Дифференцированное исчисление. Основные формулы дифференциального исчисления функции одной переменной

– определение производной функции f  (x ) в точке x 0  ;

– дифференциал функции f  (x ) в точке x 0 .

Производные простейших элементарных функций:

– правило дифференцирования сложной функции в точке x 0  , здесь ;

– правило дифференцирования обратной функции в точке ;

– формула Лагранжа, ;

– формула Коши, ;

– формула Тейлора, .

1. Берман Г.Н. Сборник задач по курсу математического анализа. М.: Наука, 1975.

2. Бермант А.Ф., Арамонович И.И. Краткий курс математического анализа. М.: Наука, 1967.

3. Болгов В.А., Демидович Б.П., Ефимов А.В. и др. Сборник задач по математике для втузов. Ч. 1, М.: Наука, 1986.

4. Данко П.Е., Попов А.Г., Кожевникова Т.Я. Высшая математика в примерах и задачах. М.: Высшая школа, 1986.

5. Задачи и упражнения по математическому анализу для ВТУЗов. Под ред. Демидовича Б.П., М.: Наука, 1968.

6. Запорожец Г.И. Руководство к решению задач по математическому анализу. М.: Высшая школа, 1964.

7. Кудрявцев В.А., Демидович Б.П. Краткий курс высшей математики. М.: Наука, 1985.

8. Математика в техническом университете. Выпуск II. Дифференциальное исчисление функций одного переменного. Под ред. Зарубина В.С. и Крищенко А.П., М.: Изд-во МГТУ им. Н.Э. Баумана, 2001.

9. Минорский В.П. Сборник задач по высшей математике. М.: Наука, 1987.

10. Пискунов Н.С. Дифференциальное и интегральное исчисление. М.: Наука, Т. 1,2, 1976.

11. Сборник задач по математике для ВТУЗов. Под ред. Ефимова А.В., М.: Наука, Ч. 1-4, 1993-1994.

12. Щипачев В.С. Высшая математика. М.: Высшая школа, 1996.

13. Щипачев В.С. Задачи по высшей математике. М.: Высшая школа, 1997.


Утверждено редакционно-издательским советом

Тюменского государственного нефтегазового университета.

Составители: Мусакаев Н.Г., доцент, к.ф.-м.н.

Сметанина И.А., ст. преподаватель

Мусакаева М.Ф., ассистент

Алтунин Е.А., ассистент

© Государственное образовательное учреждение высшего профессионального образования

«Тюменский государственный нефтегазовый университет»

дифференциальное исчисление

раздел математики, в котором изучаются производные, дифференциалы и их применения к исследованию свойств функций. Производной функции y = f(х) называется предел отношения приращения?y = y1 - y0 функции к приращению?x = x1 - x0 аргумента при?x, стремящемся к нулю (если этот предел существует). Производная обозначается f?(x) или y?; таким образом, Дифференциалом функции y = f(x) называется выражение dy = y?dx, где dx = ?x - приращение аргумента x. Очевидно, что y? = dy/dx. Отношение dy/dx часто употребляют как знак производной. Вычисление производных и дифференциалов называют дифференцированием. Если производная f?(x) имеет, в свою очередь, производную, то ее называют 2-й производной функции f(x) и обозначают f??(x), и т.д. Основные понятия дифференциального исчисления могут быть распространены на случай функций нескольких переменных. Если z = f(x,y) функция двух переменных x и y, то, зафиксировав для y какое-либо значение, можно дифференцировать z по x; полученная производная dz/dx = f?x называется частной производной z по x. Аналогично определяются частная производная dz/dy = f?y, частные производные высших порядков, частные и полные дифференциалы. Для приложений дифференциального исчисления к геометрии важно, что т.н. угловой коэффициент касательной, т.е. тангенс угла? (см. рис .) между осью Ox и касательной к кривой y = f(x) в точке M(x0, y0), равен значению производной при x = x0, т.е. f?(x0). В механике скорость прямолинейно движущейся точки можно истолковать как производную пути по времени. Дифференциальное исчисление (как и интегральное исчисление) имеет многочисленные применения.

Дифференциальное исчисление

раздел математики, в котором изучаются производные и дифференциалы функций и их применения к исследованию функций. Оформление Д. и. в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 в.). Они сформулировали основные положения Д. и. и чётко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Д. и. развивается в тесной связи с интегральным исчислением, вместе с которым оно составляет основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда математических дисциплин: теории рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы математического анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 587). Д. и. зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ: действительные числа (числовая прямая), функция , предел , непрерывность . Все эти понятия выкристаллизовались и получили современное содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Основная идея Д. и. состоит в изучении функций в малом. Точнее: Д. и. даёт аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Д. и.: производная и дифференциал. Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них ≈ определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является математическим выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из основных понятий современного нелинейного функционального анализа. Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt2/2, где s ≈ пройденный путь с начала падения (в метрах), t ≈ время падения (в секундах), g ≈ постоянная величина, ускорение свободного падения, g » 9,81 м/сек2. За первую секунду падения тело пройдёт около 4,9 м, за вторую ≈ около 14,7 м, а за десятую ≈ около 93,2 м, т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t, но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Dt равна Это выражение при неограниченном уменьшении промежутка времени Dt приближается к величине gt, которую называют скоростью движения в момент времени t. Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается. В общем случае эти вычисления надо проводить для любого момента времени t, промежутка времени от t до t + Dt и закона движения, выражаемого формулой s = f (t). Тогда средняя скорость движения за промежуток времени от t до t + Dt даётся формулой Ds/Dt, где Ds = f (t + Dt) ≈ f (t), а скорость движения в момент времени t равна Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t, а не функцией интервала (t, t + Dt). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость. К выражению типа (*) приводит и задача (см. рис. ) построения касательной к плоской кривой в некоторой её точке М. Пусть кривая Г есть график функции у = f (x). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла a, образованного касательной с осью Ox. Обозначим через x0 абсциссу точки М, а через x1 = x0 + Dх ≈ абсциссу точки M

    Угловой коэффициент секущей MM1 равен

    где Dy = M1N = f (x0 + Dx) ≈ f (x0) ≈ приращение функции на отрезке . Определяя касательную в точке М как предельное положение секущей MM1, когда x1 стремится к x0, получаем

    Отвлекаясь от механического или геометрического содержания приведённых задач и выделяя общий для них приём решения, приходят к понятию производной. Производной функции у = f (x) в точке х называется предел (если он существует) отношения приращения функции к приращению аргумента, когда последнее стремится к нулю, так что

    С помощью производной определяется, кроме уже рассмотренных, ряд важных понятий естествознания. Например, сила тока определяется как предел

    где Dq ≈ положительный электрический заряд, переносимый через сечение цепи за время Dt; скорость химической реакции определяется как предел

    где DQ ≈ изменение количества вещества за время Dt; вообще, производная по времени есть мера скорости процесса, применимая к самым разнообразным физическим величинам.

