конца XIX века. Возникли массовые лесные пожары, наблюдался всплеск смертности среди населения.

Климатическое оружие — это способы контроля над погодой в военных целях. Неприятелю причиняется ущерб в результате природных аномалий (засух, наводнений). Над созданием климатического оружия ученые США и СССР начали работать в середине минувшего столетия. Подобные действия противоречат Конвенции ООН, запрещающей военное использования средств воздействия на природную среду. Правительство США отрицает искусственное влияние на атмосферу с целью причинения ущерба другим государствам, населению и окружающей среде.