Сколько будет 0 разделить на 3. Деление на ноль: почему нельзя? Сложение и умножение

Евгений Ширяев, преподаватель и руководитель Лаборатории математики Политехнического музея , рассказал АиФ.ru о делении на ноль:

1. Юрисдикция вопроса

Согласитесь, особенную провокационность правилу придает запрет. Как это нельзя? Кто запретил? А как же наши гражданские права?

Ни конституция РФ, ни Уголовный кодекс, ни даже устав вашей школы не возражают против интересующего нас интеллектуального действия. А значит, запрет не имеет юридической силы, и ничто не мешает прямо тут, на страницах АиФ.ru, попробовать что-нибудь разделить на ноль. Например, тысячу.

2. Разделим, как учили

Вспомните, когда вы только узнали, как делить, первые примеры решали спроверкой умножением: результат, умноженный на делитель должен был совпасть сделимым. Не совпал — не решили.

Пример 1. 1000: 0 =...

Забудем на минуту про запретное правило и сделаем несколько попыток угадать ответ.

Неправильные отсечёт проверка. Перебирайте варианты: 100, 1, −23, 17, 0, 10 000. Для каждого из них проверка даст один и тот же результат:

100 · 0 = 1 · 0 = − 23 · 0 = 17 · 0 = 0 · 0 = 10 000 · 0 = 0

Ноль умножением все превращает в себя и никогда в тысячу. Вывод сформулировать несложно: никакое число не пройдет проверку. Т. е. ни одно число не может быть результатом деления ненулевого числа на ноль. Такое деление не запрещено, а просто не имеет результата.

3. Нюанс

Чуть не упустили одну возможность опровергнуть запрет. Да, мы признаем, что ненулевое число не разделится на 0. Но может быть, сам 0 сможет?

Пример 2. 0: 0 = ...

Ваши предложения для частного? 100? Пожалуйста: частное 100, умноженное на делитель 0, равно делимому 0.

Еще варианты! 1? Тоже подходит. И −23, и 17, и все-все-все. В этом примере проверка на результат будет положительной для любого числа. И по-честному, решением в этом примере надо называть не число, а множество чисел. Всех. А так недолго договориться и до того, что Алиса это не Алиса, а Мэри-Энн, а обе они — сон кролика.

4. Что там про высшую математику?

Проблема разрешена, нюансы учтены, точки расставлены, все прояснилось — ответом для примера с делением на ноль не может быть ни одно число. Такие задачки решать — дело безнадежное и невозможное. А значит... интересное! Дубль два.

Пример 3. Придумать, как разделить 1000 на 0.

А никак. Зато 1000 можно без трудностей делить на другие числа. Ну, давайте хотя бы делать, что получается, пусть даже изменив поставленную задачу. А там, глядишь, увлечемся, и ответ сам собой объявится. Забываем на минуту про ноль и делим на сто:

Сотня далека от нуля. Сделаем шаг к нему, уменьшив делитель:

1000: 25 = 40,
1000: 20 = 50,
1000: 10 = 100,
1000: 8 = 125,
1000: 5 = 200,
1000: 4 = 250,
1000: 2 = 500,
1000: 1 = 1000.

Очевидная динамика: чем ближе делитель к нулю, тем больше частное. Тенденцию можно наблюдать и дальше, переходя к дробям и продолжая уменьшать числитель:

Осталось заметить, что к нулю мы можем подойти как угодно близко, делая частное сколь угодно большим.

В этом процессе нет нуля и нет последнего частного. Мы обозначили движение к ним, заменив число на последовательность, сходящуюся к интересующему нас числу:

При этом подразумевается аналогичная замена и для делимого:

1000 ↔ { 1000, 1000, 1000,... }

Стрелки не зря поставлены двусторонними: некоторые последовательности могут сходиться к числам. Тогда мы можем поставить в соответствие последовательности ее числовой предел.

Посмотрим на последовательность частных:

Она растет неограниченно, не стремясь ни к какому числу и превосходя любое. Математики добавляют к числам символ ∞, чтобы иметь возможность рядом с такой последовательностью поставить двустороннюю стрелку:

Сопоставление числам последовательностей, имеющих предел, позволяет предложить решение к третьему примеру:

При поэлементном делении последовательности, сходящейся к 1000, на последовательность из положительных чисел, сходящуюся к 0, получим последовательность, сходящуюся к ∞.