    Производную функции y = f (x) обозначают f" (x), у", dy/dx, df/dx или Df (х). Если функция y = f (x) имеет в точке х0 производную, то она определена как в самой точке x0, так и в некоторой окрестности этой точки и непрерывна в точке x0. Обратное заключение было бы, однако, неверным. Например, непрерывная в каждой точке функция

    графиком которой служат биссектрисы первого и второго координатных углов, при х = 0 не имеет производной, т.к. отношение Dу/Dх не имеет предела при Dx ╝ 0: если Dх > 0, это отношение равно +1, а если Dx < 0, то оно равно -1. Более того, существуют непрерывные функции, не имеющие производной ни в одной точке (см. Непрерывная функция).

    Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.

    Таблица формул и правил дифференцирования

    (C)` = 0; (xn)` = nxn-1;

    (aх)` = ax ln a и (ex)` = ex;

    (logax)` = 1/x ln a и (ln x)` = 1/x;

    (sin x)` = cos x; (cos x)` = √ sin x;

    (tg x)` = 1/cos2x; (ctg x)` = √ 1/sin2x;

    (arc tg x)` = 1/(1 + x2).

    ` = f `(x) ╠ g`(x);

    ` = Cf `(x);

    ` = f``(x) g (x) + f (x) g `(x);

    если y = f (u) и u = j(x), т. е. y = f , то dy/dx = (dy/du)×(du/dx) = f¢ (u)j¢(x).

    Здесь С, n и a ≈ постоянные, a > 0. Эта таблица, в частности, показывает, что производная от всякой элементарной функции есть снова элементарная функция.

    Если производная f" (x), в свою очередь, имеет производную, то её называют второй производной функции у = f (x) и обозначают

    у", f" (x), d2y/dx2, d2f/dx2 или D2f (x).

    Для прямолинейно движущейся точки вторая производная характеризует её ускорение.

    Аналогично определяются и производные более высокого (целого) порядка. Производная порядка n обозначается

    yn, fn (x), dny/dxn, dnf/dxn или Dnf (x).

    Дифференциал. Функция у = f (x), область определения которой содержит некоторую окрестность точки х0, называется дифференцируемой в точке x0, если её приращение

    Dy = f (x0 + Dx) - f (x0)

    можно записать в форме

    Dу = АDх + aDх,

    где А = А (x0), a = a(х, x0) ╝ 0 при х ╝ x0. В этом и только в этом случае выражение ADx называется дифференциалом функции f (x) в точке x0 и обозначается dy или df (x0). Геометрически дифференциал (при фиксированном значении x0 и меняющемся приращении Dx) изображает приращение ординаты касательной, т. е. отрезок NT (см. рис. ). Дифференциал dy представляет собой функцию как от точки х0, так и от приращения Dх. Говорят, что дифференциал есть главная линейная часть приращения функции, понимая под этим, что, при фиксированном х0, dy есть линейная функция от Dх и разность Dy - dy есть бесконечно малая относительно Dx. Для функции f (x) º х имеем dx = Dх, т. е. дифференциал независимого переменного совпадает с его приращением. Поэтому обычно пишут dy = Adx. Имеется тесная связь между дифференциалом функции и её производной. Для того чтобы функция от одного переменного y = f (x) имела в точке x0 дифференциал, необходимо и достаточно, чтобы она имела в этой точке (конечную) производную f" (x0), и справедливо равенство dy = f" (x0) dx. Наглядный смысл этого предложения состоит в том, что касательная к кривой y = f (x) в точке с абсциссой x0 как предельное положение секущей является также такой прямой, которая в бесконечно малой окрестности точки x0 примыкает к кривой более тесно, чем любая другая прямая. Таким образом, всегда А (х0) = f" (x0); запись dy/dx можно понимать не только как обозначение для производной f" (x0), но и как отношение дифференциалов зависимого и независимого переменных. В силу равенства dy = f" (x0) dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил нахождения производных.

    Рассматриваются также дифференциалы высших порядков. На практике с помощью дифференциалов часто производят приближённые вычисления значений функции, а также оценивают погрешности вычислений. Пусть, например, надо вычислить значение функции f (x) в точке х, если известны f (x0) и f" (x0). Заменяя приращение функции её дифференциалом, получают приближённое равенство

    f (x1) » f (x0) + df (x0) = f (x0) + f" (x0) (x1 - x0).

    Погрешность этого равенства приближённо равна половине второго дифференциала функции, т. е.

    1/2 d2f = 1/2 f" (x0)(x1 √ x0)

    Приложения. В Д. и. устанавливаются связи между свойствами функции и её производных (или дифференциалов), выражаемые основными теоремами Д. и. К их числу относятся Ролля теорема, формула Лагранжа f (a) ≈ f (b) = f" (c)(b ≈ а), где a < с < b (подробнее см. Конечных приращений формула), и Тейлора формула.

    Эти предложения позволяют методами Д. и. провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость , возрастание и убывание функций, их экстремумы, найти их асимптоты, точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т.д. Например, условие f" (x) > 0 влечёт за собой (строгое) возрастание функции у = f (x), а условие f" (x) > 0 ≈ её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f" (x) = 0.

    Исследование функций при помощи производных составляет основное приложение Д. и. Кроме того, Д. и. позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и ¥/¥ (см. Неопределённое выражение, Лопиталя правило). Д. и. особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

    Д. и. функций многих переменных. Методы Д. и. применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х, у) частной производной по х называется производная этой функции по х при постоянном у. Эта частная производная обозначается z"x, f"x (x, y), ╤z/╤х или ╤f (x, y)/╤x, так что

    Аналогично определяется и обозначается частная производная z по у. Величина

    Dz = f (x + Dx, y + Dy) - f (x, y)

    называется полным приращением функции z = f (x, y). Если его можно представить в виде

    Dz = ADx + ВDу + a,

    где a ≈ бесконечно малая более высокого порядка, чем расстояние между точками (х, у) и (х + Dх, у + Dу), то говорят, что функция z = f (x, y) дифференцируема. Слагаемые АDх + ВDу образуют полный дифференциал dz функции z = f (x, y), причём А = z"x, B = z"y. Вместо Dx и Dy обычно пишут dx и dy, так что

    Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy. Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции. Однако, если частные производные кроме того ещё непрерывны, то функция дифференцируема.

    Аналогично определяются частные производные высших порядков. Частные производные ╤2f/╤х2 и ╤2f/╤у2, в которых дифференцирование ведётся по одному переменному, называют чистыми, а частные производные ╤2f/╤x╤y и ╤2f/╤у╤х≈ смешанными. Если смешанные частные производные непрерывны, то они между собой равны. Все эти определения и обозначения переносятся на случай большего числа переменных.

    Историческая справка. Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены ещё математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были применимы лишь в весьма частных случаях и далеки от идей Д. и.

