Сила кориолиса формулы. Что такое сила Кориолиса

Эффект от силы Кориолиса вступает в заметную силу когда производятся стрельба на очень дальние дистанции как представленная на картинке. Движение Земли вокруг своей оси двигает цель во время полета пули.

Когда вы находитесь на стрельбище, земля на которой вы стоите, кажется стабильной. Но на самом деле это большая сфера, летящая в космосе и одновременно вращающаяся по своей оси, с одним полным оборотом в 24 часа. Вращение земли может создавать проблемы для стрелков на сверхдальние дистанции. Во время продолжительного полета пули, вращение планеты вызывает наглядное отклонение цели от траектории пули при стрельбе на очень дальние дистанции. Это называется корреляционный эффект или эффект корреляции в баллистике.

Брайен Литц (Bryan Litz) из Прикладной Баллистики (Applied Ballistics) выпустил небольшое видео где он объясняет эффект силы Кориолиса. Брайан подмечает что этот эффект " очень незначителен. Стрелки любят возвышать его силу, так как он кажется очень таинственным. " В большинстве случаев при стрельбе до ~ 1000 м., сила Кориолиса не важна в учете. Если пользоваться Американской системой ввода поправок (1/4 MOA угловой минута = ~1" дюйм на 100 ярдов) на 1000 ярдов (914,4 м.) эффект можно будет скорректировать на прицеле одним щелчком (для большинства патронов). Даже после отметки в 1000 ярдов в условиях повышенного ветра, эффект силы Кориолиса может быть " потерян в общем шуме ". Но в очень благоприятных условиях стрельбы без ветра на дальние дистанции, Брайен утверждает что можно получить преимущество в точности используя баллистические решения с учетом корреляционного эффекта.

Браен продолжает: " Эффект силы Кориолиса...связан с вращение Земли. Вы по сути стреляете из одной точки в другую на вращающейся сфере, в инерционной системе координат. Последствия будут такие что если время полета пули будет достаточно продолжительным, пуля будет сносится от своей предполагаемой цели. Количество этого сноса очень мало - оно зависит от географической широты и направления стрельбы относительно планеты. "

Эффект силы Кориолиса очень трудно уловим. Со средним баллистическим коэффициентом и скоростью, у вас будет свободная дистанция до 1000 ярдов, до того как можно будет сделать поправку в один щелчок на прицеле. Брайан говорит: " эффект корреляции это НЕ то о чем следует думать при стрельбе по движущейся цели, это НЕ то о чем следует думать при стрельбе с сильным ветром, так как есть условия которые будут иметь более очевидное влияние, а эффект силы Кориолиса будет отвлекать вас от них. "

" Где действительно можно задуматься об использовании данного эффекта, использовать его на постоянной основе и он будет влиять на ваши показатели - это при стрельбе на сверхдальние дистанции по относительно малым целям в условиях малого ветра. Когда вы знаете скорость пули и баллистический коэффициент очень хорошо и есть безупречные условия, тогда вы заметите влияние силы Кориолиса. Вы получите больше отдачи в вашей деятельности, если будете учитывать эту силу только в вышеприведенных случаях. Но в большинстве случаев практической стрельбы на дальние дистанции, сила Кориолиса НЕ так важна. Что действительно важно это понять ваши приоритеты в стрельбе и учет их в процессе."

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы, появляется еще одна сила, называемая силой Кориолиса .

Рассмотрим рис.5. Шарик массой m движется прямолинейно со скоростью от центра к краю диска. Если диск неподвижен, то шарик попадает в точку М , а если диск вращается с постоянной угловой скоростью ω, то шарик попадает в точку N . Это обусловлено тем, что на шарик действует сила Кориолиса.

