Как решить иррациональное уравнение корнем. Решение иррациональных уравнений

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

Иррациональное уравнение — это любое уравнение, содержащее функцию под знаком корня. Например:

Такие уравнения всегда решаются в 3 шага:

  1. Уединить корень. Другими словами, если слева от знака равенства помимо корня стоят другие числа или функции, все это надо перенести вправо, поменяв знак. Слева при этом должен остаться только радикал — без всяких коэффициентов.
  2. 2. Возводим обе части уравнения в квадрат. При этом помним, что область значений корня — все неотрицательные числа. Следовательно, функция справа иррационального уравнения также должна быть неотрицательна: g (x ) ≥ 0.
  3. Третий шаг логично следует из второго: надо выполнить проверку. Дело в том, что на втором шаге у нас могли появиться лишние корни. И чтобы отсечь их, надо подставить полученные числа-кандидаты в исходное уравнение и проверить: действительно ли получается верное числовое равенство?

Решение иррационального уравнения

Разберемся с нашим иррациональным уравнением, данным в самом начале урока. Тут корень уже уединен: слева от знака равенства нет ничего, кроме корня. Возводим обе стороны в квадрат:

2x 2 − 14x + 13 = (5 − x ) 2
2x 2 − 14x + 13 = 25 − 10x + x 2
x 2 − 4x − 12 = 0

Решаем полученное квадратное уравнение через дискриминант:

D = b 2 − 4ac = (−4) 2 − 4 · 1 · (−12) = 16 + 48 = 64
x 1 = 6; x 2 = −2

Осталось лишь подставить эти числа в исходное уравнение, т.е. выполнить проверку. Но и тут можно поступить грамотно, чтобы упростить итоговое решение.

Как упростить решение

Давайте подумаем: зачем вообще мы выполняем проверку в конце решения иррационального уравнения? Мы хотим убедиться, что при подстановке наших корней справа от знака равенства будет стоять неотрицательное число. Ведь мы уже точно знаем, что слева стоит именно неотрицательное число, потому что арифметический квадратный корень (из-за которого наше уравнение и носит название иррационального) по определению не может быть меньше нуля.

Следовательно, все, что нам надо проверить — это чтобы функция g (x ) = 5 − x , которая стоит справа от знака равенства, была неотрицательной:

g (x ) ≥ 0

Подставляем наши корни в эту функцию и получаем:

g (x 1) = g (6) = 5 − 6 = −1 < 0
g (x 2) = g (−2) = 5 − (−2) = 5 + 2 = 7 > 0

Из полученных значений следует, что корень x 1 = 6 нас не устраивает, поскольку при подстановке в правую часть исходного уравнения мы получаем отрицательное число. А вот корень x 2 = −2 нам вполне подходит, потому что:

  1. Этот корень является решением квадратного уравнения, полученного в результате возведения обеих сторон иррационального уравнения в квадрат.
  2. Правая сторона исходного иррационального уравнения при подстановке корня x 2 = −2 обращается в положительное число, т.е. область значений арифметического корня не нарушена.

Вот и весь алгоритм! Как видите, решать уравнения с радикалами не так уж и сложно. Главное — не забывать проверять полученные корни, иначе очень велика вероятность получить лишние ответы.

Тема: «Иррациональные уравнения вида ,

(Методическая разработка.)

Основные понятия

Иррациональными уравнениями называются уравнения, в которых переменная содержится под знаком корня (радикала) или знаком возведения в дробную степень.

Уравнение вида f(x)=g(x), где хотя бы одно из выражений f(x) или g(x) иррационально является иррациональным уравнением.

Основные свойства радикалов :

  • Все радикалы четной степени являются арифметическими, т.е. если подкоренное выражение отрицательно, то радикал не имеет смысла (не существует); если подкоренное выражение равно нулю, то радикал тоже равен нулю; если подкоренное выражение положительно, то значение радикала существует и положительно.
  • Все радикалы нечетной степени определены при любом значении подкоренного выражения. При этом радикал отрицателен, если подкоренное выражение отрицательно; равен нулю, если подкоренное выражение равно нулю; положителен, если покоренное выражение положительно.

Методы решения иррациональных уравнений

Решить иррациональное уравнение – значит найти все действительные значения переменной, при подстановке которых в исходное уравнение оно обращается в верное числовое равенство, либо доказать, что таких значений не существует. Иррациональные уравнения решаются на множестве действительных чисел R.