    Эпохой создания Д. и. как самостоятельного раздела математики следует считать то время, когда было понято, что указанные специальные задачи вместе с рядом других (в особенности с задачей определения мгновенной скорости) решаются при помощи одного и того же математического аппарата ≈ при помощи производных и дифференциалов. Это понимание было достигнуто И. Ньютоном и Г. Лейбницем.

    Около 1666 И. Ньютон разработал метод флюксий (см. Флюксий исчисление). Основные задачи Ньютон формулировал в терминах механики: 1) определение скорости движения по известной зависимости пути от времени; 2) определение пройденного за данное время пути по известной скорости. Непрерывную переменную Ньютон называл флюентой (текущей), её скорость ≈ флюксией. Т. о., у Ньютона главными понятиями были производная (флюксия) и неопределённый интеграл как первообразная (флюента). Он стремился обосновать метод флюксий с помощью теории пределов, хотя последняя была им лишь намечена.

    В середине 70-х гг. 17 в. Г. Лейбниц разработал очень удобный алгоритм Д. и. Основными понятиями у Лейбница явились дифференциал как бесконечно малое приращение переменного и определённый интеграл как сумма бесконечно большого числа дифференциалов. Лейбницу принадлежат обозначения дифференциала dx и интеграла òydx, ряд правил дифференцирования, удобная и гибкая символика и, наконец, сам термин «дифференциальное исчисление». Дальнейшее развитие Д. и. шло сначала по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы братьев Я. и И. Бернулли, Б. Тейлора и др.

    Следующим этапом в развитии Д. и. были работы Л. Эйлера и Ж. Лагранжа (18 в.). Эйлер впервые стал излагать его как аналитическую дисциплину, независимо от геометрии и механики. Он вновь выдвинул к качестве основного понятия Д. и. производную. Лагранж пытался строить Д. и. алгебраически, пользуясь разложением функций в степенные ряды; ему, в частности, принадлежит введение термина «производная» и обозначения у" или f" (x). В начале 19 в. была удовлетворительно решена задача обоснования Д. и. на основе теории пределов. Это было выполнено главным образом благодаря работам О. Коши, Б. Больцано и К. Гаусса. Более глубокий анализ исходных понятий Д. и. был связан с развитием теории множеств и теории функций действительного переменного в конце 19 ≈ начале 20 вв.

    Лит.: История. Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М., Vorlesungen über Geschichte der Mathematik, 2 Aufl., Bd 3≈4, Lpz. ≈ В., 1901≈24.

    Работы основоположников и классиков Д. и. Ньютон И., Математические работы, пер. с латин., М. ≈ Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с латин., «Успехи математических наук», 1948, т. 3, в. 1; Л"Опиталь Г. Ф. де, Анализ бесконечно малых, пер. с франц., М. ≈ Л., 1935; Эйлер Л., Введение в анализ бесконечных, пер. с латин., 2 изд., т. 1, М., 1961; его же, Дифференциальное исчисление, пер. с латин., М. ≈ Л., 1949; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

    Учебники и учебные пособия по Д. и. Хинчин А. Я., Краткий курс математического анализа, 3 изд., М., 1957; его же, Восемь лекций по математическому анализу, 3 изд., М. ≈ Л., 1948; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Ла Валле-Пуссен Ш. Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 1, Л. ≈ М., 1933; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Банах С., Дифференциальное и интегральное исчисление, пер. с польск., 2 изд., М., 1966; Рудин У., Основы математического анализа, пер. с англ., М., 1966.

    Под редакцией С. Б. Стечкина.

Википедия

Дифференциальное исчисление

Дифференциальное исчисление - раздел математического анализа, в котором изучаются понятия производной и дифференциала и способы их применения к исследованию функций.

ДИФФЕРЕНЦИАЛЬНОЕ ИСЧИСЛЕНИЕ, раздел математического анализа, в котором изучаются производные, дифференциалы и их применение к исследованию функций. Дифференциальное исчисление сложилось как самостоятельная дисциплина во 2-й половине 17 века под влиянием трудов И. Ньютона и Г. В. Лейбница, в которых они сформулировали основные положения дифференциального исчисления и отметили взаимно обратный характер дифференцирования и интегрирования. С этого времени дифференциальное исчисление развивалось в тесной связи с интегральным исчислением, составляя вместе с ним основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики, повлекло за собой появление ряда новых математических дисциплин (теории рядов, теории дифференциальных уравнений, дифференциальной геометрии, вариационного исчисления, функционального анализа) и существенно расширило возможности приложений математики к вопросам естествознания и техники.

Дифференциальное исчисление основывается на таких фундаментальных понятиях, как действительное число, функция, предел, непрерывность. Эти понятия приняли современный вид в ходе развития дифференциального и интегрального исчислений. Основные идеи и понятия дифференциального исчисления связаны с изучением функций в малом, т. е. в малых окрестностях отдельных точек, для чего требуется создание математического аппарата для исследования функций, поведение которых в достаточно малой окрестности каждой точки области их определения близко к поведению линейной функции или многочлена. Этот аппарат основан на понятиях производной и дифференциала. Понятие производной возникло в связи с большим числом различных задач естествознания и математики, приводящих к вычислению пределов одного и того же типа. Важнейшие из этих задач - определение скорости движения материальной точки вдоль прямой линии и построение касательной к кривой. Понятие дифференциала связано с возможностью приближения функции в малой окрестности рассматриваемой точки линейной функцией. В отличие от понятия производной функции действительной переменной, понятие дифференциала легко переносится на функции более общей природы, в том числе на отображения одного евклидова пространства в другое, на отображения банаховых пространств в другие банаховы пространства и служит одним из основных понятий функционального анализа.

Производная . Пусть материальная точка движется вдоль оси Оу, а х обозначает время, отсчитываемое от некоторого начального момента. Описание этого движения даёт функция у = f(х), ставящая в соответствие каждому моменту времени х координату у движущейся точки. Эту функцию в механике называют законом движения. Важной характеристикой движения (особенно если оно является неравномерным) является скорость движущейся точки в каждый момент времени х (эту скорость называют также мгновенной скоростью). Если точка движется по оси Оу по закону у = f(х), то в произвольный момент времени х она имеет координату f(х), а в момент времени х + Δх - координату f(х + Δх), где Δх - приращение времени. Число Δy = f(х + Δх) - f(х), называемое приращением функции, представляет собой путь, пройденный движущейся точкой за время от х до х + Δх. Отношение

называемое разностным отношением, представляет собой среднюю скорость движения точки в промежутке времени от х до х + Δх. Мгновенной скоростью (или просто скоростью) движущейся точки в момент времени х называется предел, к которому стремится средняя скорость (1) при стремлении к нулю промежутка времени Δх, т. е. предел (2)

Понятие мгновенной скорости приводит к понятию производной. Производной произвольной функции у = f(х) в данной фиксированной точке х называется предел (2) (при условии, что этот предел существует). Производную функции у = f(х) в данной точке х обозначают одним из символов f’(х), y’, ý, df/dx, dy/dx, Df(x).