5. И здесь нюанс с двумя нулями

Что будет результатом деления двух последовательностей положительных чисел, сходящихся к нулю? Если они одинаковые, то тождественная единица. Если к нулю быстрее сходится последовательность-делимое, то в частном последовательность снулевым пределом. А когда элементы делителя убывают гораздо быстрее, чем у делимого, последовательность частного будет сильно расти:

Неопределенная ситуация. И так и называется: неопределенность вида 0/0 . Когда математики видят последовательности, подходящие под такую неопределенность, они не бросаются делить два одинаковых числа друг на друга, а разбираются, какая из последовательностей быстрее бежит к нулю и как именно. И в каждом примере будет свой конкретный ответ!

6. В жизни

Закон Ома связывает силу тока, напряжение и сопротивление в цепи. Часто его записывают в такой форме:

Позволим себе пренебречь аккуратным физическим пониманием и формально посмотрим на правую часть как на частное двух чисел. Вообразим, что решаем школьную задачу по электричеству. В условии дано напряжение в вольтах и сопротивление в омах. Вопрос очевиден, решение в одно действие.

А теперь заглянем в определение сверхпроводимости: это свойство некоторых металлов обладать нулевым электрическим сопротивлением.

Ну что, решим задачку для сверхпроводящей цепи? Просто так подставить R = 0 не выйдет, физика подкидывает интересную задачу, за которой, очевидно, стоит научное открытие. И люди, сумевшие поделить на ноль в этой ситуации, получили Нобелевскую премию. Любые запреты полезно уметь обходить!

Учебник: «Математика» М.И.Моро

Цели урока: создать условия для формирования умения делить 0 на число.

Задачи урока:

  • раскрыть смысл деления 0 на число через связь умножения и деления;
  • развивать самостоятельность, внимание, мышление;
  • формировать навыки решения примеров на табличное умножение и деление.

Для достижения цели урок был разработан с учётом деятельностного подхода.

Структура урока включала в себя:

  1. Орг. момент , целью которого было позитивно настроить детей на учебную деятельность.
  2. Мотивация позволила актуализировать знания, сформировать цели и задачи урока. Для этого были предложены задания на нахождение лишнего числа, классификацию примеров на группы, добавление недостающих чисел . В ходе решения этих заданий, дети столкнулись с проблемой : нашёлся пример, для решения которого не хватает имеющихся знаний. В связи с этим дети самостоятельно сформулировали цель и поставили перед собой учебные задачи урока.
  3. Поиск и открытие нового знания дал возможность детям предложить различные варианты решения задания. Основываясь на ранее изученный материал, они смогли найти верное решение и прийти к выводу , в котором сформулировали новое правило.
  4. Во время первичного закрепления ученики комментировали свои действия,работая по правилу , дополнительно были подобраны свои примеры на это правило.
  5. Для автоматизации действий и умения пользоваться правилам в нестандартных заданиях дети решали уравнения, выражения в несколько действий.
  6. Самостоятельная работа и проведенная взаимопроверка показали, что большинство детей тему усвоили.
  7. Во время рефлексии дети сделали вывод, что поставленная цель урока достигнута и оценили себя с помощью карточек.

В основе урока лежали самостоятельные действия учащихся на каждом этапе, полное погружение в учебную задачу. Этому способствовали такие приёмы, как работа в группах, само- и взаимопроверка, создание ситуации успеха, дифференцированные задания, саморефлексия.

Ход урока

Цель этапа Содержание этапа Деятельность ученика
1. Орг. момент
Подготовка уч-ся к работе, позитивный настрой на учебную деятельность. Стимулирование на учебную деятельность .
Проверьте свою готовность к уроку, сядьте ровно, облокотитесь на спинку стула.
Потрите свои ушки, чтобы кровь активнее поступала в мозг. Сегодня у вас будет много интересной работы, с которой, я уверена, вы справитесь на отлично.
Организация рабочего места, проверка посадки.
2. Мотивация.
Стимулирование познавательной
активности,
активизация мыслительного процесса
Актуализация знаний, достаточных для приобретения нового знания.
Устный счёт.
Проверка знания табличного умножения:
Решение заданий, основанных на знании табличного умножения.
А) найди лишнее число:
2 4 6 7 10 12 14
6 18 24 29 36 42
Объясните, почему оно лишнее и каким числом его надо заменить.
Нахождение лишнего числа.
Б) вставьте пропущенные числа:
… 16 24 32 … 48 …
Добавление недостающего числа.
Создание проблемной ситуации
Задания в парах:
В) расставьте примеры в 2 группы:

