Как найти производную сложной функции теория. Сложная функция

Начальный уровень

Производная функции. Исчерпывающее руководство (2019)

Представим себе прямую дорогу, проходящую по холмистой местности. То есть она идет то вверх, то вниз, но вправо или влево не поворачивает. Если ось направить вдоль дороги горизонтально, а - вертикально, то линия дороги будет очень похожа на график какой-то непрерывной функции:

Ось - это некий уровень нулевой высоты, в жизни мы используем в качестве него уровень моря.

Двигаясь вперед по такой дороге, мы также движемся вверх или вниз. Также можем сказать: при изменении аргумента (продвижение вдоль оси абсцисс) изменяется значение функции (движение вдоль оси ординат). А теперь давай подумаем, как определить «крутизну» нашей дороги? Что это может быть за величина? Очень просто: на сколько изменится высота при продвижении вперед на определенное расстояние. Ведь на разных участках дороги, продвигаясь вперед (вдоль оси абсцисс) на один километр, мы поднимемся или опустимся на разное количество метров относительно уровня моря (вдоль оси ординат).

Продвижение вперед обозначим (читается «дельта икс»).

Греческую букву (дельта) в математике обычно используют как приставку, означающую «изменение». То есть - это изменение величины, - изменение; тогда что такое? Правильно, изменение величины.

Важно: выражение - это единое целое, одна переменная. Никогда нельзя отрывать «дельту» от «икса» или любой другой буквы! То есть, например, .

Итак, мы продвинулись вперед, по горизонтали, на. Если линию дороги мы сравниваем с графиком функции, то как мы обозначим подъем? Конечно, . То есть, при продвижении вперед на мы поднимаемся выше на.

Величину посчитать легко: если в начале мы находились на высоте, а после перемещения оказались на высоте, то. Если конечная точка оказалась ниже начальной, будет отрицательной - это означает, что мы не поднимаемся, а спускаемся.

Вернемся к «крутизне»: это величина, которая показывает, насколько сильно (круто) увеличивается высота при перемещении вперед на единицу расстояния:

Предположим, что на каком-то участке пути при продвижении на км дорога поднимается вверх на км. Тогда крутизна в этом месте равна. А если дорога при продвижении на м опустилась на км? Тогда крутизна равна.

А теперь рассмотрим вершину какого-нибудь холма. Если взять начало участка за полкилометра до вершины, а конец - через полкилометра после него, видно, что высота практически одинаковая.

То есть, по нашей логике выходит, что крутизна здесь почти равна нулю, что явно не соответствует действительности. Просто на расстоянии в км может очень многое поменяться. Нужно рассматривать более маленькие участки для более адекватной и точной оценки крутизны. Например, если измерять изменение высоты при перемещении на один метр, результат будет намного точнее. Но и этой точности нам может быть недостаточно - ведь если посреди дороги стоит столб, мы его можем просто проскочить. Какое расстояние тогда выберем? Сантиметр? Миллиметр? Чем меньше, тем лучше!

В реальной жизни измерять расстояние с точностью до милиметра - более чем достаточно. Но математики всегда стремятся к совершенству. Поэтому было придумано понятие бесконечно малого , то есть величина по модулю меньше любого числа, которое только можем назвать. Например, ты скажешь: одна триллионная! Куда уж меньше? А ты подели это число на - и будет еще меньше. И так далее. Если хотим написать, что величина бесконечно мала, пишем так: (читаем «икс стремится к нулю»). Очень важно понимать, что это число не равно нулю! Но очень близко к нему. Это значит, что на него можно делить.

Понятие, противоположное бесконечно малому - бесконечно большое (). Ты уже наверняка сnалкивался с ним, когда занимался неравенствами: это число по модулю больше любого числа, которое только можешь придумать. Если ты придумал самое большое из возможных чисел, просто умножь его на два, и получится еще больше. А бесконечность еще больше того, что получится. Фактически бесконечно большое и бесконечно малое обратны друг другу, то есть при, и наоборот: при.

Теперь вернемся к нашей дороге. Идеально посчитанная крутизна - это куртизна, вычисленная для бесконечно малого отрезка пути, то есть:

Замечу, что при бесконечно малом перемещении изменение высоты тоже будет бесконечно мало. Но напомню, бесконечно малое - не значит равное нулю. Если поделить друг на друга бесконечно малые числа, может получиться вполне обычное число, например, . То есть одна малая величина может быть ровно в раза больше другой.

К чему все это? Дорога, крутизна… Мы ведь не в автопробег отправляемся, а математику учим. А в математике все точно так же, только называется по-другому.

Понятие производной

Производная функции это отношение приращения функции к приращению аргумента при бесконечно малом приращение аргумента.

Приращением в математике называют изменение. То, насколько изменился аргумент () при продвижении вдоль оси, называется приращением аргумента и обозначается То, насколько изменилась функция (высота) при продвижении вперед вдоль оси на расстояние, называется приращением функции и обозначается.