Областью допустимых значений уравнения состоит из тех значений переменной, при которых неотрицательны все выражения, стоящие под знаком радикалов четной степени.

Основными методами решения иррациональных уравнений являются:

а) метод возведения обеих частей уравнения в одну и ту же степень;

б) метод введения новых переменных (метод замен);

в) искусственные приемы решения иррациональных уравнений.

В данной статье остановимся на рассмотрении уравнений определённого выше вида и приведём 6 методов решения таких уравнений.

1 метод. Возведение в куб .

Этот способ требует применения формул сокращённого умножения и не содержит «подводных» камней, т.е. не приводит к появлению посторонних корней.

Пример 1. Решить уравнение

Решение:

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению ,

Ответ : х=2, х=11.

Пример 2 . Решить уравнение .

Решение :

Перепишем уравнение в виде и возведём в куб обе его части. Получим уравнение равносильное данному уравнению

и рассмотрим полученное уравнение как квадратное относительно одного из корней

следовательно, дискриминант равен 0,а уравнение может иметь решение х=-2.

Проверка:

Ответ : х=-2.

Замечание : Проверка может быть опущена, в том случае, если дорешивается квадратное уравнение.

2 метод. Возведение в куб по формуле.

По-прежнему будем возводить уравнение в куб, но при этом пользоваться модифицированными формулами сокращенного умножения.

Воспользуемся формулами:

(незначительная модификация известной формулы), тогда

Пример3. Решить уравнение .

Решение :

Возведём уравнение в куб с использованием формул, приведённых выше.

Но выражение должно быть равно правой части. Поэтому имеем:

.

Теперь при возведении в куб получаем обычное квадратное уравнение:

, и два его корня

Оба значения, как показывает проверка, правильные.

Ответ : х=2,х=-33.

Но все ли преобразования здесь равносильны? Прежде чем ответить на этот вопрос, решим ещё одно уравнение.

Пример4. Решить уравнение .

Решение :

Возводя, как и ранее, обе части в третью степень, имеем:

Откуда (учитывая, что выражение в скобках равно ), получаем:

Получаем, .Сделаем проверку и убедимся х=0 –посторонний корень.

Ответ : .

Ответим на вопрос: «Почему возникли посторонние корни?»

Равенство влечёт равенство . Заменим с на –с, получим:

Нетрудно проверить тождество

Итак, если , то либо , либо . Уравнение можно представить в виде , .

Заменяя с на –с, получаем: если , то либо , либо

Поэтому при использовании этого метода решения обязательно нужно сделать проверку и убедиться что посторонних корней нет.

3 метод. Метод системы.

Пример 5. Решить уравнение .

Решение :

Пусть , . Тогда:

Откуда очевидно, что

Второе уравнение системы получается таким образом, чтобы линейная комбинация подкоренных выражений не зависела от исходной переменной.

Легко убедиться, что система не имеет решения, следовательно и исходное уравнение не имеет решения.

Ответ : Корней нет.

Пример 6. Решить уравнение .

Решение :

Введём замену, составим и решим систему уравнений.

Пусть , . Тогда

Возвращаясь к исходной переменной имеем:

Ответ : х=0.

4 метод. Использование монотонности функций.

Прежде чем использовать данный метод обратимся к теории.

Нам понадобятся следующие свойства:

Пример 7. Решить уравнение .

Решение :

Левая часть уравнения возрастающая функция, а правая – число, т.е. константа, следовательно, уравнение имеет не более одного корня, который подберём: х=9. Проверкой убедимся, что корень подходит.

Соблюдение Вашей конфиденциальности важно для нас. По этой причине, мы разработали Политику Конфиденциальности, которая описывает, как мы используем и храним Вашу информацию. Пожалуйста, ознакомьтесь с нашими правилами соблюдения конфиденциальности и сообщите нам, если у вас возникнут какие-либо вопросы.

Сбор и использование персональной информации

Под персональной информацией понимаются данные, которые могут быть использованы для идентификации определенного лица либо связи с ним.

От вас может быть запрошено предоставление вашей персональной информации в любой момент, когда вы связываетесь с нами.

Ниже приведены некоторые примеры типов персональной информации, которую мы можем собирать, и как мы можем использовать такую информацию.

Какую персональную информацию мы собираем:

  • Когда вы оставляете заявку на сайте, мы можем собирать различную информацию, включая ваши имя, номер телефона, адрес электронной почты и т.д.