Операцию нахождения производной (или перехода от функции к её производной) называют дифференцированием.

К пределу (2) приводит и задача построения касательной к плоской кривой, определяемой в декартовой системе координат Оху уравнением у = f(х), в некоторой её точке М (х, у) (рис.). Задав аргументу х приращение Δх и взяв на кривой точку М’ с координатами (х + Δх, f(х) + Δх)), определяют касательную в точке М как предельное положение секущей ММ’ при стремлении точки М’ к М (т. е. при стремлении Δх к нулю). Т. к. точка М, через которую проходит касательная, задана, построение касательной сводится к определению её углового коэффициента (т. е. тангенса угла её наклона к оси Ох). Проведя прямую МР параллельно оси Ох, получают, что угловой коэффициент секущей ММ’ равен отношению

В пределе при Δх → 0 угловой коэффициент секущей переходит в угловой коэффициент касательной, который оказывается равным пределу (2), т. е. производной f’(х).

К понятию производной приводит и ряд других задач естествознания. Например, сила тока в проводнике определяется как предел lim Δt→0 Δq/Δt, где Δq - положительный электрический заряд, переносимый через сечение проводника за время Δt, скорость химической реакции определяется как lim Δt→0 ΔQ/Δt, где ΔQ - изменение количества вещества за время Δt и, вообще, производная некоторой физической величины по времени является скоростью изменения этой величины.

Если функция у = f(х) определена как в самой точке х, так и в некоторой её окрестности, и имеет производную в точке х, то эта функция непрерывна в точке х. Пример функции у= |х|, определённой в любой окрестности точки х = 0, непрерывной в этой точке, но не имеющей производной при х = 0, показывает, что из непрерывности функции в данной точке, вообще говоря, не вытекает существование в этой точке производной. Более того, существуют функции, непрерывные в каждой точке своей области определения, но не имеющие производной ни в одной точке этой области определения.

В случае, когда функция у = f(х) определена только справа или только слева от точки х (например, когда х является граничной точкой отрезка, на котором задана эта функция), вводятся понятия правой и левой производных функции у = f(х) в точке х. Правая производная функции у = f(х) в точке х определяется как предел (2) при условии, что Δх стремится к нулю, оставаясь положительным, а левая производная - как предел (2) при условии, что Δх стремится к нулю, оставаясь отрицательным. Функция у = f(х) имеет в точке х производную тогда и только тогда, когда она имеет в этой точке равные друг другу правую и левую производные. Указанная выше функция у =|х| имеет в точке х = 0 правую производную, равную 1, и левую производную, равную -1, и поскольку правая и левая производные не равны друг другу, эта функция не имеет производной в точке х = 0. В классе функций, имеющих производную, операция дифференцирования является линейной, т. е. (f(x) + g(x))’ = f’(x) + g’(x), и (αf(x))’ = αf’(x) для любого числа α. Кроме того, справедливы следующие правила дифференцирования:

Производные некоторых элементарных функций суть:

α - любое число, х > 0;

n = 0, ±1, ±2,

n = 0, ±1, ±2,

Производная любой элементарной функции снова является элементарной функцией.

Если производная f’(х), в свою очередь, имеет производную в данной точке х, то производную функции f’(х) называют второй производной функции у = f(х) в точке х и обозначают одним из символов f’’(х), y’’, ÿ, d 2 f/dx 2 , d 2 y/dx 2 , D 2 f(x).

Для материальной точки, движущейся вдоль оси Оу по закону у = f(х), вторая производная представляет собой ускорение этой точки в момент времени х. Аналогично определяются производные любого целого порядка n, обозначаемые символами f (n) (x), y (n) , d (n) f/dx (n) , d (n) y/dx (n) , D (n) f(x).

Дифференциал . Функция у = f(х), область определения которой содержит некоторую окрестность точки х, называется дифференцируемой в точке х, если её приращение в этой точке, отвечающее приращению аргумента Δх, т. е. величину Δy = f(x + Δх) - f(x) можно представить в виде Δy = AΔх + αΔх, где А = А(х), α = α(x, Δх) → 0 при Δх → 0. При этом выражение АΔх называется дифференциалом функции f(х) в точке х и обозначается символом dy или df(х). Геометрически при фиксированном значении х и меняющемся приращении Δх дифференциал есть приращение ординаты касательной, т. е. отрезок РМ" (рис.). Дифференциал dy является функцией как точки х, так и приращения Δх. Дифференциал называют главной линейной частью приращения функции, поскольку при фиксированном значении х величина dy является линейной функцией от Δх, а разность Δу - dy - бесконечно малой относительно Δх при Δх → 0. Для функции f(х) = х по определению dx = Δх, то есть дифференциал независимой переменной dx совпадает с её приращением Δх. Это позволяет переписать выражение для дифференциала в виде dy=Adx.

Для функции одной переменной понятие дифференциала тесно связано с понятием производной: для того чтобы функция у = f(х) имела в точке х дифференциал, необходимо и достаточно, чтобы она имела в этой точке конечную производную f’(х), при этом справедливо равенство dy = f’(х)dx. Наглядный смысл этого утверждения состоит в том, что касательная к кривой у = f(х) в точке с абсциссой х является не только предельным положением секущей, но также и прямой, которая в бесконечно малой окрестности точки х примыкает к кривой у = f(х) теснее, чем любая другая прямая. Таким образом, всегда А(х) = f’(х) и запись dy/dx можно понимать не только как обозначение для производной f’(х), но и как отношение дифференциалов функции и аргумента. В силу равенства dy = f’(х)dx правила нахождения дифференциалов непосредственно вытекают из соответствующих правил для производных. Рассматриваются также дифференциалы второго и более высоких порядков.

Приложения . Дифференциальное исчисление устанавливает связи между свойствами функции f(х) и её производных (или её дифференциалов), составляющие содержание основных теорем дифференциального исчисления. Среди этих теорем - утверждение о том, что все точки экстремума дифференцируемой функции f(х), лежащие внутри её области определения, находятся среди корней уравнения f’(х) = 0, и часто используемая формула конечных приращений (формула Лагранжа) f(b) - f(a) = f’(ξ)(b - a), где a<ξ 0 влечёт за собой строгое возрастание функции, а условие f ’’ (х) > 0 - её строгую выпуклость. Кроме того, дифференциальное исчисление позволяет вычислять различного рода пределы функций, в частности пределы отношений двух функций, представляющие собой неопределённости вида 0/0 или вида ∞/∞ (смотри Раскрытие неопределенностей). Особенно удобно дифференциальное исчисление для исследования элементарных функций, производные которых выписываются в явном виде.

Дифференциальное исчисление функций многих переменных. Методы дифференциального исчисления применяются для исследования функций нескольких переменных. Для функции двух переменных u = f(х, у) её частной производной по х в точке М (х, у) называется производная этой функции по х при фиксированном у, определяемая как

и обозначаемая одним из символов f’(x)(x,y), u’(x), ∂u/∂x или ∂f(x,y)’/∂x. Аналогично определяется и обозначается частная производная функции u = f(x,y) по y. Величина Δu = f(x + Δx, y + Δy) - f(x,y) называется полным приращением функции и в точке М (х, у). Если эту величину можно представить в виде

где А и В не зависят от Δх и Δу, а α стремится к нулю при

то функция u = f(х, у) называется дифференцируемой в точке М (х, у). Сумму АΔх + ВΔу называют полным дифференциалом функции u = f(х, у) в точке М(х, у) и обозначают символом du. Так как А=f’х(х, у), В = f’у(х,у), а приращения Δх и Δу можно взять равными их дифференциалам dx и dy, то полный дифференциал du можно записать в виде

Геометрически дифференцируемость функции двух переменных u = f(х, у) в данной точке М (х, у) означает существование у её графика в этой точке касательной плоскости, а дифференциал этой функции представляет собой приращение аппликаты точки касательной плоскости, отвечающей приращениям dx и dy независимых переменных. Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функции одной переменной, для дифференцируемости функции двух переменных u = f(х, у) в данной точке М(х, у) не достаточно существования в этой точке конечных частных производных f’х(х, у), и f’у(х, у). Необходимое и достаточное условие дифференцируемости функции u = f(х, у) в точке М (х, у) заключается в существовании конечных частных производных f’х(х, у) и f’у(х, у) и в стремлении к нулю при

величины

Числитель этой величины получается, если сначала взять приращение функции f(х, у), отвечающее приращению Δх её первого аргумента, а затем взять приращение полученной при этом разности f(х + Δх, у) - f(х, у), отвечающее приращению Δу её вторых аргументов. Простым достаточным условием дифференцируемости функции u = f(х, у) в точке М(х, у) является существование непрерывных в этой точке частных производных f’х(х, у) и f’у(х, у).

Аналогично определяются частные производные высших порядков. Частные производные ∂ 2 f/∂х 2 и ∂ 2 f/∂у 2 , у которых оба дифференцирования ведутся по одной переменной, называют чистыми, а частные производные ∂ 2 f/∂х∂у и ∂ 2 f/∂у∂х - смешанными. В каждой точке, в которой обе смешанные частные производные непрерывны, они равны друг другу. Эти определения и обозначения переносятся на случай большего числа переменных.

Исторический очерк . Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были далеки от идей дифференциального исчисления и могли применяться лишь в весьма частных случаях. К середине 17 века стало ясно, что многие из упомянутых задач вместе с другими (например, задача определения мгновенной скорости) могут быть решены при помощи одного и того же математического аппарата, при использовании производных и дифференциалов. Около 1666 года И. Ньютон разработал метод флюксий (смотри Флюксий исчисление). Ньютон рассматривал, в частности, две задачи механики: задачу об определении мгновенной скорости движения по известной зависимости пути от времени и задачу об определении пройденного за данное время пути по известной мгновенной скорости. Непрерывные функции времени Ньютон называл флюентами, а скорости их изменения - флюксиями. Таким образом, у Ньютона главными понятиями были производная (флюксия) и неопределённый интеграл (флюента). Он пытался обосновать метод флюксий с помощью теории пределов, которая в то время была развита недостаточно.

В середине 1670-х годов Г. В. Лейбниц разработал удобные алгоритмы дифференциального исчисления. Основными понятиями у Лейбница являлись дифференциал как бесконечно малое приращение функции и определённый интеграл как сумма бесконечно большого числа дифференциалов. Он ввёл обозначения дифференциала и интеграла, термин «дифференциальное исчисление», получил ряд правил дифференцирования, предложил удобную символику. Дальнейшее развитие дифференциального исчисление в 17 веке шло в основном по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы Я. и И. Бернулли, Б. Тейлора и др.

Следующий этап в развитии дифференциального исчисления связан с работами Л. Эйлера и Ж. Лагранжа (18 век). Эйлер впервые стал излагать дифференциальное исчисление как аналитическую дисциплину, независимо от геометрии и механики. Он вновь использовал в качестве основного понятия дифференциального исчисления производную. Лагранж пытался строить дифференциальное исчисление алгебраически, пользуясь разложениями функций в степенные ряды; он ввёл термин «производная» и обозначения у’ и f’(х). В начале 19 века была в основном решена задача обоснования дифференциального исчисления на основе теории пределов, главным образом благодаря работам О. Коши, Б. Больцано и К. Гаусса. Глубокий анализ исходных понятий дифференциального исчисления был связан с развитием теории множеств и теории функций действительных переменных в конце 19 - начале 20 века.

Лит.: История математики: В 3 т. М., 1970-1972; Рыбников К. А. История математики. 2-е изд. М., 1974; Никольский С. М. Курс математического анализа. 6-е изд. М., 2001: Зорич В. А. Математический анализ: В 2 часть 4-е изд. М., 2002; Кудрявцев Л. Д. Курс математического анализа: В 3 т. 5-е изд. М., 2003-2006; Фихтенгольц Г. М. Курс дифференциального и интегрального исчисления: В 3 т. 8-е изд. М., 2003-2006; Ильин В. А., Позняк Э. Г. Основы математического анализа. 7-е изд. М., 2004. Ч. 1. 5-е изд. М., 2004. Ч. 2; Ильин В. А., Садовничий В. А., Сендов Бл. Х. Математический анализ. 3-е изд. М., 2004. Ч. 1. 2-е изд. М., 2004. Ч. 2; Ильин В. А., Куркина Л. В. Высшая математика. 2-е изд. М., 2005.

в самостоятельную математическую дисциплину связано с именами И. Ньютона и Г. Лейбница (вторая половина 17 в.). Они сформулировали основные положения Дифференциальное исчисление и чётко указали на взаимно обратный характер операций дифференцирования и интегрирования. С этого времени Дифференциальное исчисление развивается в тесной связи с интегральным исчислением , вместе с которым оно составляет основную часть математического анализа (или анализа бесконечно малых). Создание дифференциального и интегрального исчислений открыло новую эпоху в развитии математики. Оно повлекло за собой появление ряда математических дисциплин: теории рядов, теории дифференциальных уравнений, дифференциальной геометрии и вариационного исчисления. Методы математического анализа нашли применение во всех разделах математики. Неизмеримо расширилась область приложений математики к вопросам естествознания и техники. «Лишь дифференциальное исчисление дает естествознанию возможность изображать математически не только состояния, но и процессы: движение» (Энгельс Ф., см. Маркс К. и Энгельс Ф., Соч., 2 изд., т. 20, с. 587).

Дифференциальное исчисление зиждется на следующих важнейших понятиях математики, определение и исследование которых составляют предмет введения в математический анализ: действительные числа (числовая прямая), функция , предел , непрерывность . Все эти понятия выкристаллизовались и получили современное содержание в ходе развития и обоснования дифференциального и интегрального исчислений. Основная идея Дифференциальное исчисление состоит в изучении функций в малом. Точнее: Дифференциальное исчисление даёт аппарат для исследования функций, поведение которых в достаточно малой окрестности каждой точки близко к поведению линейной функции или многочлена. Таким аппаратом служат центральные понятия Дифференциальное исчисление : производная и дифференциал. Понятие производной возникло из большого числа задач естествознания и математики, приводящихся к вычислению пределов одного и того же типа. Важнейшие из них - определение скорости прямолинейного движения точки и построение касательной к кривой. Понятие дифференциала является математическим выражением близости функции к линейной в малой окрестности исследуемой точки. В отличие от производной, оно легко переносится на отображения одного евклидова пространства в другое и на отображения произвольных линейных нормированных пространств и является одним из основных понятий современного нелинейного функционального анализа .

Производная. Пусть требуется определить скорость прямолинейно движущейся материальной точки. Если движение равномерно, то пройденный точкой путь пропорционален времени движения; скорость такого движения можно определить как путь, пройденный за единицу времени, или как отношение пути, пройденного за некоторый промежуток времени, к длительности этого промежутка. Если же движение неравномерно, то пути, пройденные точкой в одинаковые по длительности промежутки времени, будут, вообще говоря, различными. Пример неравномерного движения даёт тело, свободно падающее в пустоте. Закон движения такого тела выражается формулой s = gt 2 /2, где s - пройденный путь с начала падения (в метрах), t - время падения (в секундах), g - постоянная величина, ускорение свободного падения, g » 9,81 м/сек 2 . За первую секунду падения тело пройдёт около 4,9 м , за вторую - около 14,7 м , а за десятую - около 93,2 м , т. е. падение происходит неравномерно. Поэтому приведённое выше определение скорости здесь неприемлемо. В этом случае рассматривается средняя скорость движения за некоторый промежуток времени после (или до) фиксированного момента t ; она определяется как отношение длины пути, пройденного за этот промежуток времени, к его длительности. Эта средняя скорость зависит не только от момента t , но и от выбора промежутка времени. В нашем примере средняя скорость падения за промежуток времени от t до t + Dt равна

Это выражение при неограниченном уменьшении промежутка времени Dt приближается к величине gt , которую называют скоростью движения в момент времени t . Таким образом, скорость движения в какой-либо момент времени определяется как предел средней скорости, когда промежуток времени неограниченно уменьшается.

В общем случае эти вычисления надо проводить для любого момента времени t , промежутка времени от t до t + Dt и закона движения, выражаемого формулой s = f (t ). Тогда средняя скорость движения за промежуток времени от t до t + Dt даётся формулой /Dt , где Ds = f (t + Dt ) - f (t ), а скорость движения в момент времени t равна

Основное преимущество скорости в данный момент времени, или мгновенной скорости, перед средней скоростью состоит в том, что она, как и закон движения, является функцией времени t , а не функцией интервала (t , t + Dt ). С другой стороны, мгновенная скорость представляет собой некоторую абстракцию, поскольку непосредственному измерению поддаётся средняя, а не мгновенная скорость.

К выражению типа (*) приводит и задача (см. рис. ) построения касательной к плоской кривой в некоторой её точке М . Пусть кривая Г есть график функции у = f (x ). Положение касательной будет определено, если будет найден её угловой коэффициент, т. е. тангенс угла a, образованного касательной с осью Ox . Обозначим через x 0 абсциссу точки М , а через x 1 = x 0 + Dх - абсциссу точки M 1 . Угловой коэффициент секущей MM 1 равен

Операцию нахождения производной называют дифференцированием. На классе функций, имеющих производную, эта операция линейна.

Таблица формул и правил дифференцирования

Эти предложения позволяют методами Дифференциальное исчисление провести подробное исследование поведения функций, обладающих достаточной гладкостью (т. е. имеющих производные достаточно высокого порядка). Таким путём удаётся исследовать степень гладкости, выпуклость и вогнутость , возрастание и убывание функций , их экстремумы , найти их асимптоты , точки перегиба (см. Перегиба точка), вычислить кривизну кривой, выяснить характер её особых точек и т.д. Например, условие f" (x ) > 0 влечёт за собой (строгое) возрастание функции у = f (x ), а условие f" (x ) > 0 - её (строгую) выпуклость. Все точки экстремума дифференцируемой функции, принадлежащие внутренности её области определения, находятся среди корней уравнения f" (x ) = 0.

Исследование функций при помощи производных составляет основное приложение Дифференциальное исчисление Кроме того, Дифференциальное исчисление позволяет вычислять различного рода пределы функций, в частности пределы вида 0/0 и ¥/¥ (см. Неопределённое выражение , Лопиталя правило ). Дифференциальное исчисление особенно удобно для исследования элементарных функций, т.к. в этом случае их производные выписываются в явной форме.

Дифференциальное исчисление функций многих переменных. Методы Дифференциальное исчисление применяются для изучения функций нескольких переменных. Для функции двух независимых переменных z = f (х , у ) частной производной по х называется производная этой функции по х при постоянном у . Эта частная производная обозначается z" x , f" x (x , y ), ¶z/ х или ¶f (x , y )/¶x , так что

Аналогично определяется и обозначается частная производная z по у . Величина

Dz = f (x + Dx , y + Dy ) - f (x , y )

называется полным приращением функции z = f (x , y ). Если его можно представить в виде

Dz = A Dx + В Dу + a,

где a - бесконечно малая более высокого порядка, чем расстояние между точками (х , у ) и (х + Dх , у + Dу ), то говорят, что функция z = f (x , y ) дифференцируема. Слагаемые А Dх + В Dу образуют полный дифференциал dz функции z = f (x , y ), причём А = z" x , = z" y . Вместо Dx и Dy обычно пишут dx и dy , так что

Геометрически дифференцируемость функции двух переменных означает существование у её графика касательной плоскости, а дифференциал представляет собой приращение аппликаты касательной плоскости, когда независимые переменные получают приращения dx и dy . Для функции двух переменных понятие дифференциала является значительно более важным и естественным, чем понятие частных производных. В отличие от функций одного переменного, для функций двух переменных существование обеих частных производных первого порядка ещё не гарантирует дифференцируемости функции. Однако, если частные производные кроме того ещё непрерывны, то функция дифференцируема.

Аналогично определяются частные производные высших порядков. Частные производные ¶ 2 f/ х 2 и ¶ 2 f/ у 2 , в которых дифференцирование ведётся по одному переменному, называют чистыми, а частные производные ¶ 2 f/ x y и ¶ 2 f/ у х - смешанными. Если смешанные частные производные непрерывны, то они между собой равны. Все эти определения и обозначения переносятся на случай большего числа переменных.