Итак, производная функции - это отношение к при. Обозначаем производную той же буквой, что и функцию, только со штрихом сверху справа: или просто. Итак, запишем формулу производной, используя эти обозначения:

Как и в аналогии с доро́гой здесь при возрастании функции производная положительна, а при убывании - отрицательна.

А бывает ли производная равна нулю? Конечно. Например, если мы едем по ровной горизонтальной дороге, крутизна равна нулю. И правда, высота ведь не совсем меняется. Так и с производной: производная постоянной функции (константы) равна нулю:

так как приращение такой функции равно нулю при любом.

Давай вспомним пример с вершиной холма. Там получалось, что можно так расположить концы отрезка по разные стороны от вершины, что высота на концах оказывается одинаковой, то есть отрезок располагается параллельно оси:

Но большие отрезки - признак неточного измерения. Будем поднимать наш отрезок вверх параллельно самому себе, тогда его длина будет уменьшаться.

В конце концов, когда мы будем бесконечно близко к вершине, длина отрезка станет бесконечно малой. Но при этом он остался параллелен оси, то есть разность высот на его концах равна нулю (не стремится, а именно равна). Значит, производная

Понять это можно так: когда мы стоим на самой вершине, меленькое смещение влево или вправо изменяет нашу высоту ничтожно мало.

Есть и чисто алгебраическое объяснение: левее вершины функция возрастает, а правее - убывает. Как мы уже выяснили ранее, при возрастании функции производная положительна, а при убывании - отрицательна. Но меняется она плавно, без скачков (т.к. дорога нигде не меняет наклон резко). Поэтому между отрицательными и положительными значениями обязательно должен быть. Он и будет там, где функция ни возрастает, ни убывает - в точке вершины.

То же самое справедливо и для впадины (область, где функция слева убывает, а справа - возрастает):

Немного подробнее о приращениях.

Итак, мы меняем аргумент на величину. Меняем от какого значения? Каким он (аргумент) теперь стал? Можем выбрать любую точку, и сейчас будем от нее плясать.

Рассмотрим точку с координатой. Значение функции в ней равно. Затем делаем то самое приращение: увеличиваем координату на. Чему теперь равен аргумент? Очень легко: . А чему теперь равно значение функции? Куда аргумент, туда и функция: . А что с приращением функции? Ничего нового: это по-прежнему величина, на которую изменилась функция:

Потренируйся находить приращения:

  1. Найди приращение функции в точке при приращении аргумента, равном.
  2. То же самое для функции в точке.

Решения:

В разных точках при одном и том же приращении аргумента приращение функции будет разным. Значит, и производная в каждой точке своя (это мы обсуждали в самом начале - крутизна дороги в разных точках разная). Поэтому когда пишем производную, надо указывать, в какой точке:

Степенная функция.

Степенной называют функцию, где аргумент в какой-то степени (логично, да?).

Причем - в любой степени: .

Простейший случай - это когда показатель степени:

Найдем ее производную в точке. Вспоминаем определение производной:

Итак, аргумент меняется с до. Каково приращение функции?

Приращение - это. Но функция в любой точке равна своему аргументу. Поэтому:

Производная равна:

Производная от равна:

b) Теперь рассмотрим квадратичную функцию (): .

А теперь вспомним, что. Это значит, что значением приращения можно пренебречь, так как оно бесконечно мало, и поэтому незначительно на фоне другого слагаемого:

Итак, у нас родилось очередное правило:

c) Продолжаем логический ряд: .

Это выражение можно упростить по-разному: раскрыть первую скобку по формуле сокращенного умножения куб суммы, или же разложить все выражение на множители по формуле разности кубов. Попробуй сделать это сам любым из предложенных способов.

Итак, у меня получилось следующее:

И снова вспомним, что. Это значит, что можно пренебречь всеми слагаемыми, содержащими:

Получаем: .

d) Аналогичные правила можно получить и для больших степеней:

e) Оказывается, это правило можно обобщить для степенной функции с произвольным показателем, даже не целым:

(2)

Можно сформулировать правило словами: «степень выносится вперед как коэффициент, а потом уменьшается на ».

Докажем это правило позже (почти в самом конце). А сейчас рассмотрим несколько примеров. Найди производную функций:

  1. (двумя способами: по формуле и используя определение производной - посчитав приращение функции);
  1. . Не поверишь, но это степенная функция. Если у тебя возникли вопросы типа «Как это? А где же степень?», вспоминай тему « »!
    Да-да, корень - это тоже степень, только дробная: .
    Значит, наш квадратный корень - это всего лишь степень с показателем:
    .
    Производную ищем по недавно выученной формуле:

    Если в этом месте снова стало непонятно, повторяй тему « »!!! (про степень с отрицательным показателем)

  2. . Теперь показатель степени:

    А теперь через определение (не забыл еще?):
    ;
    .
    Теперь, как обычно, пренебрегаем слагаемым, содержащим:
    .

  3. . Комбинация предыдущих случаев: .

Тригонометрические функции.

Здесь будем использовать один факт из высшей математики:

При выражение.

Доказательство ты узнаешь на первом курсе института (а чтобы там оказаться, надо хорошо сдать ЕГЭ). Сейчас только покажу это графически:

Видим, что при функция не существует - точка на графике выколота. Но чем ближе к значению, тем ближе функция к. Это и есть то самое «стремится».

Дополнительно можешь проверить это правило с помощью калькулятора. Да-да, не стесняйся, бери калькулятор, мы ведь не на ЕГЭ еще.

Итак, пробуем: ;

Не забудь перевести калькулятор в режим «Радианы»!

и т.д. Видим, что чем меньше, тем ближе значение отношения к.

a) Рассмотрим функцию. Как обычно, найдем ее приращение:

Превратим разность синусов в произведение. Для этого используем формулу (вспоминаем тему « »): .

Теперь производная:

Сделаем замену: . Тогда при бесконечно малом также бесконечно мало: . Выражение для принимает вид:

А теперь вспоминаем, что при выражение. А также, что если бесконечно малой величиной можно пренебречь в сумме (то есть при).

Итак, получаем следующее правило: производная синуса равна косинусу :

Это базовые («табличные») производные. Вот они одним списком:

Позже мы к ним добавим еще несколько, но эти - самые важные, так как используются чаще всего.

Потренируйся:

  1. Найди производную функции в точке;
  2. Найди производную функции.

Решения:

  1. Сперва найдем производную в общем виде, а затем подставим вместо его значение:
    ;
    .
  2. Тут у нас что-то похожее на степенную функцию. Попробуем привести ее к
    нормальному виду:
    .
    Отлично, теперь можно использовать формулу:
    .
    .
  3. . Ээээээ….. Что это????

Ладно, ты прав, такие производные находить мы еще не умеем. Здесь у нас комбинация нескольких типов функций. Чтобы работать с ними, нужно выучить еще несколько правил:

Экспонента и натуральный логарифм.

Есть в математике такая функция, производная которой при любом равна значению самой функции при этом же. Называется она «экспонента», и является показательной функцией

Основание этой функции - константа - это бесконечная десятичная дробь, то есть число иррациональное (такое как). Его называют «число Эйлера», поэтому и обозначают буквой.

Итак, правило:

Запомнить очень легко.

Ну и не будем далеко ходить, сразу же рассмотрим обратную функцию. Какая функция является обратной для показательной функции? Логарифм:

В нашем случае основанием служит число:

Такой логарифм (то есть логарифм с основанием) называется «натуральным», и для него используем особое обозначение: вместо пишем.

Чему равен? Конечно же, .

Производная от натурального логарифма тоже очень простая:

Примеры:

  1. Найди производную функции.
  2. Чему равна производная функции?

Ответы: Экспонента и натуральный логарифм - функции уникально простые с точки зрения производной. Показательные и логарифмические функции с любым другим основанием будут иметь другую производную, которую мы с тобой разберем позже, после того как пройдем правила дифференцирования.

Правила дифференцирования

Правила чего? Опять новый термин, опять?!...

Дифференцирование - это процесс нахождения производной.

Только и всего. А как еще назвать этот процесс одним словом? Не производнование же... Дифференциалом математики называют то самое приращение функции при. Происходит этот термин от латинского differentia — разность. Вот.

При выводе всех этих правил будем использовать две функции, например, и. Нам понадобятся также формулы их приращений:

Всего имеется 5 правил.

Константа выносится за знак производной.

Если - какое-то постоянное число (константа), тогда.

Очевидно, это правило работает и для разности: .

Докажем. Пусть, или проще.

Примеры.

Найдите производные функций:

  1. в точке;
  2. в точке;
  3. в точке;
  4. в точке.

Решения:

  1. (производная одинакова во всех точках, так как это линейная функция, помнишь?);

Производная произведения

Здесь все аналогично: введем новую функцию и найдем ее приращение:

Производная:

Примеры:

  1. Найдите производные функций и;
  2. Найдите производную функции в точке.

Решения:

Производная показательной функции

Теперь твоих знаний достаточно, чтобы научиться находить производную любой показательной функции, а не только экспоненты (не забыл еще, что это такое?).

Итак, где - это какое-то число.

Мы уже знаем производную функции, поэтому давай попробуем привести нашу функцию к новому основанию:

Для этого воспользуемся простым правилом: . Тогда:

Ну вот, получилось. Теперь попробуй найти производную, и не забудь, что эта функция - сложная.

Получилось?

Вот, проверь себя:

Формула получилась очень похожая на производную экспоненты: как было, так и осталось, появился только множитель, который является просто числом, но не переменной.

Примеры:
Найди производные функций:

Ответы:

Это просто число, которое невозможно посчитать без калькулятора, то есть никак не записать в более простом виде. Поэтому в ответе его в таком виде и оставляем.