Почему так распределили? (с ответом 4 и 5).
Классификация примеров по группам.
Карточки:
8·7-6+30:6=
28:(16:4)·6=
30-(20-10:2):5=
30-(20-10·2):5=
Сильные ученики работают по индивидуальным карточкам.
Что вы заметили? Есть ли здесь лишний пример?
Все ли примеры вы смогли решить?
У кого возникли затруднения?
Чем этот пример отличается от остальных?
Если кто-то решил, то молодец. Но почему не все смогли справиться с этим примером?
Нахождение затруднения.
Выявление недостающего знания, причины затруднения.
Постановка учебной задачи.
Здесь есть пример с 0. А от 0 можно ожидать разные фокусы. Это необычное число.
Вспомните, что вы знаете про 0? (а·0=0, 0·а=0, 0+а=а)·
Приведите примеры.
Посмотрите, какой он коварный: когда его прибавляют, он не изменяет число, а когда умножают, превращают его в 0.
Подходят ли эти правила к нашему примеру?
Как же он поведёт себя при елении?
Наблюдение над известными приёмами действий с 0 и соотношение с исходным примером.
Итак, какова наша цель? Решить этот пример верно.
Таблица на доске.
Что для этого надо? Узнать правило деления 0 на число.
Выдвижение гипотезы,
Как же найти верное решение?
С каким действием связано умножение? (с делением)
Приведите пример
2 · 3 = 6
6: 2 = 3

Можем ли мы теперь 0:5?
Это значит, надо найти число, при умножении которого на 5 получится 0.
х·5=0
Это число 0. Значит, 0:5=0.

Приведите свои примеры.

поиск решения на основе ранее изученного,
Формулирование правила.
Какое же правило теперь можно сформулировать?
При делении 0 на число получается 0.
0: а = 0.
Решение типовых заданий с комментированием.
Работа по схеме (0:а=0)
5. Физминутка.
Профилактика нарушения осанки, снятие усталости с глаз, общего утомления.
6. Автоматизация знаний.
Выявление границ применимости нового знания. В каких ещё заданиях может понадобиться знание этого правила? (в решении примеров, уравнений)
Использование полученных знаний в разных заданиях.
Работа в группах.
Что неизвестно в этих уравнениях?
Вспомните, как узнать неизвестный множитель.
Решите уравнения.
Какое решение в 1 уравнении? (0)
Во 2? (нет решения, на 0 делить нельзя)
Обращение к ранее изученным умениям.
** Составьте уравнение с решением х=0 (х·5=0) Для сильных уч-ся творческое задание
7. Самостоятельная работа.
Развитие самостоятельности, познавательных способностей Самостоятельная работа с последующей взаимопроверкой.
№6
Активные умственные действия учащихся, связанные с поисками решения, опираясь на свои знания. Самоконтроль и взаимоконтроль.
Сильные ученики проверяют и помогают более слабым.
8. Работа над ранее пройденным материалом. Отработка умения решения задач.
Формирование навыка решения задач. Как вы думаете, часто ли в задачах используется число 0?
(Нет, не часто, т.к. 0 – это ничего, а в задачах должно какое-то количество чего-либо.)
Тогда будем решать задачи, где есть другие числа.
Прочитайте задачу. Что поможет решить задачу? (таблица)
Какие столбики в таблице надо записать? Заполните таблицу. Составьте план решения: что надо узнать в 1, во 2 действии?
Работа над задачей с использованием таблицы.
Планирование решения задачи.
Самостоятельная запись решения.
Самоконтроль по образцу.
9. Рефлексия. Итоги урока.
Организация самооценки деятельности. Повышение мотивации ребёнка.
Над какой темой сегодня работали? О чём вы не знали в начале урока?
Какую цель ставили перед собой?
Достигли вы её? С каким правилом познакомились?
Оцените свою работу, выставив соответствующий значок:
солнышко – я доволен собой, у меня всё получилось
белое облако – всё хорошо, но я мог работать лучше;
серое облако – урок обычный, ничего интересного;
капелька – ничего не получилось
Осознавание своей деятельности, самоанализ своей работы. Фиксация соответствия результатов деятельности и поставленной цели.
10. Домашнее задание.

На самом деле история с делением на ноль не давала покоя его изобретателям (а ). Но индийцы — философы привыкшие к абстрактным задачам. Что значит разделить на ничто? Для европейцев того времени такого вопроса вообще не существовало, так как ни о нуле ни об отрицательных числах (которые левее нуля на шкале) они знать не знали.

В Индии отнять от меньшего большее и получить отрицательное число не составляло проблем. Ведь что значит 3-5=-2 в обычной жизни? Это значит, что кто-то остался должен кому-то 2. Отрицательные числа назывались долгами.