Историческая справка. Отдельные задачи об определении касательных к кривым и о нахождении максимальных и минимальных значений переменных величин были решены ещё математиками Древней Греции. Например, были найдены способы построения касательных к коническим сечениям и некоторым другим кривым. Однако разработанные античными математиками методы были применимы лишь в весьма частных случаях и далеки от идей Дифференциальное исчисление

Эпохой создания Дифференциальное исчисление как самостоятельного раздела математики следует считать то время, когда было понято, что указанные специальные задачи вместе с рядом других (в особенности с задачей определения мгновенной скорости) решаются при помощи одного и того же математического аппарата - при помощи производных и дифференциалов. Это понимание было достигнуто И. Ньютоном и Г. Лейбницем.

Около 1666 И. Ньютон разработал метод флюксий (см. Флюксий исчисление ). Основные задачи Ньютон формулировал в терминах механики: 1) определение скорости движения по известной зависимости пути от времени; 2) определение пройденного за данное время пути по известной скорости. Непрерывную переменную Ньютон называл флюентой (текущей), её скорость - флюксией. Т. о., у Ньютона главными понятиями были производная (флюксия) и неопределённый интеграл как первообразная (флюента). Он стремился обосновать метод флюксий с помощью теории пределов, хотя последняя была им лишь намечена.

В середине 70-х гг. 17 в. Г. Лейбниц разработал очень удобный алгоритм Дифференциальное исчисление Основными понятиями у Лейбница явились дифференциал как бесконечно малое приращение переменного и определённый интеграл как сумма бесконечно большого числа дифференциалов. Лейбницу принадлежат обозначения дифференциала dx и интеграла òydx , ряд правил дифференцирования, удобная и гибкая символика и, наконец, сам термин «дифференциальное исчисление». Дальнейшее развитие Дифференциальное исчисление шло сначала по пути, намеченному Лейбницем; большую роль на этом этапе сыграли работы братьев Я. и И. Бернулли , Б. Тейлора и др.

Следующим этапом в развитии Дифференциальное исчисление были работы Л. Эйлера и Ж. Лагранжа (18 в.). Эйлер впервые стал излагать его как аналитическую дисциплину, независимо от геометрии и механики. Он вновь выдвинул к качестве основного понятия Дифференциальное исчисление производную. Лагранж пытался строить Дифференциальное исчисление алгебраически, пользуясь разложением функций в степенные ряды; ему, в частности, принадлежит введение термина «производная» и обозначения у" или f" (x ). В начале 19 в. была удовлетворительно решена задача обоснования Дифференциальное исчисление на основе теории пределов. Это было выполнено главным образом благодаря работам О. Коши , Б. Больцано и К. Гаусса . Более глубокий анализ исходных понятий Дифференциальное исчисление был связан с развитием теории множеств и теории функций действительного переменного в конце 19 - начале 20 вв.

Лит.: История. Вилейтнер Г., История математики от Декарта до середины 19 столетия, пер. с нем., 2 изд., М., 1966; Стройк Д. Я., Краткий очерк истории математики, пер. с нем., 2 изд., М., 1969; Cantor М., Vorlesungen über Geschichte der Mathematik, 2 Aufl., Bd 3-4, Lpz. - В., 1901-24.

Работы основоположников и классиков Дифференциальное исчисление Ньютон И., Математические работы, пер. с латин., М. - Л., 1937; Лейбниц Г., Избранные отрывки из математических сочинений, пер. с латин., «Успехи математических наук», 1948, т. 3, в. 1; Л"Опиталь Г. Ф. де, Анализ бесконечно малых, пер. с франц., М. - Л., 1935; Эйлер Л., Введение в анализ бесконечных, пер. с латин., 2 изд., т. 1, М., 1961; его же, Дифференциальное исчисление, пер. с латин., М. - Л., 1949; Коши О. Л., Краткое изложение уроков о дифференциальном и интегральном исчислении, пер. с франц., СПБ, 1831; его же, Алгебраический анализ, пер. с франц., Лейпциг, 1864.

Учебники и учебные пособия по Дифференциальное исчисление Хинчин А. Я., Краткий курс математического анализа, 3 изд., М., 1957; его же, Восемь лекций по математическому анализу, 3 изд., М. - Л., 1948; Смирнов В. И., Курс высшей математики, 22 изд., т. 1, М., 1967; Фихтенгольц Г. М., Курс дифференциального и интегрального исчисления, 7 изд., т. 1, М., 1969; Ла Валле-Пуссен Ш. Ж. де, Курс анализа бесконечно малых, пер. с франц., т. 1, Л. - М., 1933; Курант Р., Курс дифференциального и интегрального исчисления, пер. с нем. и англ., 4 изд., т. 1, М., 1967; Банах С., Дифференциальное и интегральное исчисление, пер. с польск., 2 изд., М., 1966; Рудин У., Основы математического анализа, пер. с англ., М., 1966.

Под редакцией С. Б. Стечкина.

Статья про слово "Дифференциальное исчисление " в Большой Советской Энциклопедии была прочитана 24920 раз

Министерство науки и образования

Кафедра "ИиВТ"

ПОЯСНИТЕЛЬНАЯ ЗАПИСКА

К курсовой работе

По предмету: Высшая математика

На тему: Дифференциальное исчисление

г. Талдыкорган 2008 год


Введение

1. Предмет математики и основные периоды ее развития. Математика представляет собой один из самых важных фундаментальных наук. Слово "математика" произошло от греческого слова "матема", что означает знания. Возникла математика на первых же этапах человеческого развития в связи с практической деятельностью людей. С самых древних времен люди, производя различные работы, встречались с необходимостью выделения и образования тех или иных совокупностей объектов, участков земли, жилищных потребностей объектов, жилищных помещений.

Во-первых, во всех этих случаях нужно было устанавливать количественные оценки рассматриваемых множеств, измерять их площади и объемы, сравнивать, вычислять, преобразовывать. По определению, данному Ф.Энгельсом:

МАТЕМАТИКА – это наука изучает количественные отношения и пространственные формы реального мира.

2. Основные математические понятия, такие как число, геометрическая фигура, функция, производная, интеграл, случайное событие и его вероятность и т.д. За свою историю математика, которая развивалась в тесной связи с развитием производственной деятельностью людей и общественной культуры, превратилась в стройную дедуктивную науку, представленную как мощный аппарат для изучения окружающего нас мира.

Академик А.Н. Калинов выделил четыре основных развития в истории математики.

Первый – период зарождения математики, начало которого лежит и теряется в глубинах тысячелетий истории человечества и продолжается до VI – V веков до нашей эры. В этом периоде создается арифметика, а также зачатки геометрии. Математические сведения этого периода состоят в основном из свода правил решения различных практических задач.