Рис.5

Появление силы Кориолиса можно обнаружить, если рассмотреть пример с шариком на спице на вращающемся диске, но без пружины. Для того чтобы заставить шарик двигаться с некоторой скоростью вдоль спицы, необходима боковая сила. Шарик вращается вместе с диском с постоянной угловой скоростью w, поэтому его момент импульса равен:

Если шарик будет перемещаться вдоль спицы с постоянной скоростью , то с изменением момент импульса шарика изменится. А это означает, что на движущееся во вращающейся системе тело должен действовать некоторый момент силы, который согласно основному уравнению динамики вращательного движения равен

Для того чтобы заставить шарик двигаться по вращающемуся диску вдоль радиальной прямой со скоростью , необходимо прилагать боковую силу

направленную перпендикулярно . Относительно вращающейся системы (диска) шарик движется с постоянной скоростью.

Это можно объяснить тем, что сила уравновешивается приложенной к шарику силой инерции , перпендикулярной к скорости (рис.6). Сила и есть Кориолисова сила инерции. Она определяется выражением

Рис.6

С учетом направления силу Кориолиса можно представить в виде

Сила Кориолиса всегда перпендикулярна скорости тела . Во вращающейся системе отсчета при = 0 эта сила отсутствует. Таким образом, Кориолисова сила инерции возникает только тогда, когда система отсчета вращается, а тело движется относительно этой системы. Действием силы Кориолиса объясняется ряд эффектов, наблюдающихся на поверхности Земли, например, поворот плоскости колебаний маятника Фуко относительно Земли, отклонение к востоку от линии отвеса свободно падающих тел, размытие правого берега рек в северном полушарии и левого в южном, неодинаковый износ рельсов при двухколейном движении.

Начало формы

При движении тела относительно вращающейся системы отсчета, кроме центробежной силы инерции, появляется еще одна сила, называемая силой Кориолиса или кориолисовой силой инерции.

Появление вориолисовой силы можно обнаружить на следующем примере. Возьмем Горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 34.1, а). Запустим в направлении от шарик со скоростью V. Если диск не вращается, шарик будет катиться вдоль прочерченной нами прямой. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться но изображенной пунктиром кривой ОВ, причем его скорость относительно диска v будет изменять свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила , перпендикулярная к скорости

Чтобы заставить шарик катиться по вращающемуся диску Вдоль радиальной прямой; нужно сделать направляющую, например, в виде ребра ОА (рис. 34.1, б). При качении шарика направляющее ребро действует на него с некоторой силой Относительно вращающейся системы (диска) шарик движется с постоянной по направлению скоростью. Это можно формально объяснить тем, что сила уравновешивается приложенной к шарику силой инерции перпендикулярной к скорости V. Сила и есть корволиеова сила инерции.

Найдем сначала выражение силы Кориолиса для частного случая, когда частица движется относительно вращающейся системы отсчета равномерно по окружности, лежащей в плоскости, перпендикулярной к оси вращения, с центром, находящимся на этой оси (рис. 34.2). Скорость частицы относительно вращающейся системы обозначим v. Скорость частицы относительно неподвижной (инерциальной) системы отсчета v равна по величине в случае (в) и в случае (б) , где - угловая скорость вращающейся системы, R - радиус окружностй (см. (5.7)).


Для того чтобы частица двигалась относительно неподвижной системы по окружности со скоростью на нее должна действовать направленная к центру окружности сила , например, сила натяжения нити, которой частица привязана к центру окружности (см. рис. 34.2, а). Величина этой силы равна

Относительно вращающейся системы частица в этом случае движется с ускорением т. е. так, как если бы на нее действовала сила

(см. (34.1)). Таким образом, во вращающейся системе частица ведет себя так, как если бы на нее, кроме направленной к центру окружности силы F, действовали еще две направленные от центра силы: и сила модуль которой равен (рис. 34.2, а). Легко сообразить, чтосклу можно представить в виде

Сила (34.3) и есть кориолисова сила инерции. При эта сила отсутствует. Сила не зависит - она, как мы уже отмечали, действует как на покоящиеся, так и на движущиеся тела.

В случае, изображенном на рис. 34.2, б,

Соответственно

Следовательно, во вращающейся системе частица ведет себя так, как если бы на нее действовали две направленные к центру окружности силы: F и а также направленная от центра сила (см. рис. 34.2, б). Сила и в этом случае может быть представлена в виде (34.3).

Теперь перейдем к нахождению выражения силы Кориолиса для случая, когда частица движется относительно вращающейся системы отсчета произвольным образом. Свяжег с вращающейся системой координатные оси причем ось совместим с осью вращения (рис. 34.3). Тогда радиус-вектор частицы можно представить в виде

где - орты координатных осей. Орты и вращаются вместе с системой отсчета с угловой скоростью , орт остается неподвижным.

Положение частицы относительно неподвижной системы следует определять с помощью радиуса-вектора . Однако символы обозначают один и тот же вектор, проведенный из начала координат к частице. Символом обозначил этот вектор наблюдатель, «живущий» во вращающейся системе отсчета; по его наблюдениям орты неподвижны, поэтому при дифференцировании выражения (34.4) он обращается с этими ортами как с константами. Символом пользуется неподвижный наблюдатель; для него орты и вращаются со скоростью со (орт неподвижен). Поэтому при дифференцировании равного выражения (34.4) неподвижный наблюдатель должен обращаться с как с функциями t, производные которых равны:

(см. рис. 34.3 и формулу (2.56); орт перпендикулярный к равен орт перпендикулярный к равен . Для вторых производных ортов по времени получаются выражения:

Найдем скорость частицы относительно вращающейся системы отсчета. Для этого продифференцируем радиус-вектор (34.4) по времени, считая орты константами:

Повторное дифференцирование этого выражения даст ускорение частаты относительно вращающейся системы отсчета:

Теперь найдем скорость частицы относительно неподвижной системы отсчета. Для этого продифференцируем радиус-вектор (34.4) «с позиций» неподвижного наблюдателя. Воспользовавшись обозначением вместо (Напомним, что ), получше:

Продифференцировавать это выражение еще раз по t, найдем ускорение частицы относительно неподвижней системы:

Приняв во внимание формулы (34.5), (34.б) и (34.8), полученное соотношение можно преобразовать к виду:

Рассмотрим векторное произведение Представим ею в виде определителя (см. (2.33)):

(34.11)

Согласно кроме того, при выбранном нами направлении координатных осей Подстановка этих значений в (34.11) дает

(34.12)

Полученный результат показывает, что второй член формулы: (34.10) можно записать в виде Выражение, стоящее в скобках в последнем члене формулы (34.10), равно перпендикулярной к оси вращёння (к оси ) составляющей радиуса-вектора (см. (34.4)). Обозначим эту составляющую символом R (ср. с рис. 5.5). С учетом всего сказанного соотношение (34.10) можно зависать следующим образом:

Из (34.13) вытекает, что ускорение частицы относительно ненедвижной системы отсчета можно представить в виде суммы трех ускорений: ускорения относительно вращающейся системы , ускорения, равного и ускорения

которое называется кориолисовым ускорением.

Для того чтобы частица двигалась с ускорением (34.13), На нее должны действовать какие-то тела с результирующей силой . Согласно (34.13)

(перестановка сомножителей изменяет знак векторного произведения). Полученный результат означает, что при составлении уравнения второго закона Ньюгона во вращающейся системе отсчета, кроме сил взаимодействия, нужно учитывать центробежную силу инерции. определяемую формулой (33.2), а также «эриолисову силу, которая и в самом общем случае определяется формулой (34.3).

Отметим, что сила Кориолиса всегда лежит в плоскости, перпендикулярной к оси вращения.

Из сопоставления формул (34.9), (34.7) и (34.5) вытекает, что

С помощью выкладок, аналогичных тем, которые привели нас к соотношению (34.13), можно убедиться в том, что последний член полученного выражения равен . Следовательно,

(34.16)

При эта формула переходит в (5.8).

Примеры движения, в которых проявляется корнолисова сила инерции. При истолковании явлений, связанных с движением тел относительно земной поверхности, в ряде случаев необходимо учитывать влияние кориолисовых сил. Например, при свободном падении тел на них действует корнолисова сила, обусловливающая отклонение к востоку от линии отвеса (рис. 34.4). Эта сила максимальна на экваторе и обращается в нуль на полюсах.

Летящий снаряд также испытывает отклонения, обусловленные кориолисовыми силам инерции (рис. 34.5). При выстреле из орудия, направленного на север, снаряд будет отклоняться к востоку в северном полушарий и к западу - в южном. При стрельбе вдоль меридиана на юг направления отклонения будут противоположными. При стрельбе вдоль экватора силы Кориолиса будут прижимать снаряд к Земле, если выстрел произведен в направлении на запад, и поднимать его кверху, если выстрел произведен в восточном направлении. Предоставь ляем читателю самому убедиться в том, что сила Кориолиса, действующая на тело, движущееся вдоль меридиана в любом Направлении (на север или на юг), направлена по отношению к. направлению движения, вправо в северном полушарии и влево в южном полушарии. Это приводит к тому, что у рек подмывается всегда правый берег в северном полушарии и левый берег в южном полушарии. Эти же причины объясняют неодинаковый износ рельсов При двухколейном движении.

Силы Кориолиса проявляются и при качаниях маятника. На рис. 34.6 показана траектория груза маятника (для простоты предположено, что маятник находится на полюсе). На северном полюсе сила Кориолиса будет все время направлена вправо по ходу маятника, на южном полюсе - влево. В итоге траектория имеет вид розетки.

Как следует из рисунка, плоскость качаний маятника поворачивается относительно Земли в направлении насовой стрелки, причем за сутки она совершает один оборот. Относительно гелиоцентрической системы отсчета дело обстоит так, что плоскость качаний остается неизменной, а Земля поворачивается относительно нее, делая за сутки один оборот. Можно показать, что на широте плоскость качаний маятника Поворачивается за сутки на угол .

Таким образом, наблюдения за вращением плоскости качаний Маятника (маятники, предназначенные для этой цели, называются маятниками Фуко) дают непосредственное доказательство вращения Земли вокруг своей оси.

Вопрос 7. Неинерциальные системы отсчета. Силы инерции, понятие о принципе эквивалентности.

Системы отсчета, движущиеся с ускорением относительно инерциальной системы отсчета, называются неинерциальными .

Сила инерции - это сила, используемая для описания движения при переходе в неинерциальных системах отсчета (то есть при движении с ускорением). Эта сила равна по величине силе, вызывающей ускорение, но направлена в сторону, противоположную ускорению. Именно поэтому в ускоряющемся транспорте сила инерции тянет пассажиров назад, а в тормозящем транспорте - наоборот, вперед.

Сила инерции - векторная величина, численно равная произведению массы m материальной точки на модуль её ускорения и направленная противоположно ускорению.


Существует 2 главные разновидности сил инерции: кориолисова сила и переносная сила инерции. Переносная сила инерции состоит из 3 слагаемых

M- поступательная сила инерции

m 2 r - центробежная сила инерции

M[r]- вращательная сила инерции

В динамике относительным движением называется движение по отношению к неинерциальной системе отсчёта, для которой законы механики Ньютона несправедливы. Чтобы уравнения относительного движения материальной точки сохранили тот же вид, что и в инерциальной системе отсчёта, надо к действующей на точку силе взаимодействия с другими телами F присоединить переносную силу инерции F пер = –m a пер и Кориолиса силу инерции F kop = –m a kop , где m - масса точки. Тогда

m a oтн = F + F пер + F kop

ma o тн = F ma kop –ma пер

m a oтн = F+2 m [ V отн ]- mV 0 + m 2 r - m [r ]

F kop = –m a kop =2m[ V отн ]-кориолисова сила

F пер = –m a пер = -m

m 2 r - m [r ] - переносная сила инерции.

Примеры. Математический маятник, расположенный на движущейся с ускорением тележке. Маятник Любимова.

Центробежная сила инерции – сила, с которой движущаяся материальная точка действует на тела (связи), стесняющие свободу её движения и вынуждающие её двигаться криволинейно. (или Сила, с которой связь действует на материальную точку, равномерно движущуюся по окружности, в системе отсчета, связанной с этой точкой.)

F ц.б.=

, R- радиус кривизны траектории.

Рис. К понятию центробежной силы инерции.

Центробежная сила направлена от центра кривизны траектории по её главной нормали (при движении по окружности по радиусу от центра окружности).

Центробежная сила - это тоже сила инерции - она направлена против центростремительной силы, вызывающей круговое движение.

Центробежная сила и центростремительная сила равны по величине, направлены противоположно.

Сила Кориолиса - одна из сил инерции, вводимая для учёта влияния вращения подвижной системы отсчёта на относительное движение тела.

При движении тела относительно вращающейся системы отсчета появляется сила инерции, называемая силой Кориолиса или кориолисовой силой инерции. Проявление силы Кориолиса можно рассмотреть на диске, вращающемся вокруг вертикальной оси (рис.1).

На диске нанесена радиальная прямая ОА и находится движущийся со скоростью V в направлении от О к А шарик. Если диск не вращается, шарик будет катиться вдоль прочерченной прямой. Если же диск привести в равномерное вращение с угловой скоростью , то шарик будет катиться по кривой ОВ, причем его скорость V относительно диска будет изменять свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него (перпендикулярно к его скорости) действовала какая-то сила, которая, однако, не вызвана взаимодействием шарика с каким-либо телом. Это - сила инерции, названная силой Кориолиса. Величина этой силы пропорциональна массе тела m, относительной скорости движения тела V и угловой скорости вращения системы w: Fк=2mVw.

Сила Кориолиса Fc лежит в плоскости диска: она перпендикулярна векторам V и и направлена в сторону, определяемую векторным произведением [V]:.

Сила Кориолиса как сила инерции направлена противоположно кориолисову ускорению a к:

Если векторы V и параллельны, то сила Кориолиса обращается в нуль.

Проявление действия силы Кориолиса:

Размытие правых берегов рек, текущих на юг в северном полушарии;

Движение маятника Фуко;

Наличие дополнительного бокового давления на рельсы, а, следовательно, их неравномерный износ, возникающих при движении поездов.

Сила Кориолиса проявляется, например, в работе маятника Фуко. Кроме того, поскольку Земля вращается, то сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса направлена вправо от движения, поэтому правые берега рек в северном полушарии более крутые - их подмывает вода под действием этой силы. В южном полушарии всё происходит наоборот. Сила Кориолиса ответственна также и за возникновение циклонов и антициклонов.

Принцип эквивалентности Эйнштейна.

Поле силы инерции эквивалентно однородному полю силы тяжести. Это утверждение представляет собой принцип эквивалентности Эйнштейна.

Принципом эквивалентности и формулируется так: сила тяжести по своему физическому действию не отличается от равной ей по величине силе инерции.

Из принципа Эйнштейна вытекает эквивалентность инертной и гравитационной масс в ограниченной области пространства. В ограниченной, поскольку поле гравитационных сил в общем случае не является однородным (сила взаимодействия уменьшается по мере удаления тел друг от друга).

Сила Кориолиса в природе

Самый обычный пример использования силы Кориолиса - это эффект ускорения кручения танцоров. Чтоб ускорить свое вращение, человек может начать вертеться с обширно разведёнными в стороны руками, а потом - уже в процессе - резко придавить руки к туловищу, что вызовет повышение радиальный скорости (согласно закону сохранения момента импульса). Эффект силы Кориолиса проявится в том, что для подобного движения руками придётся прикладывать усилия не только лишь по направлению к телу, да и в направлении по вращению. При всем этом появляется чувство, что руки отталкиваются от чего-то, при всем этом ещё больше ускоряясь.

Сила Кориолиса также проявляется, к примеру, в работе маятника Фуко. Не считая того, так как Земля крутится, то сила Кориолиса проявляется и в глобальных масштабах. В северном полушарии сила Кориолиса ориентирована на право от движения, потому правые берега рек в Северном полушарии более крутые - их подмывает вода под действием этой силы (см. Закон Бэра). В Южном полушарии всё происходит напротив. Сила Кориолиса несет ответственность также и за вращение циклонов и антициклонов.

Вопреки расхожему воззрению, маловероятно, что сила Кориолиса целиком определяет направление закручивания воды в водопроводе - к примеру, при сливе в раковине. Хотя в различных полушариях она вправду стремится закручивать водяную воронку в различных направлениях, при сливе появляются и побочные потоки, зависящие от формы раковины и конфигурации канализационной системы. По абсолютной величине создаваемые этими потоками силы превосходят силу Кориолиса, потому направление вращения воронки как в Северном, так и в Южном полушарии может быть как по часовой стрелке, так и против неё.

Сила Кориолиса (по имени французского учёного Г. Кориолиса, в первый раз его описавшего) - одна из сил инерции, существующая в неинерциальной (вращающейся) системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения. Ускорение Кориолиса было получено Г.Кориолисом в 1833г., К.Гаусом в 1803г. и Л.Эйлером в 1765 г.

Причина возникновения силы Кориолиса - в кориолисовом (поворотном) ускорении. Для того, чтоб тело двигалось с кориолисовым ускорением, нужно приложение силы к телу, равной F = ma, где a - кориолисово ускорение. Соответственно, тело действует по третьему закону Ньютона с силой обратной направленности. FK = - ma. Сила, которая действует со стороны тела, и будет называться силой Кориолиса. Не следует путать Кориолисову силу с иной силой инерции - центробежной силой, которая ориентирована по радиусу вращающейся окружности.

В инерциальных системах отсчёта действует закон инерции, другими словами, каждое тело стремится двигаться по прямой и с неизменной скоростью. В том случае разглядеть движение тела, равномерное повдоль некого вращающегося радиуса и направленное от центра, то станет ясно, что чтоб оно осуществилось, требуется придавать телу ускорение, потому что чем далее от центра, тем должна быть больше касательная скорость вращения. Это означает, что исходя из убеждений вращающейся системы отсчёта, некоторая сила будет пробовать сдвинуть тело с радиуса.

В том случае вращение происходит по часовой стрелке, то двигающееся от центра вращения тело будет стремиться сойти с радиуса на лево. В том случае вращение происходит против часовой стрелки - то на право.

Итог действия силы Кориолиса будет наибольшим при продольном перемещении объекта по отношению к вращению. Как следует, на Земле это будет при движении по меридиану, при всем этом тело отклоняется на право при движении с севера на юг и на лево при движении с юга на север. Для этого явления имеются две предпосылки: 1-ая, вращение Земли на восток; и 2-ая - зависимость от географической широты тангенциальной скорости точки на поверхности Земли (эта скорость равна нулю на полюсах и добивается собственного наибольшего значения на экваторе).

Следовательно, при выстреле пушки на север из хоть какой точки на экваторе, снаряд падает восточнее собственного сначало данного направления. Это отклонение разъясняется тем фактом, что на экваторе снаряд двигается к востоку резвее, чем в хоть какой точке севернее. Подобно, в том случае стрелять со стороны северного полюса, то снаряд должен падать правее по отношению к собственной прицельной точке. Потому что в данном случае за время полета цель успевает переместиться к востоку далее из-за собственной большей, чем у снаряда, восточной скорости. Подобные смещения происходят при любом выстреле, в том случае только начальная скорость снаряда имеет ненулевую проекцию на направление север - юг.

Первоисточники:

  • ru.wikipedia.org - сила Кориолиса, математическое определение, сила Кориолиса в природе и т.д.;
  • astrogalaxy1.narod.ru - о силе Кориолиса;
  • elementy.ru - эффект Кориолиса.