Производная логарифмической функции

Здесь аналогично: ты уже знаешь производную от натурального логарифма:

Поэтому, чтобы найти произвольную от логарифма с другим основанием, например, :

Нужно привести этот логарифм к основанию. А как поменять основание логарифма? Надеюсь, ты помнишь эту формулу:

Только теперь вместо будем писать:

В знаменателе получилась просто константа (постоянное число, без переменной). Производная получается очень просто:

Производные показательной и логарифмической функций почти не встречаются в ЕГЭ, но не будет лишним знать их.

Производная сложной функции.

Что такое «сложная функция»? Нет, это не логарифм, и не арктангенс. Данные функции может быть сложны для понимания (хотя, если логарифм тебе кажется сложным, прочти тему «Логарифмы» и все пройдет), но с точки зрения математики слово «сложная» не означает «трудная».

Представь себе маленький конвейер: сидят два человека и проделывают какие-то действия с какими-то предметами. Например, первый заворачивает шоколадку в обертку, а второй обвязывает ее ленточкой. Получается такой составной объект: шоколадка, обернутая и обвязанная ленточкой. Чтобы съесть шоколадку, тебе нужно проделать обратные действия в обратном порядке.

Давай создадим подобный математический конвейер: сперва будем находить косинус числа, а затем полученное число возводить в квадрат. Итак, нам дают число (шоколадка), я нахожу его косинус (обертка), а ты затем возводишь то, что у меня получилось, в квадрат (обвязываешь ленточкой). Что получилось? Функция. Это и есть пример сложной функции: когда для нахождения ее значения мы проделываем первое действие непосредственно с переменной, а потом еще второе действие с тем, что получилось в результате первого.

Мы вполне можем проделывать те же действия и в обратном порядке: сначала ты возводишь в квадрат, а я затем ищу косинус полученного числа: . Несложно догадаться, что результат будет почти всегда разный. Важная особенность сложных функций: при изменении порядка действий функция меняется.

Другими словами, сложная функция - это функция, аргументом которой является другая функция : .

Для первого примера, .

Второй пример: (то же самое). .

Действие, которое делаем последним будем называть «внешней» функцией , а действие, совершаемое первым - соответственно «внутренней» функцией (это неформальные названия, я их употребляю только для того, чтобы объяснить материал простым языком).

Попробуй определить сам, какая функция является внешней, а какая внутренней:

Ответы: Разделение внутренней и внешней функций очень похоже на замену переменных: например, в функции

  1. Первым будем выполнять какое действие? Сперва посчитаем синус, а только потом возведем в куб. Значит, внутренняя функция, а внешняя.
    А исходная функция является их композицией: .
  2. Внутренняя: ; внешняя: .
    Проверка: .
  3. Внутренняя: ; внешняя: .
    Проверка: .
  4. Внутренняя: ; внешняя: .
    Проверка: .
  5. Внутренняя: ; внешняя: .
    Проверка: .

производим замену переменных и получаем функцию.

Ну что ж, теперь будем извлекать нашу шоколадку - искать производную. Порядок действий всегда обратный: сначала ищем производную внешней функции, затем умножаем результат на производную внутренней функции. Применительно к исходному примеру это выглядит так:

Другой пример:

Итак, сформулируем, наконец, официальное правило:

Алгоритм нахождения производной сложной функции:

Вроде бы все просто, да?

Проверим на примерах:

Решения:

1) Внутренняя: ;

Внешняя: ;

2) Внутренняя: ;

(только не вздумай теперь сократить на! Из под косинуса ничего не выносится, помнишь?)

3) Внутренняя: ;

Внешняя: ;

Сразу видно, что здесь трехуровневая сложная функция: ведь - это уже сама по себе сложная функция, а из нее еще извлекаем корень, то есть выполняем третье действие (шоколадку в обертке и с ленточкой кладем в портфель). Но пугаться нет причин: все-равно «распаковывать» эту функцию будем в том же порядке, что и обычно: с конца.

То есть сперва продифференцируем корень, затем косинус, и только потом выражение в скобках. А потом все это перемножим.

В таких случаях удобно пронумеровать действия. То есть, представим, что нам известен. В каком порядке будем совершать действия, чтобы вычислить значение этого выражения? Разберем на примере:

Чем позже совершается действие, тем более «внешней» будет соответствующая функция. Последовательность действий - как и раньше:

Здесь вложенность вообще 4-уровневая. Давай определим порядок действий.

1. Подкоренное выражение. .

2. Корень. .

3. Синус. .

4. Квадрат. .

5. Собираем все в кучу:

ПРОИЗВОДНАЯ. КОРОТКО О ГЛАВНОМ

Производная функции - отношение приращения функции к приращению аргумента при бесконечно малом приращении аргумента:

Базовые производные:

Правила дифференцирования:

Константа выносится за знак производной:

Производная суммы:

Производная произведения:

Производная частного:

Производная сложной функции:

Алгоритм нахождения производной от сложной функции:

  1. Определяем «внутреннюю» функцию, находим ее производную.
  2. Определяем «внешнюю» функцию, находим ее производную.
  3. Умножаем результаты первого и второго пунктов.

После предварительной артподготовки будут менее страшны примеры, с 3-4-5 вложениями функций. Возможно, следующие два примера покажутся некоторым сложными, но если их понять (кто-то и помучается), то почти всё остальное в дифференциальном исчислении будет казаться детской шуткой.

Пример 2

Найти производную функции

Как уже отмечалось, при нахождении производной сложной функции, прежде всего, необходимо правильно РАЗОБРАТЬСЯ во вложениях. В тех случаях, когда есть сомнения, напоминаю полезный приём: берем подопытное значение «икс», например, и пробуем (мысленно или на черновике) подставить данное значение в «страшное выражение».

1) Сначала нам нужно вычислить выражение , значит, сумма - самое глубокое вложение.

2) Затем необходимо вычислить логарифм:

4) Потом косинус возвести в куб:

5) На пятом шагу разность:

6) И, наконец, самая внешняя функция - это квадратный корень:

Формула дифференцирования сложной функции применятся в обратном порядке, от самой внешней функции, до самой внутренней. Решаем:

Вроде без ошибок:

1) Берем производную от квадратного корня.

2) Берем производную от разности, используя правило

3) Производная тройки равна нулю. Во втором слагаемом берем производную от степени (куба).

4) Берем производную от косинуса.

6) И, наконец, берем производную от самого глубокого вложения .

Может показаться слишком трудно, но это еще не самый зверский пример. Возьмите, например, сборник Кузнецова и вы оцените всю прелесть и простоту разобранной производной. Я заметил, что похожую штуку любят давать на экзамене, чтобы проверить, понимает студент, как находить производную сложной функции, или не понимает.

Следующий пример для самостоятельного решения.

Пример 3

Найти производную функции

Подсказка: Сначала применяем правила линейности и правило дифференцирования произведения

Полное решение и ответ в конце урока.

Настало время перейти к чему-нибудь более компактному и симпатичному.
Не редка ситуация, когда в примере дано произведение не двух, а трёх функций. Как найти производную от произведения трёх множителей?

Пример 4

Найти производную функции

Сначала смотрим, а нельзя ли произведение трех функций превратить в произведение двух функций? Например, если бы у нас в произведении было два многочлена, то можно было бы раскрыть скобки. Но в рассматриваемом примере все функции разные: степень, экспонента и логарифм.

В таких случаях необходимо последовательно применить правило дифференцирования произведения два раза

Фокус состоит в том, что за «у» мы обозначим произведение двух функций: , а за «вэ» - логарифм: . Почему так можно сделать? А разве - это не произведение двух множителей и правило не работает?! Ничего сложного нет:


Теперь осталось второй раз применить правило к скобке :

Можно еще поизвращаться и вынести что-нибудь за скобки, но в данном случае ответ лучше оставить именно в таком виде - легче будет проверять.

Рассмотренный пример можно решить вторым способом:

Оба способа решения абсолютно равноценны.

Пример 5

Найти производную функции

Это пример для самостоятельного решения, в образце он решен первым способом.

Рассмотрим аналогичные примеры с дробями.

Пример 6

Найти производную функции

Здесь можно пойти несколькими путями:

Или так:

Но решение запишется более компактно, если в первую очередь использовать правило дифференцирования частного , приняв за весь числитель:

В принципе, пример решён, и если его оставить в таком виде, то это не будет ошибкой. Но при наличии времени всегда желательно проверить на черновике, а нельзя ли ответ упростить?

Приведём выражение числителя к общему знаменателю и избавимся от трёхэтажности дроби :

Минус дополнительных упрощений состоит в том, что есть риск допустить ошибку уже не при нахождении производной, а при банальных школьных преобразованиях. С другой стороны, преподаватели нередко бракуют задание и просят «довести до ума» производную.

Более простой пример для самостоятельного решения:

Пример 7

Найти производную функции

Продолжаем осваивать приёмы нахождения производной, и сейчас мы рассмотрим типовой случай, когда для дифференцирования предложен «страшный» логарифм

И теорему о производной сложной функции, формулировка которой такова:

Пусть 1) функция $u=\varphi (x)$ имеет в некоторой точке $x_0$ производную $u_{x}"=\varphi"(x_0)$, 2) функция $y=f(u)$ имеет в соответствующей точке $u_0=\varphi (x_0)$ производную $y_{u}"=f"(u)$. Тогда сложная функция $y=f\left(\varphi (x) \right)$ в упомянутой точке также будет иметь производную, равную произведению производных функций $f(u)$ и $\varphi (x)$:

$$ \left(f(\varphi (x))\right)"=f_{u}"\left(\varphi (x_0) \right)\cdot \varphi"(x_0) $$

или, в более короткой записи: $y_{x}"=y_{u}"\cdot u_{x}"$.

В примерах этого раздела все функции имеют вид $y=f(x)$ (т.е. рассматриваем лишь функции одной переменной $x$). Соответственно, во всех примерах производная $y"$ берётся по переменной $x$. Чтобы подчеркнуть то, что производная берётся по переменной $x$, часто вместо $y"$ пишут $y"_x$.

В примерах №1, №2 и №3 изложен подробный процесс нахождения производной сложных функций. Пример №4 предназначен для более полного понимания таблицы производных и с ним имеет смысл ознакомиться.

Желательно после изучения материала в примерах №1-3 перейти к самостоятельному решению примеров №5, №6 и №7. Примеры №5, №6 и №7 содержат краткое решение, чтобы читатель мог проверить правильность своего результата.

Пример №1

Найти производную функции $y=e^{\cos x}$.

Нам нужно найти производную сложной функции $y"$. Так как $y=e^{\cos x}$, то $y"=\left(e^{\cos x}\right)"$. Чтобы найти производную $\left(e^{\cos x}\right)"$ используем формулу №6 из таблицы производных . Дабы использовать формулу №6 нужно учесть, что в нашем случае $u=\cos x$. Дальнейшее решение состоит в банальной подстановке в формулу №6 выражения $\cos x$ вместо $u$:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)" \tag {1.1}$$

Теперь нужно найти значение выражения $(\cos x)"$. Вновь обращаемся к таблице производных, выбирая из неё формулу №10. Подставляя $u=x$ в формулу №10, имеем: $(\cos x)"=-\sin x\cdot x"$. Теперь продолжим равенство (1.1), дополнив его найденным результатом:

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x") \tag {1.2} $$

Так как $x"=1$, то продолжим равенство (1.2):

$$ y"=\left(e^{\cos x} \right)"=e^{\cos x}\cdot (\cos x)"= e^{\cos x}\cdot (-\sin x\cdot x")=e^{\cos x}\cdot (-\sin x\cdot 1)=-\sin x\cdot e^{\cos x} \tag {1.3} $$

Итак, из равенства (1.3) имеем: $y"=-\sin x\cdot e^{\cos x}$. Естественно, что пояснения и промежуточные равенства обычно пропускают, записывая нахождение производной в одну строку, - как в равенстве (1.3). Итак, производная сложной функции найдена, осталось лишь записать ответ.

Ответ : $y"=-\sin x\cdot e^{\cos x}$.

Пример №2

Найти производную функции $y=9\cdot \arctg^{12}(4\cdot \ln x)$.

Нам необходимо вычислить производную $y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"$. Для начала отметим, что константу (т.е. число 9) можно вынести за знак производной:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)" \tag {2.1} $$

Теперь обратимся к выражению $\left(\arctg^{12}(4\cdot \ln x) \right)"$. Чтобы выбрать нужную формулу из таблицы производных было легче, я представлю рассматриваемое выражение в таком виде: $\left(\left(\arctg(4\cdot \ln x) \right)^{12}\right)"$. Теперь видно, что необходимо использовать формулу №2, т.е. $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. В эту формулу подставим $u=\arctg(4\cdot \ln x)$ и $\alpha=12$:

Дополняя равенство (2.1) полученным результатом, имеем:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"= 108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))" \tag {2.2} $$

В этой ситуации часто допускается ошибка, когда решатель на первом шаге выбирает формулу $(\arctg \; u)"=\frac{1}{1+u^2}\cdot u"$ вместо формулы $\left(u^\alpha \right)"=\alpha\cdot u^{\alpha-1}\cdot u"$. Дело в том, что первой должна находиться производная внешней функции. Чтобы понять, какая именно функция будет внешней для выражения $\arctg^{12}(4\cdot 5^x)$, представьте, что вы считаете значение выражения $\arctg^{12}(4\cdot 5^x)$ при каком-то значении $x$. Сначала вы посчитаете значение $5^x$, потом умножите результат на 4, получив $4\cdot 5^x$. Теперь от этого результата берём арктангенс, получив $\arctg(4\cdot 5^x)$. Затем возводим полученное число в двенадцатую степень, получая $\arctg^{12}(4\cdot 5^x)$. Последнее действие, - т.е. возведение в степень 12, - и будет внешней функцией. И именно с неё надлежит начинать нахождение производной, что и было сделано в равенстве (2.2).

Теперь нужно найти $(\arctg(4\cdot \ln x))"$. Используем формулу №19 таблицы производных, подставив в неё $u=4\cdot \ln x$:

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)" $$

Немного упростим полученное выражение, учитывая $(4\cdot \ln x)^2=4^2\cdot (\ln x)^2=16\cdot \ln^2 x$.

$$ (\arctg(4\cdot \ln x))"=\frac{1}{1+(4\cdot \ln x)^2}\cdot (4\cdot \ln x)"=\frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" $$

Равенство (2.2) теперь станет таким:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)" \tag {2.3} $$

Осталось найти $(4\cdot \ln x)"$. Вынесем константу (т.е. 4) за знак производной: $(4\cdot \ln x)"=4\cdot (\ln x)"$. Для того, чтобы найти $(\ln x)"$ используем формулу №8, подставив в нее $u=x$: $(\ln x)"=\frac{1}{x}\cdot x"$. Так как $x"=1$, то $(\ln x)"=\frac{1}{x}\cdot x"=\frac{1}{x}\cdot 1=\frac{1}{x}$. Подставив полученный результат в формулу (2.3), получим:

$$ y"=\left(9\cdot \arctg^{12}(4\cdot \ln x) \right)"=9\cdot\left(\arctg^{12}(4\cdot \ln x) \right)"=\\ =108\cdot\left(\arctg(4\cdot \ln x) \right)^{11}\cdot (\arctg(4\cdot \ln x))"=108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot (4\cdot \ln x)"=\\ =108\cdot \left(\arctg(4\cdot \ln x) \right)^{11}\cdot \frac{1}{1+16\cdot \ln^2 x}\cdot 4\cdot \frac{1}{x}=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}. $$

Напомню, что производная сложной функции чаще всего находится в одну строку, - как записано в последнем равенстве. Поэтому при оформлении типовых расчетов или контрольных работ вовсе не обязательно расписывать решение столь же подробно.

Ответ : $y"=432\cdot \frac{\arctg^{11}(4\cdot \ln x)}{x\cdot (1+16\cdot \ln^2 x)}$.

Пример №3

Найти $y"$ функции $y=\sqrt{\sin^3(5\cdot9^x)}$.

Для начала немного преобразим функцию $y$, выразив радикал (корень) в виде степени: $y=\sqrt{\sin^3(5\cdot9^x)}=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$. Теперь приступим к нахождению производной. Так как $y=\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}$, то:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)" \tag {3.1} $$

Используем формулу №2 из таблицы производных , подставив в неё $u=\sin(5\cdot 9^x)$ и $\alpha=\frac{3}{7}$:

$$ \left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}-1} (\sin(5\cdot 9^x))"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" $$

Продолжим равенство (3.1), используя полученный результат:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))" \tag {3.2} $$

Теперь нужно найти $(\sin(5\cdot 9^x))"$. Используем для этого формулу №9 из таблицы производных, подставив в неё $u=5\cdot 9^x$:

$$ (\sin(5\cdot 9^x))"=\cos(5\cdot 9^x)\cdot(5\cdot 9^x)" $$

Дополнив равенство (3.2) полученным результатом, имеем:

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)" \tag {3.3} $$

Осталось найти $(5\cdot 9^x)"$. Для начала вынесем константу (число $5$) за знак производной, т.е. $(5\cdot 9^x)"=5\cdot (9^x)"$. Для нахождения производной $(9^x)"$ применим формулу №5 таблицы производных, подставив в неё $a=9$ и $u=x$: $(9^x)"=9^x\cdot \ln9\cdot x"$. Так как $x"=1$, то $(9^x)"=9^x\cdot \ln9\cdot x"=9^x\cdot \ln9$. Теперь можно продолжить равенство (3.3):

$$ y"=\left(\left(\sin(5\cdot 9^x)\right)^{\frac{3}{7}}\right)"=\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} (\sin(5\cdot 9^x))"=\\ =\frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot(5\cdot 9^x)"= \frac{3}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}} \cos(5\cdot 9^x)\cdot 5\cdot 9^x\cdot \ln9=\\ =\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x. $$

Можно вновь от степеней вернуться к радикалам (т.е. корням), записав $\left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}$ в виде $\frac{1}{\left(\sin(5\cdot 9^x)\right)^{\frac{4}{7}}}=\frac{1}{\sqrt{\sin^4(5\cdot 9^x)}}$. Тогда производная будет записана в такой форме:

$$ y"=\frac{15\cdot \ln 9}{7}\cdot \left(\sin(5\cdot 9^x)\right)^{-\frac{4}{7}}\cdot \cos(5\cdot 9^x)\cdot 9^x= \frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}. $$

Ответ : $y"=\frac{15\cdot \ln 9}{7}\cdot \frac{\cos (5\cdot 9^x)\cdot 9^x}{\sqrt{\sin^4(5\cdot 9^x)}}$.

Пример №4

Показать, что формулы №3 и №4 таблицы производных есть частный случай формулы №2 этой таблицы.

В формуле №2 таблицы производных записана производная функции $u^\alpha$. Подставляя $\alpha=-1$ в формулу №2, получим:

$$(u^{-1})"=-1\cdot u^{-1-1}\cdot u"=-u^{-2}\cdot u"\tag {4.1}$$

Так как $u^{-1}=\frac{1}{u}$ и $u^{-2}=\frac{1}{u^2}$, то равенство (4.1) можно переписать так: $\left(\frac{1}{u} \right)"=-\frac{1}{u^2}\cdot u"$. Это и есть формула №3 таблицы производных.

Вновь обратимся к формуле №2 таблицы производных. Подставим в неё $\alpha=\frac{1}{2}$:

$$\left(u^{\frac{1}{2}}\right)"=\frac{1}{2}\cdot u^{\frac{1}{2}-1}\cdot u"=\frac{1}{2}u^{-\frac{1}{2}}\cdot u"\tag {4.2} $$

Так как $u^{\frac{1}{2}}=\sqrt{u}$ и $u^{-\frac{1}{2}}=\frac{1}{u^{\frac{1}{2}}}=\frac{1}{\sqrt{u}}$, то равенство (4.2) можно переписать в таком виде:

$$ (\sqrt{u})"=\frac{1}{2}\cdot \frac{1}{\sqrt{u}}\cdot u"=\frac{1}{2\sqrt{u}}\cdot u" $$

Полученное равенство $(\sqrt{u})"=\frac{1}{2\sqrt{u}}\cdot u"$ и есть формула №4 таблицы производных. Как видите, формулы №3 и №4 таблицы производных получаются из формулы №2 подстановкой соответствующего значения $\alpha$.

В этой статье мы будем говорить о таком важном математическом понятии, как сложная функция, и учиться находить производную сложной функции.

Прежде чем учиться находить производную сложной функции, давайте разберемся с понятием сложной функции, что это такое, "с чем ее едят", и "как правильно ее готовить".

Рассмотрим произвольную функцию, например, такую:

Заметим, что аргумент , стоящий в правой и левой части уравнения функции - это одно и то же число, или выражение.

Вместо переменной мы можем поставить, например, такое выражение: . И тогда мы получим функцию

Назовем выражение промежуточным аргументом, а функцию - внешней функцией. Это не строгие математические понятия, но они помогают уяснить смысл понятия сложной функции.

Строгое определение понятия сложной функции звучит так:

Пусть функция определена на множестве и - множество значений этой функции. Пусть, множество (или его подмножество) является областью определения функции . Поставим в соответствие каждому из число . Тем самым на множестве будет задана функция . Ее называют композицией функций или сложной функцией.

В этом определении, если пользоваться нашей терминологией, - внешняя функция, - промежуточный аргумент.

Производная сложной функции находится по такому правилу:

Чтобы было более понятно, я люблю записывать это правило в виде такой схемы:

В этом выражении с помощью обозначена промежуточная функция.

Итак. Чтобы найти производную сложной функции, нужно

1. Определить, какая функция является внешней и найти по таблице производных соответствующую производную.

2. Определить промежуточный аргумент.

В этой процедуре наибольшие затруднения вызывает нахождение внешней функции. Для этого используется простой алгоритм:

а. Запишите уравнение функции.

б. Представьте, что вам нужно вычислить значение функции при каком-то значении х. Для этого вы подставляете это значение х в уравнение функции и производите арифметические действия. То действие, которое вы делаете последним и есть внешняя функция.

Например, в функции

Последнее действие - возведение в степень.

Найдем производную этой функции. Для этого запишем промежуточный аргумент

Приводятся примеры вычисления производных с применением формулы производной сложной функции.

Здесь мы приводим примеры вычисления производных от следующих функций:
; ; ; ; .

Если функцию можно представить как сложную функцию в следующем виде:
,
то ее производная определяется по формуле:
.
В приводимых ниже примерах, мы будем записывать эту формулу в следующем виде:
.
где .
Здесь нижние индексы или , расположенные под знаком производной, обозначают переменные, по которой выполняется дифференцирование.

Обычно, в таблицах производных , приводятся производные функций от переменной x . Однако x - это формальный параметр. Переменную x можно заменить любой другой переменной. Поэтому, при дифференцировании функции от переменной , мы просто меняем, в таблице производных, переменную x на переменную u .

Простые примеры

Пример 1

Найти производную сложной функции
.

Решение

Запишем заданную функцию в эквивалентном виде:
.
В таблице производных находим:
;
.

По формуле производной сложной функции имеем:
.
Здесь .

Ответ

Пример 2

Найти производную
.

Решение

Выносим постоянную 5 за знак производной и из таблицы производных находим:
.


.
Здесь .

Ответ

Пример 3

Найдите производную
.

Решение

Выносим постоянную -1 за знак производной и из таблицы производных находим:
;
Из таблицы производных находим:
.

Применяем формулу производной сложной функции:
.
Здесь .

Ответ

Более сложные примеры

В более сложных примерах мы применяем правило дифференцирования сложной функции несколько раз. При этом мы вычисляем производную с конца. То есть разбиваем функцию на составные части и находим производные самых простых частей, используя таблицу производных . Также мы применяем правила дифференцирования суммы , произведения и дроби . Затем делаем подстановки и применяем формулу производной сложной функции.

Пример 4

Найдите производную
.

Решение

Выделим самую простую часть формулы и найдем ее производную. .



.
Здесь мы использовали обозначение
.

Находим производную следующей части исходной функции, применяя полученные результаты. Применяем правило дифференцирования суммы:
.

Еще раз применяем правило дифференцирования сложной функции.

.
Здесь .

Ответ

Пример 5

Найдите производную функции
.

Решение

Выделим самую простую часть формулы и из таблицы производных найдем ее производную. .

Применяем правило дифференцирования сложной функции.
.
Здесь
.