Как мы используем вашу персональную информацию:

  • Собираемая нами персональная информация позволяет нам связываться с вами и сообщать об уникальных предложениях, акциях и других мероприятиях и ближайших событиях.
  • Время от времени, мы можем использовать вашу персональную информацию для отправки важных уведомлений и сообщений.
  • Мы также можем использовать персональную информацию для внутренних целей, таких как проведения аудита, анализа данных и различных исследований в целях улучшения услуг предоставляемых нами и предоставления Вам рекомендаций относительно наших услуг.
  • Если вы принимаете участие в розыгрыше призов, конкурсе или сходном стимулирующем мероприятии, мы можем использовать предоставляемую вами информацию для управления такими программами.

Раскрытие информации третьим лицам

Мы не раскрываем полученную от Вас информацию третьим лицам.

Исключения:

  • В случае если необходимо - в соответствии с законом, судебным порядком, в судебном разбирательстве, и/или на основании публичных запросов или запросов от государственных органов на территории РФ - раскрыть вашу персональную информацию. Мы также можем раскрывать информацию о вас если мы определим, что такое раскрытие необходимо или уместно в целях безопасности, поддержания правопорядка, или иных общественно важных случаях.
  • В случае реорганизации, слияния или продажи мы можем передать собираемую нами персональную информацию соответствующему третьему лицу – правопреемнику.

Защита персональной информации

Мы предпринимаем меры предосторожности - включая административные, технические и физические - для защиты вашей персональной информации от утраты, кражи, и недобросовестного использования, а также от несанкционированного доступа, раскрытия, изменения и уничтожения.

Соблюдение вашей конфиденциальности на уровне компании

Для того чтобы убедиться, что ваша персональная информация находится в безопасности, мы доводим нормы соблюдения конфиденциальности и безопасности до наших сотрудников, и строго следим за исполнением мер соблюдения конфиденциальности.

После того, как мы изучили понятие равенств, а именно один из их видов – числовые равенства, можно перейти к еще одному важному виду – уравнениям. В рамках данного материала мы объясним, что такое уравнение и его корень, сформулируем основные определения и приведем различные примеры уравнений и нахождения их корней.

Yandex.RTB R-A-339285-1

Понятие уравнения

Обычно понятие уравнения изучается в самом начале школьного курса алгебры. Тогда оно определяется так:

Определение 1

Уравнением называется равенство с неизвестным числом, которое нужно найти.

Принято обозначать неизвестные маленькими латинскими буквами, например, t , r , m др., но чаще всего используются x , y , z . Иными словами, уравнение определяет форма его записи, то есть равенство будет уравнением только тогда, когда будет приведен к определенному виду – в нем должна быть буква, значение которое надо найти.

Приведем несколько примеров простейших уравнений. Это могут быть равенства вида x = 5 , y = 6 и т.д., а также те, что включают в себя арифметические действия, к примеру, x + 7 = 38 , z − 4 = 2 , 8 · t = 4 , 6: x = 3 .

После того, как изучено понятие скобок, появляется понятие уравнений со скобками. К ним относятся 7 · (x − 1) = 19 , x + 6 · (x + 6 · (x − 8)) = 3 и др. Буква, которую надо найти, может встречаться не один раз, а несколько, как, например, в уравнении x + 2 + 4 · x − 2 − x = 10 . Также неизвестные могут быть расположены не только слева, но и справа или в обеих частях одновременно, например, x · (8 + 1) − 7 = 8 , 3 − 3 = z + 3 или 8 · x − 9 = 2 · (x + 17) .

Далее, после того, как ученики знакомятся с понятием целых, действительных, рациональных, натуральных чисел, а также логарифмами, корнями и степенями, появляются новые уравнения, включающие в себя все эти объекты. Примерам таких выражений мы посвятили отдельную статью.

В программе за 7 класс впервые возникает понятие переменных. Это такие буквы, которые могут принимать разные значения (подробнее см. в статье о числовых, буквенных выражениях и выражениях с переменными). Основываясь на этом понятии, мы можем дать новое определение уравнению:

Определение 2

Уравнение – это равенство, включающее в себя переменную, значение которой нужно вычислить.

То есть, к примеру, выражение x + 3 = 6 · x + 7 – это уравнение с переменной x , а 3 · y − 1 + y = 0 – уравнение с переменной y .

В одном уравнении может быть не одна переменная, а две и более. Их называют соответственно уравнениями с двумя, тремя переменными и др. Запишем определение:

Определение 3

Уравнениями с двумя (тремя, четырьмя и более) переменными называют уравнения, которые включают в себя соответствующее количество неизвестных.