Теперь давайте так же просто разберемся с вопросом деления на нуль. В далеком 598 году нашей эры (только вдумайтесь как давно, более 1400 лет назад!) в Индии родился математик Брахмагупта, который тоже задавался вопросом деления на ноль.

Он предположил, что если взять лимон и начать делить его на части, рано или поздно мы придем к тому, что дольки будут очень маленькими. В воображении мы можем дойти до того, что дольки станут равны нулю. Итак, вопрос, если разделить лимон не на 2, 4 или 10 частей, а на стремящееся к бесконечности количество частей — какого размера получаться дольки?

Получится бесконечное число "нулевых долек". Все довольно просто, нарежем лимон очень мелко, получим лужицу с бесконечным количеством частей.

Но если взяться за математику, то получается как-то нелогично

а*0=0? А если b*0=0? Значит: а*0=b*0. А отсюда: а=b. То есть любое число равно любому числу. Первая неправильность деления на ноль, идем дальше. В математике, деление считается обратным действием умножения.

Это значит, что если мы делим 4 на 2, мы должны найти число, которое при умножении на 2 даст 4 . Делим 4 на ноль — нужно найти число, которое при умножении на ноль даст 4. То есть х*0=4? Но х*0=0! Опять незадача. Получается мы спрашиваем: "Сколько нолей нужно взять, чтобы получилось 4?" Бесконечность? Бесконечное количество нолей все равно даст в сумме ноль.

А деление 0 на 0 вообще дает неопределенность, ведь 0*х=0, где х вообще все что угодно. То есть — бесчисленное множество решений.


Нелогичность и абстрактность операций с нулем не позволяется в узких рамках алгебры, точнее это неопределенная операция. Для нее нужен аппарат посерьезнее высшая математика. Так что в некотором роде делить на ноль нельзя, но если очень захочется, то делить на ноль можно, но нужно быть готовым понимать такие вещи как дельта-функция Дирака и прочие трудно осознаваемые вещи. Делите на здоровье.

Каких только вопросов не задают наши детки!.. А вот вопрос «Почему на ноль делить нельзя?» не задают. Почему? Потому что еще в школе учительница сказала, что НЕЛЬЗЯ. Нельзя, значит, нельзя! Много позже, уже в институтах, мы узнали, что делить оказывается все-таки можно, и получится в результате — бесконечность. Но, признайтесь, наш ум принял этот факт как некое допущение, условность, мы ведь с детства помним — нельзя. А, собственно, почему все-таки?

Для начала давайте разберемся, откуда появляется бесконечность, к понятию которой на первых курсах университета мы отнеслись с некоторой долей недоверия. Все удивительно просто: если какое-нибудь число делить на все меньшее и меньшее, то будет получаться все большее и большее значение. Чем меньше будет делитель, тем больше станет частное. Так появляется бесконечность.

Но физики и математики не любят бесконечности, потому условно принято, что на ноль делить нельзя. Получается, что допущением является невозможность делить на ноль.

Обратимся к азам математики. В арифметике существует четыре действия — сложение, вычитание, умножение и деление. Но равноправия у них нет. Математики считают основными действиями только два из них: сложение и умножение, остальные — обратные действия, следствия основных.

Рассмотрим понятие «вычитание». Для решения примера «5 — 3 = …» надо из пяти предметов убрать три, оставшееся при этом количество и будет ответом на наш пример. Но, учитывая, что основным действием считается сложение, давайте несколько изменим наш пример, записав его в виде сложения: «х + 3 = 5». То есть к какому числу надо прибавить три, чтобы получилось пять?

Так же дела обстоят с делением. Выражение «8: 4 = …» вытекает из выражения «4 x = 8». Сколько раз по четыре надо взять, чтобы получилось восемь?

И вот он, ответ! Если 5: 0 — это вариант записи 0 x = 5, то получается, надо найти такое число, которое при умножении на 0 даст 5. Сколько раз по нулю надо взять, чтобы получилось что-то большее, чем ничего?! Но при умножении на 0 всегда получается 0, этот факт лежит в самом определении нуля! Числа, которое при умножении на 0 дает что-то отличное от ноля, не существует. Получается, задача не имеет решения, а выражение 5: 0 не имеет смысла. Чтобы уменьшить количество бессмысленных задач, было принято, что на ноль делить нельзя.

Самые дотошные читатели непременно спросят: а как же с делением нуля на ноль?

Давайте разберемся. Получается, уравнение 0 x = 0 имеет решение? Или бесконечное число решений? «Х» может быть равен и единице, и двум, и миллиону. Так, при х=0, получается 0 0 = 0, тогда 0: 0=0? А при х=1, 0 1 =0, значит, 0: 0 = 1?! Или 0: 0 = 1000000?!

Выходит, мы не можем найти решения выражения «0: 0», значит, и у этого выражения нет решения. Получается, ноль на ноль тоже делить нельзя.

Вот к таким интересным умозаключениям можно прийти, задумавшись над известным с начальных классов фактом: на ноль делить нельзя.

Заинтересовало? Дочитали до конца? Значит, именно из-за таких как вы и появился следующий жизненный анекдот.

— Почему нельзя делить на ноль? Умножать же можно, причем тоже ноль получается.

— Почему нельзя? Можно, только результат такого деления — бесконечность

— А почему не ноль?

— Ну вот, смотри: 2*0 — это два взять ноль раз, будет ноль. А 2/0 — это «сколько раз ноль умещается в двойке», бесконечность.

— Если 2/0=х, то значит 2=х*0, то есть 2=0. А если 2=0, значит 2/0=0!

— Ну вот, чтобы такой ерундой не заниматься, математики и приняли негласное соглашение: на ноль делить нельзя!

Математическое правило относительно деления на ноль всем людям рассказывали еще в первом классе общеобразовательной школы. «Делить на ноль нельзя», - учили всех нас и запрещали под страхом подзатыльника делить на ноль и вообще обсуждать эту тему. Хотя некоторые учителя младших классов все-таки пробовали объяснить на простейших примерах, почему нельзя делить на ноль, но эти примеры были настолько нелогичны, что проще было просто запомнить это правило и не задавать лишних вопросов. Но все эти примеры были нелогичными по той причине, что логически объяснить это в первом классе нам учителя не могли, так как в первом классе мы и близко не знали, что такое уравнение, а логически это математическое правило объяснить можно только с помощью уравнений.

Все знают, что при делении любого числа на ноль выйдет пустота. Почему именно пустота, мы рассмотрим потом.

Вообще в математике только две процедуры с числами признаются независимыми. Это сложение и умножение. Остальные же процедуры считаются производные от этих двух процедур. Рассмотрим это на примере.

Скажите, сколько будет, например, 11-10? Мы все моментально ответим, что это будет 1. А как мы нашли такой ответ? Кто-то скажет, что это и так понятно, что будет 1, кто-то скажет, что от 11 яблок отнял 10 и посчитал, что получилось одно яблоко. С точки зрения логики все правильно, но вот по законам математики эта задача решается по-другому. Нужно вспомнить, что основными процедурами считаются сложение и умножение, поэтому нужно составить такое уравнение: х+10=11, а только потом х=11-10, х=1. Заметим, что сложение идет на первом месте, а только потом на основе уравнения мы можем отнимать. Казалось бы, зачем столько процедур? Ведь ответ и так очевиден. Но только такими процедурами можно объяснить невозможность деления на ноль.

Например, мы делаем такую математическую задачу: хотим 20 поделить на ноль. Итак, 20:0=х. Чтобы узнать, сколько же будет, нужно вспомнить, что процедура деления вытекает из умножения. Другими словами, деление-это производная процедура от умножения. Поэтому нужно составить уравнение из умножением. Итак, 0*х=20. Вот тут и тупик. Какое бы число мы не множили на ноль, все равно будет 0, но не 20. Вот отсюда и вытекает правило: делить на ноль нельзя. Ноль делить на любое число можно, а вот число на ноль - увы, нельзя.

Отсюда появляется еще один вопрос: а можно ли ноль делить на ноль? Итак, 0:0=х, значит 0*х=0. Это уравнение можно решить. Возьмем, например, х=4, значит 0*4=0. Получается, что если разделить ноль на ноль, получится 4. Но и здесь все не так просто. Если мы возьмем, например, х=12 или х=13, то выйдет тот же ответ (0*12=0). Вообще, какое бы мы число не подставляли, все равно выйдет 0. Поэтому, если 0:0, то получится бесконечность. Вот такая нехитрая математика. К сожалению, процедура деления ноль на ноль тоже бессмысленна.

Вообще, цифра ноль в математике самая интересная. К примеру, все знают, что любое число в нулевой степени дает единицу. Конечно, с таким примером в реальной жизни мы не встречаемся, но вот с делением на ноль жизненные ситуации попадаются очень часто. Поэтому запомним, что делить на ноль нельзя.