Второй период – элементарной математики, т.е. математики, постоянных величин (VI – V вв. до н.э. – XVII в. н.э.). Уже в начале этого периода (около 300 лет до н.э.) Евклид создает теорию трех книг ("Начало Евклида" - первый из дошедших до нас больших теоретических исследований по математике), в которых, в частности изучается дедуктивным образом на базе система аксиомы вся элементарная геометрия. Изданной в IX веке сочинения ал-Хорезми "Кибат ал-Джарап ал-Мукабана" содержит общие приемы решения задач, сводящие к управлению первой и второй степени. В XV веке вместо громких выражений стали употреблять знаки + и -, знаки степеней, корней, скобки. В XVI веке Ф.Виет применяет буквы для обозначения данных и не известных величин. К середине XVII века в основном сложилась современная алгебраическая символика, и этим были созданы основы формального математического языка.

Третий период – период создания математики переменных величин (XVII век – середина XIX века). Начиная с XVII века, в связи с изучением количественного отношения в процессе их изменения, на первый план выносили понятия переменной величины и функции. В этом периоде в работах Р.Декарта на базе мирового исследования метода системных координат создается аналитическая геометрия. В ра ботах И.Ньютона и Г.В.Лейбница завершает создание дифференциального интегрального исчисления.

Четвертый период – современные математики. Его начало следует относить к двадцатым годам XIX века – этот период начинается с работ Э.Гаусса, в которых заложены идеи теории алгебраических структур, В.И.Лобачевского, который открыл первую неевклидовую геометрию – геометрию Лобачевского.

В последствии дальнейшего распространения получил аксиоматический метод, в новую фазу вступили работы по обоснованию математики, математической логики и математическому моделированию. Создание в середине прошлого века ЭВМ привело не только более к глубокому и широкому применению математики в других областях знания, в технических науках, в вопросах организации и управления производством, но и зарождению развития новых областей теоретических и прикладных математических функций. Проникновения методов современной математики и ЭВМ в другие наук и практику применяет на столько всеобщий и глубокий характер, что одно из способностей нынешнего этапа развития человеческой культуры считается процесс математизации знаний и компьютеризации всех сфер трудовой деятельности и жизни людей.

3. Понятие о математическом моделировании. При изучении количественных характеристик сложных объектов, процессов явлений, пользуются методом математического моделирования, который состоит в том, что рассматриваемые закономерности формируются на математическом языке и исследуются при помощи соответствующих математических средств. Математический модуль изучаемого объекта записывается при помощи математических символов и состоит из совокупности уравнений, неравенств, формул, алгоритмов программ (для ЭВМ), в состав которых входят переменные и постоянные величины, различные операции, функции, быть может, и их производные, и другие математические понятия. Приемами составления простейших математических моделей служит хорошо известный, из курса математики средней школы, прием решения задач при помощи уравнений и систем уравнений – полученное уравнение или система уравнений является математической моделью данной задачи. Это были примеры задач с единственным решением – детерминированных задач. Однако часто встречаются задачи, имеющие много решений. В таких случаях на практике возникает вопрос о нахождении такого решения, которое является наиболее подходящим для той или иной точки зрения. Такие решения называются оптимальными решениями.

Оптимальное решение определяется как решение, для которого некоторая функция называется целевой функцией, принимает при заданных ограничениях наибольшее и наименьшее значения. Целевую функцию составляют из условия задачи, и она выражает величину, которую нужно оптимизировать (т.е. максимизировать или минимизировать), - например, получаемую прибыль, расходы, ресурсы и т.п.

Оказывается, что широкий класс, в частности задачи управления, составляют задачи в математических моделях которых условия на переменных создают неравенство или равенство. Теория и методы решения таких задач составляет раздел математики, известный под названием "Математическое программирование".

Если ограничения и целевая функция является многочисленным первой степени (линейны), то такие задачи составляют раздел математического программирования.

Математические модели больших производных систем, как правило, имеют сложную структуру. В частности, в них количество переменных и неравенств или уравнений могут насчитывать несколько десятков и даже сотен степеней имеют довольно сложный вид. Такие задачи решаются в вычислительных центрах с использованием больших вычислительных машин.

Следуя А.Н.Тихонову, в процессе решения реальных задач методом математического моделирования вычисляем следующие пять этапов:

1. Построение качественной модели, т.е. рассматривание явлений, выделение основных факторов и установление закономерностей, которые имеют место в следующем явлении.

2. Построение математической модели, т.е. перевод на язык математических состояний, установленных качественных закономерностей явлений. На этом же этапе состояния целевая функция, т.е. такая числовая характеристика переменных, наибольшему или наименьшему значению которой соответствует лучшая ситуация с точки зрения предыдущего решения.

3. Решение получаемой задачи. В связи с тем, что часто математические модели являются довольно громадными, вычисления проводятся с помощью ЭВМ в вычислительных центрах.

4. Сопоставление результатов вычислений являются неудовлетворительными, то переходят ко второму циклу процесса моделирования, т.е. повторяют этапы 1, 2, 3 с должными уточнениями информации пока не будет достигнуто удовлетворительное соглашение с имеющимися данными о модулируемом объекте.

Математические методы необходимо применять при решении крупных задач, таких как: финансовые отношения, планирование народного хозяйства, использование атомной энергией в широких целях, создание больших воздушных и космических кораблей разного назначения, обеспечение длительной работы научных экспедиций в космосе и т.д.

Однако было бы ошибочно думать, что математические методы нужны только для решения крупных задач. При изучении наук в средней школе мы встречаемся с применениями математических методов и вычислений в решении конкретных различных задач. Подобные задачи встречаются в ежедневной работе технических специалистов, экономистов, технологов. Поэтому работникам народного хозяйства, в какой бы области они не трудились, необходимо владеть основными методами исследования и приемами вычисления, устным, письменным, и машинным счетам. Специалисты должны иметь полное представление о возможностях современной ЭВМ.

В средней школе мы ознакомились с основными теориями уравнений, их систем, векторов, дифференциального и интегрального исчислениями и их применениями в решении практических задач.

Цель изучения математики в средних специальных заведениях состоит в том, чтобы углубить знания по изученным разделам и ознакомиться с некоторыми новыми разделами математики (аналитической геометрией, теорией вероятности и др.), которые обогащают общую культуру, развивает логическое мышление, широко используется в математическом моделировании задач, с которыми встречается современный специалист в своей повседневной деятельности.

Типовой учебный план

Типовой учебный план – это документ, предназначенный для реализации государственных требований к минимуму содержания и уровня подготовки выпускных учебных заведений средне специального образования. Он определяет общий перечень дисциплин, и обязательные объемы времени для их реализации, виды и минимальную продолжительность произведенной практики, примерный перечень учебных кабинетов, лабораторий и мастерских. В учебном плане также предусматривается курсовое проектирование не более чем по трем дисциплинам во весь период обучения. Виды производственной практики и их продолжительность определяется в соответствии с типовой учебной практики по заданной специальности. График учебного процесса носит рекомендательный характер и может быть откорректирован учебным заведением при обязательном соблюдении продолжительности теоретического обучения, экзаменационных сессий, а также сроков проведения зимних и завершающих учебный год летних каникул (см. таблицу 1).