К примеру, равенство вида 3 , 7 · x + 0 , 6 = 1 является уравнением с одной переменной x , а x − z = 5 – уравнением с двумя переменными x и z . Примером уравнения с тремя переменными может быть выражение x 2 + (y − 6) 2 + (z + 0 , 6) 2 = 26 .

Корень уравнения

Когда мы говорим об уравнении, сразу возникает необходимость определиться с понятием его корня. Попробуем объяснить, что оно означает.

Пример 1

Нам дано некое уравнение, включающее в себя одну переменную. Если мы подставим вместо неизвестной буквы число, то уравнение станет числовым равенством – верным или неверным. Так, если в уравнении a + 1 = 5 мы заменим букву числом 2 , то равенство станет неверным, а если 4 , то получится верное равенство 4 + 1 = 5 .

Нас больше интересуют именно те значения, с которыми переменная обратится в верное равенство. Они и называются корнями или решениями. Запишем определение.

Определение 4

Корнем уравнения называют такое значение переменной, которое обращает данное уравнение в верное равенство.

Корень также можно назвать решением, или наоборот – оба эти понятия означают одно и то же.

Пример 2

Возьмем пример для пояснения этого определения. Выше мы приводили уравнение a + 1 = 5 . Согласно определению, корнем в данном случае будет 4 , потому что при подстановке вместо буквы оно дает верное числовое равенство, а двойка не будет решением, поскольку ей отвечает неверное равенство 2 + 1 = 5 .

Сколько корней может иметь одно уравнение? Любое ли уравнение имеет корень? Ответим на эти вопросы.

Уравнения, не имеющие ни одного корня, тоже существуют. Примером может быть 0 · x = 5 . Мы можем подставить в него бесконечно много разных чисел, но ни одно из них не превратит его в верное равенство, поскольку умножение на 0 всегда дает 0 .

Также бывают уравнения, имеющие несколько корней. У них может быть как конечное, так и бесконечно большое количество корней.

Пример 3

Так, в уравнении x − 2 = 4 есть только один корень – шесть, в x 2 = 9 два корня ­­– три и минус три, в x · (x − 1) · (x − 2) = 0 три корня – нуль, один и два, в уравнении x=x корней бесконечно много.

Теперь поясним, как правильно записывать корни уравнения. Если их нет, то мы так и пишем: «уравнение корней не имеет». Можно также в этом случае указать знак пустого множества ∅ . Если корни есть, то пишем их через запятую или указываем как элементы множества, заключив в фигурные скобки. Так, если у какого-либо уравнения есть три корня - 2 , 1 и 5 , то пишем - 2 , 1 , 5 или { - 2 , 1 , 5 } .

Допускается запись корней в виде простейших равенств. Так, если неизвестная в уравнении обозначена буквой y , а корнями являются 2 и 7 , то мы пишем y = 2 и y = 7 . Иногда к буквам добавляются нижние индексы, например, x 1 = 3 , x 2 = 5 . Таким образом мы указываем на номера корней. Если решений у уравнения бесконечно много, то мы записываем ответ как числовой промежуток или используем общепринятые обозначения: множество натуральных чисел обозначается N , целых ­– Z , действительных – R . Скажем, если нам надо записать, что решением уравнения будет любое целое число, то мы пишем, что x ∈ Z , а если любое действительное от единицы до девяти, то y ∈ 1 , 9 .

Когда у уравнения два, три корня или больше, то, как правило, говорят не о корнях, а о решениях уравнения. Сформулируем определение решения уравнения с несколькими переменными.

Определение 5

Решение уравнения с двумя, тремя и более переменными – это два, три и более значения переменных, которые обращают данное уравнение в верное числовое равенство.

Поясним определение на примерах.

Пример 4

Допустим, у нас есть выражение x + y = 7 , которое представляет из себя уравнение с двумя переменными. Подставим вместо первой единицу, а вместо второй двойку. У нас получится неверное равенство, значит, эта пара значений не будет решением данного уравнения. Если же мы возьмем пару 3 и 4 , то равенство станет верным, значит, мы нашли решение.

Такие уравнения тоже могут не иметь корней или иметь бесконечное их количество. Если нам надо записать два, три, четыре и более значений, то мы пишем их через запятую в круглых скобках. То есть в примере выше ответ будет выглядеть как (3 , 4) .

На практике чаще всего приходится иметь дело с уравнениями, содержащими одну переменную. Алгоритм их решения мы подробно рассмотрим в статье, посвященной решению уравнений.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter